74 research outputs found

    Cryptography for Big Data Security

    Get PDF
    As big data collection and analysis becomes prevalent in today’s computing environments there is a growing need for techniques to ensure security of the collected data. To make matters worse, due to its large volume and velocity, big data is commonly stored on distributed or shared computing resources not fully controlled by the data owner. Thus, tools are needed to ensure both the confidentiality of the stored data and the integrity of the analytics results even in untrusted environments. In this chapter, we present several cryptographic approaches for securing big data and discuss the appropriate use scenarios for each. We begin with the problem of securing big data storage. We first address the problem of secure block storage for big data allowing data owners to store and retrieve their data from an untrusted server. We present techniques that allow a data owner to both control access to their data and ensure that none of their data is modified or lost while in storage. However, in most big data applications, it is not sufficient to simply store and retrieve one’s data and a search functionality is necessary to allow one to select only the relevant data. Thus, we present several techniques for searchable encryption allowing database- style queries over encrypted data. We review the performance, functionality, and security provided by each of these schemes and describe appropriate use-cases. However, the volume of big data often makes it infeasible for an analyst to retrieve all relevant data. Instead, it is desirable to be able to perform analytics directly on the stored data without compromising the confidentiality of the data or the integrity of the computation results. We describe several recent cryptographic breakthroughs that make such processing possible for varying classes of analytics. We review the performance and security characteristics of each of these schemes and summarize how they can be used to protect big data analytics especially when deployed in a cloud setting. We hope that the exposition in this chapter will raise awareness of the latest types of tools and protections available for securing big data. We believe better understanding and closer collaboration between the data science and cryptography communities will be critical to enabling the future of big data processing

    Analytic surveillance: Big data business models in the time of privacy awareness

    Get PDF
     Massive data collection and analysis is at the heart of many business models today. New technologies allow for fine-grained recommendation systems that help companies make accurate market predictions while also providing clients with highly personalized services. Because of this, extreme care must be taken when it comes to storing and managing personal (often highly sensitive) information. In this paper we focus on the influence of big data management in media business content platforms, mainly in well-known OTT (Over the Top) services. In addition, we comment on the implications of data management in social networks. We discuss the privacy and security risks associated with this novel scenario, and briefly comment on tools that aid in securing the privacy of business intelligence within this context

    Scalable and Robust Distributed Algorithms for Privacy-Preserving Applications

    Get PDF
    We live in an era when political and commercial entities are increasingly engaging in sophisticated cyber attacks to damage, disrupt, or censor information content and to conduct mass surveillance. By compiling various patterns from user data over time, untrusted parties could create an intimate picture of sensitive personal information such as political and religious beliefs, health status, and so forth. In this dissertation, we study scalable and robust distributed algorithms that guarantee user privacy when communicating with other parties to either solely exchange information or participate in multi-party computations. We consider scalability and robustness requirements in three privacy-preserving areas: secure multi-party computation (MPC), anonymous broadcast, and blocking-resistant Tor bridge distribution. We propose decentralized algorithms for MPC that, unlike most previous work, scale well with the number of parties and tolerate malicious faults from a large fraction of the parties. Our algorithms do not require any trusted party and are fully load-balanced. Anonymity is an essential tool for achieving privacy; it enables individuals to communicate with each other without being identified as the sender or the receiver of the information being exchanged. We show that our MPC algorithms can be effectively used to design a scalable anonymous broadcast protocol. We do this by developing a multi-party shuffling protocol that can efficiently anonymize a sequence of messages in the presence of many faulty nodes. Our final approach for preserving user privacy in cyberspace is to improve Tor; the most popular anonymity network in the Internet. A current challenge with Tor is that colluding corrupt users inside a censorship territory can completely block user\u27s access to Tor by obtaining information about a large fraction of Tor bridges; a type of relay nodes used as the Tor\u27s primary mechanism for blocking-resistance. We describe a randomized bridge distribution algorithm, where all honest users are guaranteed to connect to Tor in the presence of an adversary corrupting an unknown number of users. Our simulations suggest that, with minimal resource costs, our algorithm can guarantee Tor access for all honest users after a small (logarithmic) number of rounds

    Towards Applying Cryptographic Security Models to Real-World Systems

    Get PDF
    The cryptographic methodology of formal security analysis usually works in three steps: choosing a security model, describing a system and its intended security properties, and creating a formal proof of security. For basic cryptographic primitives and simple protocols this is a well understood process and is performed regularly. For more complex systems, as they are in use in real-world settings it is rarely applied, however. In practice, this often leads to missing or incomplete descriptions of the security properties and requirements of such systems, which in turn can lead to insecure implementations and consequent security breaches. One of the main reasons for the lack of application of formal models in practice is that they are particularly difficult to use and to adapt to new use cases. With this work, we therefore aim to investigate how cryptographic security models can be used to argue about the security of real-world systems. To this end, we perform case studies of three important types of real-world systems: data outsourcing, computer networks and electronic payment. First, we give a unified framework to express and analyze the security of data outsourcing schemes. Within this framework, we define three privacy objectives: \emph{data privacy}, \emph{query privacy}, and \emph{result privacy}. We show that data privacy and query privacy are independent concepts, while result privacy is consequential to them. We then extend our framework to allow the modeling of \emph{integrity} for the specific use case of file systems. To validate our model, we show that existing security notions can be expressed within our framework and we prove the security of CryFS---a cryptographic cloud file system. Second, we introduce a model, based on the Universal Composability (UC) framework, in which computer networks and their security properties can be described We extend it to incorporate time, which cannot be expressed in the basic UC framework, and give formal tools to facilitate its application. For validation, we use this model to argue about the security of architectures of multiple firewalls in the presence of an active adversary. We show that a parallel composition of firewalls exhibits strictly better security properties than other variants. Finally, we introduce a formal model for the security of electronic payment protocols within the UC framework. Using this model, we prove a set of necessary requirements for secure electronic payment. Based on these findings, we discuss the security of current payment protocols and find that most are insecure. We then give a simple payment protocol inspired by chipTAN and photoTAN and prove its security within our model. We conclude that cryptographic security models can indeed be used to describe the security of real-world systems. They are, however, difficult to apply and always need to be adapted to the specific use case

    Information-Theoretic Secure Outsourced Computation in Distributed Systems

    Get PDF
    Secure multi-party computation (secure MPC) has been established as the de facto paradigm for protecting privacy in distributed computation. One of the earliest secure MPC primitives is the Shamir\u27s secret sharing (SSS) scheme. SSS has many advantages over other popular secure MPC primitives like garbled circuits (GC) -- it provides information-theoretic security guarantee, requires no complex long-integer operations, and often leads to more efficient protocols. Nonetheless, SSS receives less attention in the signal processing community because SSS requires a larger number of honest participants, making it prone to collusion attacks. In this dissertation, I propose an agent-based computing framework using SSS to protect privacy in distributed signal processing. There are three main contributions to this dissertation. First, the proposed computing framework is shown to be significantly more efficient than GC. Second, a novel game-theoretical framework is proposed to analyze different types of collusion attacks. Third, using the proposed game-theoretical framework, specific mechanism designs are developed to deter collusion attacks in a fully distributed manner. Specifically, for a collusion attack with known detectors, I analyze it as games between secret owners and show that the attack can be effectively deterred by an explicit retaliation mechanism. For a general attack without detectors, I expand the scope of the game to include the computing agents and provide deterrence through deceptive collusion requests. The correctness and privacy of the protocols are proved under a covert adversarial model. Our experimental results demonstrate the efficiency of SSS-based protocols and the validity of our mechanism design

    User-Centric Security and Privacy Mechanisms in Untrusted Networking and Computing Environments

    Get PDF
    Our modern society is increasingly relying on the collection, processing, and sharing of digital information. There are two fundamental trends: (1) Enabled by the rapid developments in sensor, wireless, and networking technologies, communication and networking are becoming more and more pervasive and ad hoc. (2) Driven by the explosive growth of hardware and software capabilities, computation power is becoming a public utility and information is often stored in centralized servers which facilitate ubiquitous access and sharing. Many emerging platforms and systems hinge on both dimensions, such as E-healthcare and Smart Grid. However, the majority information handled by these critical systems is usually sensitive and of high value, while various security breaches could compromise the social welfare of these systems. Thus there is an urgent need to develop security and privacy mechanisms to protect the authenticity, integrity and confidentiality of the collected data, and to control the disclosure of private information. In achieving that, two unique challenges arise: (1) There lacks centralized trusted parties in pervasive networking; (2) The remote data servers tend not to be trusted by system users in handling their data. They make existing security solutions developed for traditional networked information systems unsuitable. To this end, in this dissertation we propose a series of user-centric security and privacy mechanisms that resolve these challenging issues in untrusted network and computing environments, spanning wireless body area networks (WBAN), mobile social networks (MSN), and cloud computing. The main contributions of this dissertation are fourfold. First, we propose a secure ad hoc trust initialization protocol for WBAN, without relying on any pre-established security context among nodes, while defending against a powerful wireless attacker that may or may not compromise sensor nodes. The protocol is highly usable for a human user. Second, we present novel schemes for sharing sensitive information among distributed mobile hosts in MSN which preserves user privacy, where the users neither need to fully trust each other nor rely on any central trusted party. Third, to realize owner-controlled sharing of sensitive data stored on untrusted servers, we put forward a data access control framework using Multi-Authority Attribute-Based Encryption (ABE), that supports scalable fine-grained access and on-demand user revocation, and is free of key-escrow. Finally, we propose mechanisms for authorized keyword search over encrypted data on untrusted servers, with efficient multi-dimensional range, subset and equality query capabilities, and with enhanced search privacy. The common characteristic of our contributions is they minimize the extent of trust that users must place in the corresponding network or computing environments, in a way that is user-centric, i.e., favoring individual owners/users

    Biometric Cryptosystems : Authentication, Encryption and Signature for Biometric Identities

    Get PDF
    Biometrics have been used for secure identification and authentication for more than two decades since biometric data is unique, non-transferable, unforgettable, and always with us. Recently, biometrics has pervaded other aspects of security applications that can be listed under the topic of ``Biometric Cryptosystems''. Although the security of some of these systems is questionable when they are utilized alone, integration with other technologies such as digital signatures or Identity Based Encryption (IBE) schemes results in cryptographically secure applications of biometrics. It is exactly this field of biometric cryptosystems that we focused in this thesis. In particular, our goal is to design cryptographic protocols for biometrics in the framework of a realistic security model with a security reduction. Our protocols are designed for biometric based encryption, signature and remote authentication. We first analyze the recently introduced biometric remote authentication schemes designed according to the security model of Bringer et al.. In this model, we show that one can improve the database storage cost significantly by designing a new architecture, which is a two-factor authentication protocol. This construction is also secure against the new attacks we present, which disprove the claimed security of remote authentication schemes, in particular the ones requiring a secure sketch. Thus, we introduce a new notion called ``Weak-identity Privacy'' and propose a new construction by combining cancelable biometrics and distributed remote authentication in order to obtain a highly secure biometric authentication system. We continue our research on biometric remote authentication by analyzing the security issues of multi-factor biometric authentication (MFBA). We formally describe the security model for MFBA that captures simultaneous attacks against these systems and define the notion of user privacy, where the goal of the adversary is to impersonate a client to the server. We design a new protocol by combining bipartite biotokens, homomorphic encryption and zero-knowledge proofs and provide a security reduction to achieve user privacy. The main difference of this MFBA protocol is that the server-side computations are performed in the encrypted domain but without requiring a decryption key for the authentication decision of the server. Thus, leakage of the secret key of any system component does not affect the security of the scheme as opposed to the current biometric systems involving cryptographic techniques. We also show that there is a tradeoff between the security level the scheme achieves and the requirement for making the authentication decision without using any secret key. In the second part of the thesis, we delve into biometric-based signature and encryption schemes. We start by designing a new biometric IBS system that is based on the currently most efficient pairing based signature scheme in the literature. We prove the security of our new scheme in the framework of a stronger model compared to existing adversarial models for fuzzy IBS, which basically simulates the leakage of partial secret key components of the challenge identity. In accordance with the novel features of this scheme, we describe a new biometric IBE system called as BIO-IBE. BIO-IBE differs from the current fuzzy systems with its key generation method that not only allows for a larger set of encryption systems to function for biometric identities, but also provides a better accuracy/identification of the users in the system. In this context, BIO-IBE is the first scheme that allows for the use of multi-modal biometrics to avoid collision attacks. Finally, BIO-IBE outperforms the current schemes and for small-universe of attributes, it is secure in the standard model with a better efficiency compared to its counterpart. Another contribution of this thesis is the design of biometric IBE systems without using pairings. In fact, current fuzzy IBE schemes are secure under (stronger) bilinear assumptions and the decryption of each message requires pairing computations almost equal to the number of attributes defining the user. Thus, fuzzy IBE makes error-tolerant encryption possible at the expense of efficiency and security. Hence, we design a completely new construction for biometric IBE based on error-correcting codes, generic conversion schemes and weakly secure anonymous IBE schemes that encrypt a message bit by bit. The resulting scheme is anonymous, highly secure and more efficient compared to pairing-based biometric IBE, especially for the decryption phase. The security of our generic construction is reduced to the security of the anonymous IBE scheme, which is based on the Quadratic Residuosity assumption. The binding of biometric features to the user's identity is achieved similar to BIO-IBE, thus, preserving the advantages of its key generation procedure

    CONSTRUCTION OF EFFICIENT AUTHENTICATION SCHEMES USING TRAPDOOR HASH FUNCTIONS

    Get PDF
    In large-scale distributed systems, where adversarial attacks can have widespread impact, authentication provides protection from threats involving impersonation of entities and tampering of data. Practical solutions to authentication problems in distributed systems must meet specific constraints of the target system, and provide a reasonable balance between security and cost. The goal of this dissertation is to address the problem of building practical and efficient authentication mechanisms to secure distributed applications. This dissertation presents techniques to construct efficient digital signature schemes using trapdoor hash functions for various distributed applications. Trapdoor hash functions are collision-resistant hash functions associated with a secret trapdoor key that allows the key-holder to find collisions between hashes of different messages. The main contributions of this dissertation are as follows: 1. A common problem with conventional trapdoor hash functions is that revealing a collision producing message pair allows an entity to compute additional collisions without knowledge of the trapdoor key. To overcome this problem, we design an efficient trapdoor hash function that prevents all entities except the trapdoor key-holder from computing collisions regardless of whether collision producing message pairs are revealed by the key-holder. 2. We design a technique to construct efficient proxy signatures using trapdoor hash functions to authenticate and authorize agents acting on behalf of users in agent-based computing systems. Our technique provides agent authentication, assurance of agreement between delegator and agent, security without relying on secure communication channels and control over an agent’s capabilities. 3. We develop a trapdoor hash-based signature amortization technique for authenticating real-time, delay-sensitive streams. Our technique provides independent verifiability of blocks comprising a stream, minimizes sender-side and receiver-side delays, minimizes communication overhead, and avoids transmission of redundant information. 4. We demonstrate the practical efficacy of our trapdoor hash-based techniques for signature amortization and proxy signature construction by presenting discrete log-based instantiations of the generic techniques that are efficient to compute, and produce short signatures. Our detailed performance analyses demonstrate that the proposed schemes outperform existing schemes in computation cost and signature size. We also present proofs for security of the proposed discrete-log based instantiations against forgery attacks under the discrete-log assumption

    Foundations of Group Key Management – Framework, Security Model and a Generic Construction

    Get PDF
    Group Key Establishment is fundamental for a variety of security mechanisms in group applications. It allows n > 1 principals to agree upon a common secret key. This can further be classified into Group Key Exchange (or Group Key Agreement), where all the principals participate in the construction of the key, and Group Key Transport (or Group Key Distribution), where the key is chosen by a singe principal and is then securely communicated to the others. Both these techniques can be analyzed in the context of either static or dynamic groups. Dynamic Group Key Establishment is better known as Group Key Management (GKM), as it involves not only the initital key establishment, but also efficient key management when group members join or leave the group. Dynamic Group Key Exchange is also known as decentralized or distributed GKM, while Dynamic Group Key Transport is known as centralized GKM. While there has been a lot of recent work in formal security models for Dynamic Group Key Exchange, little, if any, attention has been directed towards building a concrete framework and formal security model for centralized GKM. Many such schemes that have been proposed so far have been broken, as they cite ambiguous arguments and lack formal proofs. In this paper, we take a first step towards addressing this problem by providing firm foundations for centralized Group Key Management. We provide a generalized framework for centralized GKM along with a formal security model and strong definitions for the security properties that dynamic groups demand. We also show a generic construction of a centralized GKM scheme from any given multi-receiver ID-based Key Encapsulation Mechanism (mID-KEM). By doing so, we unify two concepts that are significantly different in terms of what they achieve. Our construction is simple and efficient. We prove that the resulting GKM inherits the security of the underlying mID-KEM up to CCA security. We also illustrate our general conversion using the mID-KEM proposed in 2007 by Delerablée
    • …
    corecore