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1 Introduction

With the amount of data generated, collected, and analyzed by computing systems growing at
an amazing rate, big data processing has become crucial to most enterprise and government
applications. For example, the rise of Internet of things (e.g., a connected refrigerator),
smart phone location tracking to target advertising, and the growing adoption of health
and wellness devices that collect personal statistics all represent new opportunities for novel
analytics and services.

However, this proliferation of big data is not without its own dangers. The collected
data often contains private information about individuals or corporate secrets that would
cause great harm if they fell into the wrong hands. Criminal groups are creating under-
ground markets where one can buy and sell stolen personal information [124]. Government
intelligence services are targeting personal, corporate, and adversary government systems for
espionage and competitive advantage [119]. This potential for harm is clearly demonstrated
by many recent, highly publicized cyber attacks against commercial [164] and government
targets [165], costing these organizations millions of dollars and causing serious damage to
the individuals and institutions affected.

As these examples make clear, new and improved security tools are needed to protect
systems collecting and handling big data to allow applications to reap the benefits of big data
analysis without the risk of such catastrophic attacks. Fortunately, modern cryptography
offers many powerful technologies that can help protect big data applications throughout
the data lifecycle, as it is being collected, stored in repositories, and processed by analysts.
In this chapter, we give a brief survey of several of these technologies and explain how they
can help big data security. We hope that this survey can provide big data practitioners
with a better understanding of what protections are available to them as they design their
applications and will also encourage the necessary discussion and collaboration to mature
these tools for real-world consumption.

This chapter focuses on state-of-the-art provably secure cryptographic techniques for
protecting big data applications. We do not focus on more established, and commonly
available cryptographic solutions. The goal is to inform practitioners of new techniques to
consider as they develop new big data solutions rather than to summarize the current best
practice for securing data.

We note that, in addition to the cryptographic techniques, there are also many non-
cryptographic techniques such as firewalls, data guards, mandatory access control, data
provenance, and many more that are likely to be a part of any complete solution to secure big
data applications. However, such security mechanisms are beyond the scope of this chapter
and we refer readers to the excellent book on the topic by Anderson [6] for a good summary.
Additionally, we do not cover the security of operation, monitoring, and maintenance of
big data systems and refer to Limoncelli et al., for more details [112]. Finally, we focus on
software-based solutions and do not discuss the work relying on trusted hardware components
to achieve data security [10, 153, 9]

We also do not address the privacy implications of big data collection and processing.
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That is, our focus is on keeping the data and computations out of the hands of unintended
parties and not on the questions of whether the data should be collected or the analyses
performed in the first place or what the implications of such analyses are for the individuals
and corporations supplying the data. These are very important considerations in any big
data system, but they fall outside the scope of our discussion here.

1.1 The Data Lifecycle

We begin this chapter by presenting the cryptographer’s view of the data lifecycle and the
stages that big data goes through. To secure big data, it is necessary to understand the
threats and protections available at each stage. For this reason, the cryptographic techniques
presented in this chapter are organized according to the three stages of the data lifecycle
described below.

Data in Transit: The first step in most big data processing architectures is to transmit
the data from a user, sensor, or other collection source to a centralized repository where it
can be stored and analyzed. To ensure that the data arrives at its destination unmodified
and unstolen, it is necessary to ensure that all data is transmitted in a protected form. This
is the stage of the lifecycle best served by existing tools with existing technology such as the
Internet Protocol Security (IPSec) [61] and the Transport Layer Security (TLS) [62] protocol
suites already standardized and widely deployed in many of the big data tools of interest to
the reader. Since the focus of this chapter is on newer technology, we do not discuss data in
transit security further.

Data in Storage: The next step in the big data lifecycle is to store the data in a repository
where it will be stored until it is needed. It is critical that unauthorized parties not be able to
read or modify this data in storage. However, authorized parties should be able to efficiently
access all or parts of this data as necessary. Thus, more advanced techniques are needed to
enforce access control to stored data while allowing for efficient data retrieval.

Data in Use: Finally, once the data has been collected and stored, it is necessary to
run analytics over the data to derive value from the collected information. It is necessary
to guarantee that only authorized analytics are run on the data by authorized parties and
that the computation is performed correctly. This is one area where current best-practices
are especially lacking, with all processing done on unprotected data. Modern cryptography
offers several techniques to change this status quo and allow data to remain protected even
while it is in use.
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1.2 Chapter Outline

The remainder of this chapter is organized by the stages of the data lifecycle. We begin
in Section 2 with a description of the basic concepts of data security and an overview of
the traditional cryptographic tools such as encryption and signatures. In Sections 3 and 4
we describe techniques for protecting and searching stored data. In Section 3 we present
techniques such as broadcast encryption and attribute-based encryption for controlling access
to data stored and retrieved via unique identifiers, such as in a file system. In Section 4
we describe searchable encryption, which allows complex queries (e.g., SQL queries) to be
performed to retrieve allowed subsets of the protected data, such as in a database. Finally, in
Section 5, we describe tools such as homomorphic encryption, verifiable computation, secure
multi-party computation, and functional encryption for protecting computation over sensitive
data.

For each of the presented technologies, we use the following outline. We begin with a
high-level overview of what protections the cryptographic technology provides and how it
can be used. Next, we give a more detailed definition of the security achieved and the critical
properties of the technology. Finally, we give an in-depth summary of the history and state
of the art developments for the technology to illustrate the differences between individual
schemes and their potential uses-cases.

2 The Basics of Data Security

We begin our chapter with an overview of some of the basic goals and tools of data security.
First, we discuss the typical adversary models used to capture the threats to data that need
to be addressed. Then, we briefly review common security goals and the tools used to achieve
them.

2.1 Modeling the Adversary

In this chapter, we restrict our attention to technologies with provable statements of security.
These provable statements require that we formally model the threats addressed in the form
of an adversary. This adversary formally captures the types of attacks as well as the limits on
the attacks that we want the technology to withstand. Some properties typically addressed
by an adversary model include:

• Types of Adversarial Behavior: Cryptographic protocols typically aim to provide
security against one of two adversarial behaviors. An honest-but-curious or semi-honest
adversary follows the protocol description but tries to learn unauthorized information
from the messages he receives. A malicious adversary, on the other hand, may devi-
ate arbitrarily from the protocol in order to learn private information or disrupt the
protocol. These, roughly, model an eavesdropper who observes part of the protocol

3



execution in an effort to learn private information and a malicious insider or hacker
trying to actively interfere with the computation.

• Amount of Collusion: In cryptographic protocols involving multiple parties, it is
necessary to consider the number of parties that may behave adversarially and whether
those parties will collude with each other during their attacks. Typically, cryptogra-
phers limit the total number of adversarial parties but assume that all such parties will
collude. In some settings, such as searchable encryption, weaker models of collusion
restrict parties playing different roles in the protocol from colluding with each other.
Such restrictions are often justified by the organizational structure of the participating
parties and possible adversaries.

• Computational Limitations: Most provably secure cryptographic protocols rely on
the mathematical difficulty of certain problems like factoring integers or computing
discrete logarithms in finite groups. An important consideration for any cryptographic
primitive is how strong an assumption is necessary to prove its security. Typically,
schemes secure that are based on weaker and more standard mathematical assumptions
are preferable, and much effort in cryptography is devoted to reducing the assumptions
needed for desired cryptographic tasks.

2.2 Security Goals

Having defined the adversary we want to protect against, we need to describe the security
goals. The three most fundamental security goals are confidentiality, integrity, and availabil-
ity, collectively known as the CIA triad.

Confidentiality: Confidentiality is the goal of keeping all sensitive data secret from an ad-
versary. More formally, traditional definitions of confidentiality guarantee that an adversary
should learn no information about the sensitive data, other than its length. Confidentiality
is critical in big data applications to guarantee that sensitive data is not revealed to the
wrong parties.

Integrity: Integrity is the goal that any unauthorized modification of data should be
detectable. That is, a malicious adversary should not be able to modify such data without
leaving a trace. This is very important to help guarantee the veracity of data collected in
big data applications.

Availability: Availability is the goal of always being able to access one’s data and com-
puting resources. In particular, an adversary should not be able to disable access to critical
data or resources. This is a very important security goal in big data processing, as the sheer
volume and velocity of the data make guaranteeing constant access a difficult task. However,
in today’s big data systems, availability is typically guaranteed via non-cryptographic means
such as replication, and we will not discuss it further in this chapter.
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2.3 Basic Cryptographic Tools

We now give a very brief overview of the basic cryptographic tools used to ensure the
aforementioned security goals in simple applications such as data in transit. Then, in the
remainder of this chapter we present techniques that build on these to guarantee CIA of
data while enabling richer uses of the data. For a much more complete presentation of these
basic tools, their formal definitions, and detailed constructions we refer the interested reader
to the excellent book by Katz and Lindell [99].

Encryption: The main tool for guaranteeing confidentiality of data is data encryption.
Encryption takes a piece of data, commonly called the plaintext, together with a crypto-
graphic key and produces a scrambled version of the data called the ciphertext. Using the
key it is possible to decrypt the data to recover the plaintext, but without the key the ci-
phertext hides all information about the original data, other than its length. This security
property, commonly known as semantic security [82] guarantees that, without the key, an
adversary cannot learn any (potentially sensitive) property of the underlying data even if he
has a lot of insight as to what the data may be. This is critical in applications where data
may have some predefined structure, such as in financial transactions or if partial informa-
tion about the underlying distribution of data is known, such as when the data is measuring
some real-world phenomenon.

A little more formally, encryption consists of the following three protocols:

• KeyGen - a key generation algorithm that generates the necessary cryptographic keys,

• Enc(k, p) = c - an encryption algorithm that uses a key k to scramble the plaintext p
into cipher text c,

• Dec(k, c) = p - a decryption algorithm that uses the key k to recover the plaintext p
from the ciphertext c.

Encryption schemes come in two flavors: secret-key encryption, described above, and
public-key encryption. In secret-key encryption the same key is used for encrypting and
decrypting data. In public-key encryption, KeyGen produces two keys: a public key and a
secret key. The public key is used to encrypt the data, but cannot be used to decrypt the
data and thus can be made public. The secret key, which must be kept private, is used to
decrypt the data.

Secret-key encryption has been around for thousands of years with many protocols
developed over the years [96]. Today there are well established standards for secret-key
encryption such as schemes based on the Advanced Encryption Standard (AES) block ci-
pher [130]. In the 1970s, public-key encryption was introduced by Diffie and Hellman [56]
and Rivest, Shamir, and Adelman [149] and was formalized by Goldwasser and Micali [82].

Message Authentication Codes and Digital Signatures: The primary tools for guar-
anteeing integrity of data are message authentication codes (MACs) and digital signatures.
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Roughly, they both take a message and a key and generate an authentication value that
can be used to verify the integrity of the data. The standard security property, existential
unforgeability, of these primitives states that without the key it is impossible to forge a valid
MAC or signature on any piece of data even after having seen MACs or signatures on other
data items. Thus, an adversary cannot create or modify data without being detected. A
little more formally, MACs and signatures consist of the following three protocols:

• KeyGen - a key generation algorithm,

• Sign(k,m) = σ - a signing algorithm that uses the key k and the message m to generate
an authentication object σ,

• Verify(k,m, σ) = b - a verification algorithm that uses the key k, message m, and the
authentication object σ and returns a boolean value b depending on whether or not
the message was signed using the corresponding key.

As with encryption, there are two flavors of these schemes: secret-key and public-key.
MACs are the secret-key variant, where the same key is used both to sign the data and
to verify that the signature is valid. Digital signatures are the public-key variant, where a
secret key is needed to sign the data, but a public verification key allows anyone to check
the validity of the signature.

Currently used message authentication codes known as HMAC and NMAC were origi-
nally proposed by Bellare, Canetti, and Krawczyk [13]. Public-key-based digital signatures
were originally proposed by Diffie and Hellman [56] and Rivest, Shamir, and Adelman [149]
and formalized by Goldwasser, Micali, and Rivest [83].

Implementations and Standards: All of the cryptographic primitives described above
are already widely in use and there are multiple available implementations and standards
for how they should be used. The National Institute for Standards and Technology (NIST)
maintains a list of standards for all of the above primitives as part of their cryptographic
toolkit [129]. For US government applications, the National Security Agency maintains what
is known as the Suite B standard [3] for which primitives must be used to protect sensitive
US government data. Finally, the use of public-key primitives is standardized by the RSA
Laboratories’ PKCS #1 standards [110]. We strongly urge readers to follow recommenda-
tions and implementations described in these standards and to avoid implementing their
own solutions, as it is very difficult to implement bug-free cryptographic protocols and these
standards are the results of decades of improvements and bug fixes.

3 Secure Block Storage and Access Control

We now turn to cryptographic techniques to secure data in storage. The primary goal of these
techniques is to enforce access control to data stored in potentially untrusted repositories.
That is, we want to give authorized parties access to the data they need while ensuring
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that unauthorized parties, either outsiders trying to gain access or malicious insiders in the
organization managing the repository, cannot access sensitive data. In this section we focus
on systems where data is stored in blocks that are stored and retrieved by a unique identifier,
such as in a file system. In such systems, we want authorized parties to be able to retrieve
data by its identifier, but do not need to enable complex search queries to retrieve subsets
of the data.

As may be expected, the first step in any such solution is to encrypt the data to hide
it from unauthorized parties. However, the problem now becomes how to give authorized
parties access to the data. We discuss two techniques for enabling such access control. The
first of these, commonly called group keying or broadcast encryption, achieves this through
careful key management to ensure authorized parties have the necessary keys to decrypt
the data. The second of these, a technique known as attribute-based encryption (ABE),
instead relies on more powerful cryptographic techniques to automatically enforce the access
permissions.

3.1 Key Management for Access Control

3.1.1 Introduction

Key management includes generating and distributing cryptographic keys to system users in
such a way that only authorized parties have the necessary keys to decrypt sensitive data.
Most modern systems include some form of key management for controlling access to data
in this way and there are many commercially available, standardized solutions for generating
and managing keys.1 These typically use a trusted key management server to manage all keys
in the system and to distribute the necessary keys to authorized parties. Here, we instead
focus on a cryptographic technique called broadcast encryption or group keying which allows
a data owner to encrypt data to a designated set of recipients without having to rely on
a trusted key manager. This is particularly important in big data applications where the
storage may be handled by an untrusted repository on which a trusted key manager may
not be available.

3.1.2 Definition

Broadcast encryption or group keying is a cryptographic technique for establishing crypto-
graphic keys shared among a designated set of parties, thus giving these authorized parties
access to encrypted data. Specifically, broadcast encryption gives a way to establish a crypto-
graphic key such that all authorized parties receive the key and all unauthorized parties have
no information about the key. In particular, even if some number of unauthorized parties
collude, they should not be able to learn data that none of them is individually authorized
to learn. An important goal of this primitive is to minimize the total size of encrypted data

1See, for example, the various vendor implementations of the OASIS Key Management Interoperability
Protocol (KMIP) standard for key management systems [128].
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that must be generated and the amount of key material that must be stored by each of the
participating parties.

3.1.3 Survey

Imagine that a data owner wishes to share data with some subset of the users of a system.
One trivial solution is to have him share a different cryptographic key with each of the
recipients and separately encrypt the data to each of them. However, this requires the
data owner to store a large number of keys, and also the size of the encrypted data grows
linearly in the number of recipients. Broadcast encryption gives techniques to achieve this
functionality without incurring these costs in key and data storage.

Single Sender Broadcast Encryption: Broadcast encryption was first considered by
Fiat and Naor [59] in a setting where there is one data owner who wants to share data with
a set of authorized recipients. This construction was able to achieve much shorter keys and
ciphertexts when the number of unauthorized users is small. This was further improved by
Naor, Naor, and Lotspiech [125], who showed a protocol able to handle an arbitrary number
of unauthorized users while only incurring a logarithmic (in the number of parties) overhead
both in key and ciphertext size when the number of adversaries isn’t too large. Roughly, both
of these schemes work as follows. First, they generate cryptographic keys and then distribute
these keys among all the possible users. Then to encrypt data to an authorized set of users,
they encrypt the data under an appropriately chosen subset of the keys. The partitions of
the keys and the subset used to encrypt are chosen to guarantee that all authorized user will
know at least one key enabling it to decrypt the data, while all unauthorized users will not
know any of these keys. See Figure 1 for an example of the mechanism given by Naor et al.
One critical limitation of both of these schemes is that they only allow for one data owner
who can share data, but in most big data scenarios there are multiple data providers.

Public-Key Broadcast Encryption: In order to overcome this single sender limitation,
the literature turned to public-key broadcast encryption. Such schemes allow anybody to
share data, but rely on much stronger computational assumptions. The first scheme to do
this was a scheme by Dodis and Fazio [57], who showed how to achieve parameters similar
to the Naor et al. scheme in the public-key setting. An alternative construction by Boneh,
Gentry, and Waters [27] reduces the size of the secret keys needed by the data recipients
down to a constant independent of the number of users, at the cost of (somewhat) increasing
the size of the public key and encrypted data. One major drawback of these schemes is
that they rely on a relatively novel, powerful, and non-standardized cryptographic building
block called bilinear groups. Further work [31, 32] was able to significantly improve on the
parameters of these schemes by relying on even stronger computational assumptions.
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Figure 1: The NNL tree for broadcast encryption for 8 users. Each ki represents an inde-
pendent cryptographic key. Each user Uj receives all the keys on the path from the root to
their leaf node. To encrypt the data, encrypt a copy of the data under the keys at the roots
of subtrees containing only authorized users. For example, to encrypt to the set of all users
except U0, one would use the keys corresponding to the nodes colored in red.

3.1.4 State of the art

There are several available implementations of these broadcast encryption protocols. First,
the Lincoln Open Cryptographic Key Management Architecture (LOCKMA) [101, 49] lever-
ages the Naor et al. protocol to establish group keys for efficient communication over tactical
networks. Also, an implementation of the public-key scheme by Boneh et al. has been demon-
strated on top of the Pairing-Based Cryptography library [117].

3.2 Attribute-Based Access Control

3.2.1 Introduction

Key management based solutions such as above have an inherent limitation. In order to share
data with a set of users, it is necessary to know the identities (and keys) of all the authorized
users. This is problematic in large systems or in systems with several organizational struc-
tures (as is very common in big data architectures where the data is collected, stored, and
used in different environments) as the data owner is unlikely to know the identities of all the
authorized users. An alternative approach to access control in such settings is a technique
called attribute-based access control (ABAC). In ABAC, data is encrypted together with a
policy describing the attributes of users authorized to access the data. The users receive keys
for the attributes they possess and are able to access the data if and only if those attributes
are authorized. This allows for enforcing access to data without knowing the full set of users
with the authorized attributes. For example, to encrypt data for analysis by NIH scientists,
a data provider could encrypt the data with the policy (“NIH” and “scientist”) and only
someone possessing both these attributes would be able to decrypt the data.

One approach to ABAC that has gained traction in government and commercial uses
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is to have a trusted server evaluate the access policy over a user’s attributes and grant or
restrict access to data accordingly [132, 63]. However, this requires trusting the server to
correctly administer these permissions and is problematic in scenarios where there is no such
trusted entity, such as in outsourced storage. We instead focus on solutions for ABAC that
do not require a trusted server to evaluate the access policies. Specifically, we present a
powerful cryptographic technique known as attribute-based encryption (ABE) that can be
used to solve this problem cryptographically.

3.2.2 Definition

(Ciphertext-policy) attribute-based encryption, introduced by Sahai and Waters [152], is a
form of encryption in which keys are associated with attributes and data is encrypted with
a policy specifying which attributes are needed to decrypt the ciphertext. The security of
this primitive guarantees that a key will succeed in decrypting a ciphertext if and only if
the attributes in the decryption key satisfy the access policy specified in the ciphertext.
More formally, the ciphertext contains a boolean formula f over attributes and a key will
successfully decrypt the ciphertext if f evaluates to 1 on the attributes contained in the key.

There are two properties that must be addressed in any ABE scheme. The first is the
expressivity of the supported policy formulas. Schemes achieving more expressive policies
can be used to enforce access control in more diverse settings. The second property is
collusion resistance. That is, unauthorized users should not be able to combine their keys in
order to decrypt data for which neither of their keys individually satisfies the access formula.
This is typically the hardest feature of ABE to achieve and requires stronger cryptographic
assumptions.

3.2.3 Survey

A First Attempt: As a first attempt to constructing ABE, we can do the following. Let
each cryptographic key correspond to an attribute, so kA is given to all users with attribute A.
Now, to encrypt a piece of data so that only those possessing attributes A and B can decrypt,
we can encrypt the data first under kA and then under kB, resulting in c = EnckB(EnckA(x)).
Clearly, both keys are needed to decrypt the data. To encrypt to users with either attribute
A or B, encrypt the data separately under each key, resulting in c = (EncKA

(x),EncKB
(x)).

Now either key will be able to decrypt. It is possible to repeat this procedure to enforce
access policies represented by arbitrary boolean formulas over the attributes.

However, this simple solution is not collusion resistant. If one user with attribute A (but
not B) colludes with a user with attribute B (but not A) they can decrypt data encrypted
to policy (A AND B) even though neither of them satisfies this policy. More complicated
cryptography is needed to achieve the necessary collusion resistance.

Attribute-Based Encryption: The first ABE scheme to satisfy full collusion-resistance
was given in 2005 by Sahai and Waters [152] supporting a limited set of policies known as
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threshold policies, where an authorized user’s key has to have large overlap with the set of
keys specified in the policy. An implementation of this scheme describing how this can be
used for access control was given by Pirretti et al. [138]. The class of supported policies was
extended to arbitrary boolean formulas by Goyal et al. [86] and Bethencourt, Sahai, and
Waters [19].

All of these schemes take the following approach to prevent collusion attacks. As in the
no-collusion scheme above, they generate cryptographic keys corresponding to the possible
attributes. However, each generated key is also personalized to the specific user. So, the key
for attribute A given to user 1 would be different from the key for attribute A given to user
2. This prevents keys from different users from decrypting the data since the personalized
components will not match. However, this personalization approach requires the use of a
non-standardized cryptographic building block called bilinear groups and it is unlikely that
(collusion resistant) ABE can be based on standard encryption [100].

Since these works there have been a number of improvements optimizing performance,
e.g., [102], achieving richer classes of access policies [85], allowing for delegation of access
permissions [170], and giving constructions relying on alternative security assumptions, e.g.,
[68].

3.2.4 State of The Art

There are now a number of available implementations of ABE. The first such implementation
was given by Bethencourt et al. [19] on top of the Pairing-Based Crypto library [117]. The
latest implementation of ABE, due to Khoury et al. [102], achieves 3ms for ABE encryption
and 6ms for decryption, making this primitive fairly practical for securing data storage.
On the functionality side, we now have ABE schemes capable of enforcing very rich classes
of policies such as policies specified by arbitrary (polynomial-size) boolean circuits over
the attributes [85]. We note that all of these schemes still rely on non-standard security
assumptions.

4 Secure Search

The previous section dealt with security and access control for block storage where data can
only be retrieved via its unique identifier. However, in any big data system, users rarely want
to retrieve all available data and instead usually only fetch a subset of the available data based
on some specified search criteria. We now switch topics to discuss cryptographic techniques
to enable secure search allowing for complex, database-style queries to be performed on
stored data.
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4.1 Introduction

Searchable encryption refers to a collection of cryptographic techniques that enable a server
to perform searches directly over encrypted data. Most database technologies in use today
require a server to be able to read all data contents in order to perform a fast search over it.
By contrast, searchable encryption technology permits a server to perform basic database
operations directly over encrypted data. Even though the server cannot read the data, it can
still return encrypted versions of matching results back to a querier. In summary, searchable
encryption technology provides stronger confidentiality and privacy guarantees than those
in databases today by separating the roles of providing and accessing data.

There are a myriad of use-cases for this technology in today’s interconnected world; we
provide just a few examples here. First, in a secure cloud outsourcing scenario, a client can
upload files to the cloud and then make searches on the data later, without giving the cloud
provider access to read the data. Second, in a secure publish-subscribe system, a broker can
properly route messages from many providers to interested subscribers without being able to
read the data itself.2 Third, in a secure email scenario, many senders can send encrypted mail
to one receiver, and then the receiver can make searches to her email host to pull only the
emails of interest to her without giving the host access to the contents of her emails. Fourth,
in a secure database scenario, a data provider can allow multiple clients to search over her
data without knowing the locations of data being requested; note here that preventing the
data provider from learning the queriers’ access patterns (e.g., frequency of requested records
and overlaps between sets of records returned in response to different queries) is critical since
the provider already knows the contents of her own data, so encryption alone does not suffice
here.

Research into searchable encryption has been ongoing for the past 15 years. While there
is still work to be done, the current state of this technology is quite usable. First, modern
searchable encryption technologies are quite fast: their performance is only about 20% to
200% slower than an unprotected search over plaintext data. Second, the searchable encryp-
tion works described below cover a large subset of the types of searches typically performed
in databases, such as those permitted by the where clause in the Structured Query Lan-
guage (SQL). For applications where one is willing to sacrifice a bit in security in exchange
for performance, there are alternative searchable encryption schemes that work on top of ex-
isting database back-ends (e.g., MySQL and Accumulo) achieving much better performance
in exchange for revealing some additional information about the stored data [140, 65].

4.2 Definition

A formal definition of searchable encryption is both complex and ever-changing. In this
chapter, we present an overview of the concepts behind searchable encryption here and then
describe some of the complexities in the next section.

2Note that broadcast encryption, described in Section 3.1, achieves a similar goal without using a proxy,
but instead requiring providers to know all interested subscribers.
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4.2.1 Parties Involved

The standard model of searchable encryption considers three types of parties: an owner who
initially possesses the data, a querier who wants to learn something about the data, and
a server who handles the bulk of the storage and processing work. We note that in many
scenarios, such as the publish-subscribe and email scenarios above, there may be multiple
data owners or queriers.

We note that some scenarios envision only two parties, which we call the querier and
server. For instance, the cloud outsourcing scenario above considers a client who acts as both
the initial data owner and subsequent querier, and the secure database scenario considers a
data owner who does her own server processing.3

We can fit these scenarios into our three-party framework by thinking of them as in-
stances of collusion4 between two of the three parties: in the cloud outsourcing scenario, the
data owner colludes with the querier, and in the second scenario, the data owner colludes
with the server.

4.2.2 Security Guarantees and Limitations

In this chapter, we restrict our attention to searchable encryption technologies with provable
claims about their security. Here, we overview some of the provable security guarantees
provided by searchable encryption technology. First, the querier only learns the contents
of records that match her query; she learns nothing about the rest of the owner’s dataset,
except in some cases its size. Second, the data owner doesn’t learn anything about queries
being performed on her data. Third, the server performs searches in a relatively oblivious
fashion, learning almost nothing about either the data or queries involved.

However, most searchable encryption schemes do reveal or leak some information about
data and queries to the server. We describe two common leakages that most searchable
encryption schemes reveal. First, search pattern leakage permits the server to determine if
two different queries are identical, even if she cannot learn what the queries are. Second,
access pattern leakage permits the server to determine which records in the dataset are
returned in response to each query, even if she cannot read the records. As a consequence,
the server can also determine which records are “popular” and being returned in response
to many (potentially different) queries.

The precise cryptographic definitions that formalize these security notions have evolved
over the years. We describe some of the nuances of these security definitions in Section
4.3 and refer interested readers to Bosch et al.’s survey [33] for the formal definitions of
searchable encryption.

3The two-party cloud outsourcing scenario in which the owner and querier are the same entity is also
used in the model of fully homomorphic encryption, described in detail in Section 5.1.1 below.

4Collusion is typically used in cryptography to model a collection of malicious users who are working
together, as described in Section 2.1. But, the same concept applies just as well to the benign setting in
which two entities are “working together” because they are really the same person.
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4.2.3 Trust Requirements

In order to make provable statements of security like the ones above, searchable encryption
schemes (and indeed, all of cryptography) require some pre-conditions to be met: namely,
they require users to place their trust in certain aspects of the behavior of other technologies
or parties involved in the cryptographic protocol. Specifically, the searchable encryption
schemes commonly rely on assumptions about the allowed adversary behavior, limits on
collusion between the involved parties, and computational assumptions for security (See
Section 2.1 for a detailed discussion).

In addition to the above, there are several protocols for secure search that do not
require trust in the veracity of computational assumptions but rather in the inability of an
adversary to perturb a specialized piece of hardware that performs computations inside of a
(hopefully) tamper-proof shell. Put bluntly, these schemes place their trust in an adversary’s
physical limitations rather than her mathematical ones. However, as this chapter is focused
on software-based solutions, we will only briefly mention one example of such schemes and
refer interested readers to the original papers [159, 20, 9].

4.3 Survey

In this section, we first provide a brief history of three important cryptographic prmitives that
preceded searchable encryption. Next, we describe some of the initial works on searchable
encryption. Finally, we detail several innovations that improve the security of searchable
encryption or add new dimensions to the functionality, performance, or security of this
technology.

We stress that this section only provides a brief overview of the major thematic advances
in searchable encryption technology over the years. We purposely do not delve into all
technical details and only present the first few papers that tangibly influenced each theme
presented below. For a more detailed, technical review of the (more than 100) research works
on searchable encryption, we refer readers to the comprehensive survey by Bösch et al [33].

4.3.1 History: Precursors to Searchable Encryption

We begin by describing three cryptographic technologies initially developed in the 1990s
that solve related problems. All of these works utilize a two-party setup with a querier and
a server. Some of them are better suited to the cloud outsourcing scenario (in which the
querier provides the data) and some are better suited to the database setting (in which the
server provides the data).

First, private information retrieval, or PIR, considers the cloud outsourcing problem in
which a data owner outsources her data to an untrusted server and later wants to query
for a single record. While the database contents themselves may be readable in the clear
by the server, the querier wants to hide her interests from the server (i.e., which record is
being returned in response to a query). An important goal in PIR works is to minimize the
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amount of communication required between the server and querier. Chor et al. [48] con-
structed the first PIR scheme in an information-theoretic model with multiple non-colluding
servers. Shortly thereafter, several works provided PIR under the assumption that certain
cryptographic problems are hard [108, 38, 109]. We refer interested readers to Gasarch’s
excellent survey [70] for more information about PIR.

Second, Chor et al. [47] introduce private information retrieval by keywords. This work
introduces the concept of searching (as we think of it today) to the cryptographic literature.
Specifically, it uses multiple rounds of PIR to search by keyword rather than by the index
(i.e., pointer or unique identifier) of the record that the client wishes to retrieve. Nevertheless,
data are still stored unencrypted on the server.

Third, symmetric private information retrieval, or SPIR, extends PIR’s security guar-
antees to protect the server as well. Specifically, whereas PIR permits the client to view the
entire database, SPIR limits the number of records that a querier may retrieve in response
to any query. Hence, SPIR is useful both in the cloud outsourcing scenario and the database
scenario, and it can also support multiple queriers securely by using its access controls to
restrict each querier to reading only her own data on the server. SPIR was introduced by
Gertner et al. [76], though it has its roots in another cryptographic primitive (called oblivious
transfer) developed by Rabin in the 1970s [143].

Finally, oblivious random-access memory, or ORAM, introduces the concept of a server
performing keyword searches directly over encrypted data in an oblivious fashion; that is,
without learning either the contents of any records stored at the server or the access patterns
of data returned to the client (such as the simple question “is this identical to data that
the server returned to the client in the past?”). Goldreich and Ostrovsky’s seminal work
[79] introduces multiple ORAM techniques, including an asymptotically-optimal logarithmic-
time search and a square-root-time search that turns out to be faster in practice [93]. ORAM
has been extensively studied by the cryptographic community since the 1990s, and recent
works have substantially improved the server’s computational burden [162, 163, 147, 54, 122,
55, 123].

One performance impediment of ORAM schemes is the large number of rounds of com-
munication that they require between the querier and server. By contrast, most of the
searchable encryption works discussed below only require one round of communication. In
order to achieve this performance improvement, however, most searchable encryption works
reveal some search pattern information to the server.

4.3.2 Searchable Encryption

In 2000, Song, Wagner, and Perrig published the seminal work on searchable encryption
[160]. They presented a cryptographic protocol in a two-party setting (with a querier and
server) to search over encrypted data that provided the following four properties:

1. Provable security for encryption: The untrusted server stores ciphertext data that has
been encrypted using a semantically-secure encryption scheme (as described in Section
2.3), so the server cannot learn any information about the corresponding plaintexts.
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2. Controlled searching: The untrusted server can only perform searches that have been
authorized by the querier. The server cannot make searches on her own.

3. Hidden queries: Song et al. support keyword searches. During a query, the server
does not learn the keyword. (This concept is later formalized by Goh [77] as “chosen
keyword security” and defined in a similar style to semantic security.)

4. Query isolation: While the server does learn which records are returned to the querier,
the server learns nothing more about plaintexts than this information.

Additionally, the Song et al. protocol provides good performance by adhering to a few simple
guidelines that subsequent works also follow:

1. The search protocols are simple and reminiscent of their insecure counterparts.

2. The scheme relies on faster symmetric-key cryptography rather than slower public-
key cryptography. Song et al., in fact, use symmetric-key cryptography exclusively:
schemes that follow their lead are collectively referred to as searchable symmetric
encryption, or SSE. While some of the subsequent works described below do utilize
public-key cryptography to provide additional functionality, they often use public-key
cryptography as sparingly as possible.

3. Like most unprotected database search technologies, Song et al. bolster the perfor-
mance of queries by pre-computing an index mapping keywords to records that match
the query. While the bulk of Song et al.’s work is on non-indexed search, this observa-
tion foreshadows many of the subsequent works on SSE.

After the initial Song et al. result, a myriad of works improved the functionality, performance,
and security of searchable encryption technology. We now present the various dimensions
along which these works improved searchable encryption. Understanding these dimensions
will be important for understanding the state-of-the-art in searchable encryption schemes.

Secure indices: Goh [77] formally defines the concept of index-based SSE. We note that
indexing induces a performance tradeoff: to achieve faster query throughput, SSE schemes
may require a long time to compute the index whenever the database is created or modified.
In fact, Song et al. and Goh do not support efficient database modifications (insertions,
updates, or deletions) into their indices due to the difficulty of doing so in a confidential
manner (that is, without revealing the desired modification to the server).

Chang and Mitzenmacher [42] make the valuable observation that indexing provides a
clean conceptual separation between two acts that the server must perform: determining the
indices of records that match a query and fetching the contents of records at those indices.
The first action might require complicated data structures to support sophisticated queries,
but the contents of those data structures (i.e., the indices themselves) are small. The second
action requires a large data structure to hold record contents but only requires that this data
structure support the simplest of queries: a simple pointer-lookup.
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With this observation, Chang and Mitzenmacher are able to use standard compression
and encryption schemes on the record contents. Chang and Mitzenmacher’s observation is
utilized in many of the SSE schemes that follow, including all of the works presented in the
State of the Art section below (Section 4.4).

Error rates: Goh [77] constructs a secure index mechanism whose search time is indepen-
dent of the number of keywords in the database. To do so, Goh utilizes “Bloom filters,”
a simple fixed-size data structure that can check for membership in a variable-length set.
Goh’s indexing mechanism is simple: it builds one Bloom filter per record that includes all
of its keywords. Because Bloom filters have a one-sided error, it is possible that the server
could return records to the querier that do not actually match the keyword being searched.
Subsequent SSE works that utilize Bloom filter technology, such as the Blind Seer [134, 60]
scheme discussed in Section 4.4 below, also have non-zero false positive rates.

Modifications: Due to their separation of searching and file storage, Chang and Mitzen-
macher [42] provide keyword search data structures that are much simpler than those of Song
et al or Goh. As a result, Chang and Mitzenmacher’s index structure supports modifica-
tions: insertions, updates, and deletions. While Chang and Mitzenmacher can only support
modifications if they have an a priori dictionary or universe of all possible keywords that
could be inserted later, subsequent works [167, 140, 98, 97, 40, 134] overcome this restriction
and support faster modifications directly over the data structures they use for indexing.

Secure search with multiple queriers: Curtmola et al. [51] formally define SSE with
multiple queriers. They do so in two settings: a non-adaptive setting in which security is
only proved when the adversary must commit to all queries before seeing any responses, and
a stronger, adaptive, setting in which the adversary is permitted to choose queries based
on the responses to prior ones. While adaptively-secure cryptography is preferable for its
relevance to real-world usage of SSE, non-adaptive protocols are faster with no known attacks
in practice.

To aid in the multiple-querier setting, Chase and Kamara [43] provide an access control
mechanism called controlled disclosure. This mechanism gives a data owner the ability to
grant someone else access to a portion of a large dataset.

Public-key searchable encryption and outsourced SPIR: Public-key cryptography
enables three-party scenarios (such as the secure publish-subscribe and email scenarios above)
in which the server that stores data never has the ability to read or perform searches over it.
Boneh et al. [26] provide the first construction of public-key searchable encryption in which
the querier can produce a “trapdoor” token that permits the server (non-interactively) to
locate all records containing a given keyword without learning anything else. We refer
interested readers to Boneh and Waters [30] for a formal, generic definition of public-key
searchable encryption. Many of the works in this space use a relatively novel, powerful,
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non-standardized cryptographic building block called bilinear groups.
More recently, some of the works described in Section 4.4 below attempt to satisfy the

security constraints of the three-party scenario (namely, having a server who isn’t trusted
to learn either the data or queries, as described in Section 4.2.2 above) while minimizing or
removing the use of public-key cryptography in order to improve performance [41, 95, 40,
60, 134]. Jarecki et al. [95] refer to this concept as outsourced SPIR.

Searching over different data structures: Inspired by traditional databases, SSE fo-
cuses on the problem of record retrieval via text-based searches. But, just as with the rest of
the big data community, encrypted search has progressed beyond this simple setup. Chase
and Kamara [43] define structured encryption, which enables searches over arbitrary struc-
tured data such as matrices and graphs. Chase and Shen [44] generalize this notion even
further to queryable encryption, which permits queries over potentially-unstructured data.
Chase and Shen provide one form of queryable encryption: the ability to do a substring
search over a large file.

Query expressivity: Researchers have steadily increased the expressivity of searchable
encryption schemes. Collectively, modern schemes support a large percentage of the selec-
tions possible in, for instance, the where clause of the Structured Query Language (SQL).

From the beginning, searchable encryption schemes (and their predecessors in the history
section above) supported equality keyword searches such as select * where name = Alice.
Researchers subsequently added support for other types of queries, often by finding a new
data structure to traverse in a secure fashion. We describe a few of the innovations in data
structures below and explain the new query types that they enable.

• Boolean queries : Goh’s usage of Bloom filters [77], as described above, facilitates secure
searching for Boolean combinations (i.e., ANDs and ORs) of keywords. The same
technique also permits searches for the number of occurrences of a keyword inside a
record. Finally, by building a tree of Bloom filters, Goh’s technique also facilitates
searches for words that occur infrequently in a large dataset, which can be useful for
statistical analyses of large datasets. Pappas et al. [134] use a similar Bloom filter
technique, and Cash et al. [41] support Boolean queries in a different fashion.

• Inequality and range comparisons : A technique called order-preserving encryption, in
which the order of ciphertexts matches the order of underlying plaintexts, enables a
weak but incredibly fast form of range searches. Research into this technology began
in the database community with the work of Agrawal et al. [4], and it has continued
in the cryptographic community with several works that improve the performance and
characterize the security limitations of this technology [23, 24, 139, 120]. On the other
end of the spectrum, Boneh and Waters [30] provide a stronger but slower form of
range comparison, subset, and conjunction searches.

• Substrings : Chase and Shen [44] use a suffix tree data structure to support searches
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for substrings in a single, large file. Their work operates in the cloud outsourcing
two-party scenario.

• Similarity searches : A few works provide for similarity or fuzzy searches. Park et al. ’s
scheme can be used for approximate string matching [135], and Adjedj et al.’s scheme
can be used for biometric identification [2].

• Inner products : A few works provide for searches that involve basic arithmetic opera-
tions such as inner product computations [156, 34].

With support for a broad array of query types, searchable encryption technology is approach-
ing the point of commercial interest [25].

Performance and scale improvements: Finally, we examine two methods utilized to
improve the performance and scalability of searchable encryption: pre-processing and paral-
lelization.

First, Freedman et al. [64] developed a technique to save on online query processing
time by performing some pre-processing work between the querier and server (a technique
that is also used in ORAM schemes). Second, Kamara and Papamanthou [97], Cash et
al. [40], and Pappas et al. [134] discover opportunities for parallelization, both within a single
query’s execution and between several queries that are executed concurrently. With these
performance improvements, these works are able to handle significantly larger databases,
with the latter two works scaling to achieve good performance on terabyte-sized datasets. We
discuss these two works, along with other modern, usable searchable encryption techniques,
next.

4.4 State of the Art

The state of the art secure search schemes all make different choices in the dimensions
described above resulting in different trade-offs between security, functionality, and perfor-
mance. We now briefly describe several of the latest searchable encryption schemes. We
focus on schemes supporting rich sets of query functionality rather than those focused on
only one query type. Such schemes largely fall into one of two camps: Schemes focused on
achieving very strong security, with minimal leakage, potentially at the cost of performance,
and schemes focused on achieving performance close to unencrypted databases at the cost
of allowing more leakage to an adversary. We now describe several schemes following each
of these approaches.

4.4.1 Security-Focused Schemes

In the past few years there have been several efforts to build searchable encryption schemes
providing strong security guarantees while providing rich query expressiveness and being able
to scale to terabyte size databases. This work has largely been driven by the Intelligence Ad-
vanced Research Projects Activity (IARPA) Secure and Privacy Assurance Research (SPAR)
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program [92] which aimed to produce prototype implementations of searchable encryption
that could perform within an order of magnitude of standard SQL databases while minimiz-
ing the amount of leakage to the parties involved.

The two protocols to come out of this project are Blind Seer [134] and Cash et al.’s
scheme [41]. Both of these work in the three party model described earlier and assume no
collusion between the three parties: server, querier, and data owner. Both of these protocols
achieved strong security against all three parties. Specifically, the data owner cannot learn
the querier’s queries and the querier can learn only information returned by authorized
queries. The server can only learn limited information about the data it is storing and
the queries it is serving, such as query search patterns. The exact details of the leakage
provided to the server vary between the two protocols resulting in slightly different security
guarantees.

Both of these protocols work by constructing secure search indices to allow for sublinear
searching. This is done by combining cryptographic techniques with indexing structures from
the database community. While the two schemes share this basic premise, the underlying
technologies are drastically different and use different cryptographic primitives. We now
briefly sketch these two protocols.

Blind Seer: The Blind Seer protocol constructs an index consisting of an encrypted search
tree. The leaves of this tree correspond to the individual records and contain all the search-
able keywords from that record. Internal nodes contain a Bloom filter5 storing the set of
all keywords stored in their descendants. Now, a boolean query (e.g., A AND B) can be
executed as follows:

• Beginning at the root, check to see if the Bloom filter of the current node contains the
keywords being searched for in the query. If not, terminate the search.

• If so, visit all the children of the node recursively for the same check until the leaf
nodes are reached.

• Return all leaf nodes containing the searched for keywords.

To additionally support range queries and queries including negations, the set of keywords
in the leaf nodes is extended to include negated terms and also special range keywords.

However, just performing the queries as described above would leak both the query
and the data to the server performing the search. Instead, the Bloom filters are encrypted
to protect their content and the Bloom filter check is performed by a secure computation
between the client and server which allows one to check membership in a Bloom filter while
hiding the content of the Bloom filter and the value being looked for. Now the client and
server can together traverse the search tree as before with the server only learning the search
pattern of which tree nodes are visited by the search, but not the keywords contained in
those nodes or the search terms.

5A data structure allowing for efficient set membership queries
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Blind Seer also supports modifications (which includes inserts, deletions and updates)
within their secure index. Inserts are handled by creating a separate Bloom Filter with is
included as part of the search. Deletions are handled by marking the corresponding nodes,
both in the original and inserted Bloom filters, as deleted. Updates are implemented as
simply an insertion and deletion. From time to time the entire tree of Bloom Filters is
recreated to include these inserted records.

Blind Seer’s performance was measured as part of the SPAR program by MIT Lincoln
Laboratory [168] and can be seen in Figure 2. For the most part they function within an
order of magnitude of a MySQL baseline system.

Figure 2: Performance of Blind Seer compared to a MySQL database. Performance cost is
within 15x - mostly due to network communication costs. Figure taken from [134]

Cash et al.: The Cash et al. protocol constructs an encrypted index based on the idea of
an expanded inverted index. In their basic scheme, without factoring in security, they store
two different indices. The first is an inverted index that maps keywords to record identifiers,
and the second is an index that maps record identifiers to keywords contained within. In
order to do a conjunctive search, the server looks in the first index for the first keyword in
the conjunction. For each of the records that matches the keyword, the server checks to see
if the rest of the terms of the query are matched by checking the second index. If they do,
that particular record is returned as part of the query.

To add security to the above search protocol, first the records in the database are
permuted and encrypted. Then, the indices are built for the permuted encrypted database.
Furthermore, during a search careful cryptographic techniques guarantee that the server
can check the second index for keywords included in the query without learning what the
keywords are or learning anything about the remaining keywords contained in the record.

Like Blind Seer, the Cash et al. protocol is able to achieve reasonable performance
compared to standard search technologies. Specifically, the query time for queries returning
small result sets is essentially independent of the size of the database for databases up to
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one billion records. For such queries, this protocol is almost comparable to the runtime of
an unencrypted MySQL backend.

Bajaj and Sion: An alternative approach for security-focused secure search was given by
Bajaj and Sion [9] who use trusted hardware such as IBM 4758 and 4764 PCI cards in place
of cryptographic assumptions. Here security stems from requiring the server to perform the
sensitive portion of their searches properly on a trusted hardware device thus guaranteeing
security of the data and correctness of the searches. Specifically, security is guaranteed as
long as adversaries cannot tamper with the internal state of the trusted hardware.

Bajaj and Sion use this approach to build a full relational database whose data structures
and query processing methods are split into secure pieces run in a trusted enclave and
insecure components that run on commodity hardware. To analyze the efficiency of this
approach Bajaj and Sion estimate the cost of computations, storage, and networking in both
small-scale and large-scale (“the cloud”) computing environments. They conclude that large-
scale computations inside secure processors is only 2-4× more costly than computation in
small-scale insecure enterprises, and thus orders of magnitude faster than any cryptographic
operation. Thus, this approach allows them to build trusted hardware based secure search
schemes achieving strong security while also getting all the desired query functionality and
scalability.

4.4.2 Performance-Focused Schemes

On the other end of the spectrum there have been several efforts trying to add a minimal level
of security to database search while achieving minimal performance overhead. Moreover,
these techniques allow the use of an unmodified traditional database as the server in the
secure search protocol thus allowing backward compatibility with existing infrastructure.

CryptDB: CryptDB, built by Popa et al. [140], provides a client side library that supports
executing SQL queries over encrypted data. The key insight that allows them to do this is
that various forms of encryption allow for different queries to be performed directly on
encrypted data. Thus, by encrypting data accordingly, it is possible to allow searching over
encrypted data. Specifically, Popa et al. use the following encryption schemes:

• Semantically Secure Encryption provides the strongest security guarantees; the
encryption process is randomized and encryptions of different messages are indistin-
guishable. However, this type of encryption, while the most secure, does not allow for
any specific queries to be made across it.

• Deterministic Encryption (DET) [12] provides a weaker security guarantee; two
equal values always encrypt to the same ciphertext, which allows the server to check
equality of the underlying plaintexts to perform frequency analysis. However, this
allows a client to make targeted keyword search across deterministically encrypted
columns as these only require checking equality.
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• Order Preserving Encryption (OPE) [139], in addition to being deterministic, also
preserves the relative order of the underlying plaintexts. So, if a < b, then Enc(a) <
Enc(b). This means it provides an even weaker security guarantee than deterministic
encryption, allowing the server to learn the order of the underlying values. It does,
however, allow a user to make range queries.

• Additively Homomorphic Encryption has similar security to semantically secure
encryption but has the added property of allowing limited computations, in this case
addition, across the encrypted data in the columns. This is further discussed in Section
5.1.1.

CryptDB uses these different encryption types by encrypting the different fields in a
SQL database using different types of encryption. Fields over which ranges may be desired
are encrypted using OPE, fields that need to support keyword queries are encrypted using
DET, and raw data fields that cannot be searched over can be encrypted using semantically
secure encryption. Additionally, CryptDB allows for joins over fields encrypted under OPE
and DET as this just requires equality checks. In order to reduce the amount of leakage
from such encryptions, all fields encrypted using OPE and DET are onion encrypted with a
semantically secure encryption scheme. That is, the these ciphertexts are again encrypted
under a semantically secure encryption, thus removing all leakage. They remain encrypted in
this way until a query is made that requires equality or range search over this field at which
point the semantically-secure layer is decrypted off to allow the query to be performed. The
benefit of this is that no information is revealed about values in fields that are not searched
over.

Even with this measure, CryptDB offers a much more limited form of security than that
found in the Blind Seer and Cash et al.’s solutions since once the outer layer of encryption is
removed on some field, the server learns some information about the values in that field for
all records, even the ones not returned by the query. However, the performance of CryptDB
is much closer to traditional search technologies, performing within 2× for most query types
as can be seen in Figure 3.

Monomi Monomi [166] takes CryptDB’s advances and extends its performance results
by introducing a query and schema planner. This planner, based on the variables of client
storage and allowed communication complexity (number of rounds of communication and the
size of the portion of the database sent over for each query) splits the query execution between
server-supported portions (such as range queries over an order preserving column) and client
side computation. The schema and additional encrypted columns are also automatically
generated based on a sample set of queries that the client inputs at generation time. This
effort to apply traditional query planning to encrypted search technology allows for more
expressive queries and better performance than CryptDB demonstrates.

Computing on Masked Data Computing on Masked Data (CMD) [65] extends the ideas
of CryptDB to NoSQL databases to support big data applications. Specifically, CMD applies
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Figure 3: Performance of CryptDB for a variety of query types. Strawman is a naive
implementation of the algorithm without optimizations to speed up the construction of the
encrypted indexes. Figure taken from [140]

these protections to the Accumulo database [63], a distributed database noted for its high
ingest rates and native cell-level security. CMD supports a similar set of encryption types
to CryptDB, including semantically secure, deterministic, and order preserving encryption.
CMD targets, and achieves, a performance goal of computing on the encrypted data within
a factor of 2× of the unencrypted system. They note that compared to the performance
cost of performing the query, the performance cost of encrypting and decrypting the data is
relatively small.

5 Secure Data Processing

In the previous section, we discussed performing secure searching on encrypted data. How-
ever, in many big-data applications it is not enough to be able to simply retrieve stored
data. Instead, it is desirable to perform analytic computations over the data and return
only the result of these computations rather than the original data. We stress that it is
very important that the data and the computations be protected even while the processing
is being performed. In this section, we describe four cryptographic techniques that enable
generic secure computation: homomorphic encryption (HE), verifiable computation (VC),
secure multi-party computation (MPC), and functional encryption (FE).

All of these can be used to securely outsource the processing of data but in different
scenarios. Homomorphic encryption allows computing on encrypted data while maintaining
confidentiality; it can be used to outsource processing of sensitive data to another entity that
is trusted to perform the computation correctly but should not learn the data. Verifiable
computation allows computing on data and allowing the integrity of the computation to be
checked; it can be used to outsource processing of data to another entity that is allowed
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to learn the data but not trusted to perform the computation correctly. It is possible to
combine homomorphic encryption and verifiable computation to achieve both confidentiality
of the input and output and integrity of the computation. Secure multiparty computation
allows performing a distributed computation on sensitive inputs held by multiple parties
while maintaining confidentiality of each party’s inputs from every other party and ensuring
that the computation was performed correctly. MPC guarantees these properties as long
as no more than some threshold of computing parties are adversarial. MPC can be used
in settings where different sensitive inputs are held by different parties or in settings where
a single client wants to outsource computation on its sensitive input by distributing the
computation over multiple compute nodes. Finally, functional encryption allows a data
owner to let others learn specific functions of her sensitive data and nothing else.

5.1 Homomorphic Encryption

5.1.1 Introduction

Imagine that we own a computationally weak computer and wish to outsource some work
to a server that we do not trust. The data on which the work is done is sensitive, and
we want to make sure that the server can’t learn anything about it. Although the idea
of delegating a computation without revealing anything about the inputs or outputs may
seem very unintuitive, cryptography has a tool enabling just that: this tool is homomorphic
encryption.

5.1.2 Definition

Homomorphic encryption is a type of public-key encryption that allows anyone to compute
functions of data while it is encrypted without decrypting it or learning anything about it.
Specifically, in addition to the algorithms KeyGen, Enc, and Dec associated with any en-
cryption scheme, homomorphic encryption also has a fourth algorithm Eval. This algorithm
takes in the public key pk, a function f , and encrypted data cin, and returns an encrypted
output cout = Eval(pk, f, cin) such that cout is an encryption of the result of applying f to
the originally encrypted data; that is, f(Dec(sk, cin)) = Dec(sk, cout). Anyone can evaluate
Eval, since it does not require the secret key sk. Note that the result is an encryption of the
result; retrieving the result itself requires the secret key. Moreover, the evaluation does not
reveal anything about the data cin or the computation output cout, since that would violate
semantic security.

5.1.3 Survey

Many public-key encryption schemes are naturally homomorphic with respect to a limited set
of functions f , such as only addition or only multiplication [66, 133, 142, 149]. An intriguing
question, initially posed in 1978 by Rivest, Adleman, and Dertouzos [148], is whether there
exists an encryption scheme that simultaneously permits the evaluation of (an unbounded
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number of) both addition and multiplication operations on the underlying plaintexts. Since
these two operations constitute a logically complete set of operations, such a scheme would
be a fully homomorphic encryption (FHE) scheme, meaning that it is homomorphic with
respect to all functions f . Boneh, Goh and Nissim [28] give an encryption scheme that is
homomorphic with respect to quadratic functions f ; that is, their encryption scheme supports
the evaluation of arbitrarily many additions, but only one multiplication, thus falling short
of this goal.

In 2009, the seminal work of Gentry [71] affirmatively answered this long-standing ques-
tion by demonstrating an encryption scheme that provides Eval operations for an unbounded
number of both additions and multiplications. Gentry split the FHE problem into two com-
ponents: the design of a somewhat homomorphic encryption scheme (SWHE) that permits a
limited number of Eval operations, and the insight of a bootstrapping algorithm that achieves
fully homomorphic encryption through the use of multiple applications of SWHE. A slight
tweak of this initial scheme was implemented by Gentry and Halevi [72].

Somewhat Homomorphic Encryption: There are many versions of Gentry’s somewhat
homomorphic encryption scheme. One of the most straightforward ones uses integers modulo
a large prime p, which is the secret key. Ciphertexts take the form of large integers, which are
encryptions of 0 if their remainder modulo p is even, and encryptions of 1 if their remainder
modulo p is odd. It is straightforward to see that adding (or multiplying) two ciphertexts
gives an encryption of the sum (or product) of the plaintexts, as long as the remainders
modulo p (i.e., the noise) of the two original ciphertexts are small enough. Informally, this
scheme is secure because of the learning with errors assumption [146], which says that if p is
unknown, then multiples of p with some small additive noise look completely random, and
an observer can’t learn p.

Bootstrapping: In the scheme described above, the error keeps growing until it is im-
possible to perform any more homomorphic evaluations. However, Gentry made the key
observation that if a scheme is homomorphic enough to evaluate its own decryption circuit
in addition to at least one other operation, then it can be made fully homomorphic by means
of bootstrapping. Along with the public key, an encryption under that public key of the cor-
responding secret key is published. When the ciphertext noise grows so large that no more
homomorphic operations can be performed, the ciphertext is encrypted again. This results
in two layers of encryption – the original one and the new one. Under the new layer of
encryption, the old ciphertext is homomorphically decrypted (using the encryption of the
secret key), resulting in a ciphertext with just one layer of encryption – the new layer. The
noise of this new ciphertext is only whatever is accrued over the course of homomorphi-
cally evaluating a single decryption circuit. So, as long as the decryption circuit isn’t deep
enough to generate too much error, one or more additional homomorphic operations can be
performed before the error grows too large again.
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Gate Type Count Mean Std Dev Min Max
Add 101 2.04 · 10−4 1.99 · 10−4 1.10 · 10−5 6.18 · 10−4

Add constant 101 1.85 · 10−4 1.75 · 10−3 6.00 · 10−5 4.43 · 10−3

Multiply 101 1.45 · 10−2 1.39 · 10−2 4.76 · 10−4 3.00 · 10−2

Multiply by constant 101 1.92 · 10−3 1.82 · 10−3 7.60 · 10−5 5.19 · 10−3

Figure 4: This table describes the evaluation time (in seconds) of some operations in HE-
lib [87]. The rows describe the operations on ciphertexts that correspond to the following
operations: addition of two plaintexts, addition of a public constant to a plaintext, multipli-
cation of two plaintexts, and multiplication of a plaintext by a public constant. The columns
describe statistics of the time it takes to evaluate a single gate of each type: that is, the
number of evaluations performed (count), the mean evaluation time, the standard deviation,
the minimum, and the maximum. The numbers are taken from Varia, Yakoubov and Yang
[121].

5.1.4 State of the Art

After Gentry’s initial work, many cryptographers have designed new FHE algorithms that
make substantial improvements along several dimensions:

• Decreasing the ciphertext and key sizes [157].

• Optimizing the FHE for specific common operations such as SIMD [158, 73]. SIMD
operations involve performing the same operations on multiple bits in parallel.

• Using hardware (e.g., FPGAs [141]) in order to make FHE faster.

• Increasing the number of Eval operations possible in a SWHE scheme before boot-
strapping, eliminating bootstrapping altogether, or making bootstrapping more effi-
cient [35, 75]. Bootstrapping is the most expensive part of homomorphic evaluation,
and reducing the frequency with which it needs to be done greatly increases evaluation
efficiency. One of the approaches to this is reducing the noise a limited number of
times by changing the ciphertext in a different way (“modulus reduction”) between
every two bootstrapping operations.

• Basing the cryptography upon weaker, more accepted assumptions [36].

Some of these improved algorithms have been implemented in software [74, 87, 88,
58]. Figure 4 describes the homomorphic evaluation time of some operations in the HElib
implementation [87].

5.2 Verifiable Computation

5.2.1 Introduction

Imagine that, as in the previous section, we own a computationally weak computer and wish
to outsource some work to a server that we do not trust. Unlike the scenario in the previous
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section, suppose we now do not care about the confidentiality of the data (perhaps this data
is not sensitive), but we do care that the work is done correctly.

There are a number of ways that one might approach this without using cryptographic
tools. The most straightforward approach is replication – outsourcing the computation to
several different servers, and then taking the most common answer as correct. However, this
only works as long as the failures of the servers are not correlated (as in Byzantine fault
tolerance [111], which is not always the case. It could be that most of the servers in the cluster
are controlled by the same adversarial entity, or that they are running a single operating
system that is faulty in a specific way. Another way is auditing – after outsourcing the work,
also performing it oneself with some probability, and if the answer does not agree with the
server’s answer, ceasing to trust the servers to do any of the work. This only works as long
as one believes the servers will fail on a noticeable fraction of the computations, and not on
just a few of them (which may be vitally important to get correct). If we use cryptographic
tools, the landscape is much more promising. Verifiable computation is a cryptographic tool
that guarantees the integrity of outsourced computations without making any assumptions
about the server failure rate or correlation of failures.

5.2.2 Definition

Typically, verifiable computation is defined in the context of two parties: a computationally
weak verifier (or client), and a computationally strong but untrusted prover (or server) to
whom the verifier delegates some work. Given an input x and a function f to evaluate on
x, the prover is expected to produce an output y, as well as a proof π that y = f(x) that
the verifier can use to confirm the correctness of the computation. In order for the verifier
to want to outsource the computation to the prover in the first place, it should be much
more efficient for the verifier to check the proof of correctness π of the output y than for
the prover to perform the computation itself. Verifiable computation schemes should make
it infeasible for a prover to come up with an incorrect output y∗ 6= f(x) and a proof π∗ such
that π∗ convinces the verifier that y∗ = f(x).

5.2.3 Survey

Most verifiable computation constructions are based on probabilistically checkable proofs, or
PCPs [8]. A PCP is a (possibly long) string produced by the prover to prove the validity
of some statement. The PCP itself can be viewed as the proof of the statement’s validity;
however, having to read the entire PCP may be too big a burden on the computationally
weak verifier. Instead, the special property of a PCP is that the verifier can check the validity
of a PCP by looking only at a constant number of random locations in the PCP. This works
because any invalid PCP is necessarily inconsistent in a large number of locations, so it
is detectable as invalid by the verifier with high probability. This powerful machinery has
found ample uses in cryptography and theoretical computer science, and we refer readers to
the book by Arora and Barak [7] for an excellent overview.
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However, PCPs alone do not give us verifiable computation; there has to be some way
for the prover to produce and fix a PCP without sending the whole thing to the verifier.
Having the prover store the PCP and answer queries from the verifier on the fly won’t work,
because the prover could then cheat by changing parts of the PCP in reaction to the verifier’s
queries. In the next few paragraphs, we describe several ways to build verifiable computation
on top of PCPs, as presented in [169].

Verifiable Computation Using Interaction: Goldwasser, Kalai, and Rothblum [81]
and later Cormode, Mitzenmacher, and Thaler [50] describe using interactive proofs for
verifying computation. Allowing the prover and verifier to interact (instead of requiring the
prover to send a fixed string π to the verifier) makes it hard for the prover to lie in a way that
the verifier won’t eventually catch him. Instead of “naively” asking questions about values
at specific locations of the PCP, the verifier asks queries in an adaptive fashion such that
without a valid PCP, the prover will eventually be forced to contradict himself. Roughly, the
prover’s early answers commit him to a lie and the verifier’s later queries make it impossible
for the prover to stick to that lie.

Verifiable Computation Using Commitments: Another line of work (e.g., Killian [103])
uses cryptographic commitments. A cryptographic commitment is a digital object that binds
the prover to a certain statement without revealing the statement. The commitment can
be much smaller than the statement itself. Later, when the prover produces the statement
itself (or, for some commitment schemes, even part of the statement), the verifier can use the
commitment to check that the statement is in fact the one the prover committed to earlier.
If the prover computes a commitment c to the entire PCP, and sends c to the verifier, the
verifier can then query the prover on the parts of the PCP he wishes to view, and the prover
will have to answer honestly, because if he changes parts of the PCP the verifier will be able
to tell that they no longer match the commitment c.

Verifiable Computation Using Homomorphic Encryption: Additively or multiplica-
tively homomorphic encryption (described in Section 5.1.1) can be used to conceal the ver-
ifier’s queries about the PCP, but still allow the prover to answer them. Since the prover
only sees the queries in encrypted form, he has no way to know how to adapt his PCP in
response to them. A few constructions based on this paradigm include Ishai, Kushilevitz
and Ostrovsky [94], Ben-Sasson et al.[17], and Bitansky et al.[21]. One advantage of this ap-
proach is that it allows the verifier’s queries to be reused, reducing the amount of interaction
required.

5.2.4 State of the Art

A great survey of practical verifiable computation implementations is given in [169]. Imple-
mentations include Pinocchio [136], SNARKs for C [17], and many others. Figure 5 describes
some aspects of their relative performance.
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Evaluation and proof generation time Verification time
Pinocchio [136] 144s for 277,745 multiplications 10ms

SNARKs for C [17] 31s for 262,144 operations 5s

Figure 5: This table describes some aspects of the relative performance of Pinocchio [136]
and SNARKs for C [17].

5.3 Multi-Party Computation

5.3.1 Introduction

In many situations, several parties with sensitive data wish to jointly compute some function
of the collection of their data. For example, hospitals may want to perform medical research
on their combined patient data, companies may want to predict cyber threats by analyzing
threat information from companies in the same sector, or individuals may wish to participate
in an auction with sealed bids. In all of these situations, each party wants to learn the result
of the computation on the data held by all the parties but without sharing their own sensitive
information. Furthermore, there may not be a trusted party to whom everyone is willing
to give their information and that everyone trusts to perform the computation securely and
correctly.

Secure multi-party computation (MPC) is an area of cryptography that addresses this
problem. MPC protocols allow people to perform distributed computation on their private
data without revealing their data and without the use of a trusted party. As we will describe
below, MPC protocols exist for any computable function and for any number of parties.
Thus, MPC can not only provide privacy for existing applications in which parties currently
share their data but would prefer not to; MPC can also enable new applications that are
currently impossible because parties are unwilling or unable to share their data.

5.3.2 Definition

Secure multi-party computation allows two or more parties to compute a joint function of
their inputs in such a way that everyone learns the correct output of the function but no
one learns any other information, even when some of the parties may be adversarial.

In an ideal world, there would be a party that everyone trusts with their private inputs
and trusts to perform the computation correctly. Then the MPC problem would be solved
trivially: everyone would send their inputs to the trusted party, and the trusted party would
perform the computation and distribute the outputs. However, in the real world, we cannot
assume there is a trusted party. The security of an MPC protocol guarantees essentially that
it emulates the ideal-world behavior.

MPC generally considers two types of adversaries: semi-honest and malicious (as de-
scribed in Section 2.1). We assume collusion among adversarial parties (as described in 2.1).
In fact, we can think of there being a single adversary who “corrupts” some subset of the
parties, observing their inputs and outputs and (in the case of a malicious adversary) con-
trolling their behavior. We will also distinguish between computational security, which is
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based on the assumed hardness of some computational problem, and information-theoretic
security, which is unconditional security based on bounds on the amount of information an
adversary can learn.

5.3.3 Survey

The fundamental results of MPC have demonstrated that protocols exist to compute any
function securely. In the rest of this section, we will consider generic MPC protocols; that
is, protocols that describe how to compute any function securely, as opposed to ones that
are specific to restricted classes of functions. Generic MPC protocols are typically designed
for boolean or arithmetic circuits. A circuit is a directed acyclic graph consisting of gates,
where each gate takes input values and produces an output value that may feed into other
gates as input. One can think of a boolean circuit as a circuit operating on bits with XOR
and AND gates. An arithmetic circuit operates on elements of a finite field with addition
and multiplication gates.

Early results showed that generic MPC is possible. Yao [171] gave the first two-party
protocol for computing functions represented as boolean circuits using a technique called
garbled circuits, providing computational security against a semi-honest adversary. Yao’s
protocol requires a constant number of rounds of communication. Goldreich, Micali, and
Wigderson [78] made two contributions: (1) the first multi-party protocol for two or more
parties, also for boolean circuits, with computational security against a semi-honest adver-
sary, and (2) a general compiler for transforming any protocol with semi-honest security to
one with malicious security. These protocols requires communication for every multiplication
gate, so the number of rounds of communication is proportional to the depth of the circuit.
Next, Ben-Or, Goldwasser, and Wigderson [16], and Chaum, Crépeau, and Damg̊ard [45]
simultaneously presented the first multi-party protocols with information-theoretic security;
these protocols work on functions represented as arithmetic circuits. We now describe the
main ideas behind some of the foundational protocols and subsequent improvements for
boolean and arithmetic circuits.

Boolean circuits: Most MPC protocols for securely evaluating boolean circuits are based
on Yao’s garbled circuits. Yao’s garbled circuit approach uses a primitive called oblivious
transfer. In its simplest form, oblivious transfer involves a sender with two private values
and a receiver with a private bit; the result of the oblivious transfer is that the receiver learns
the value specified by its bit, while the sender learns nothing about which of its two values
the receiver obtained.

Yao’s protocol for securely evaluating boolean circuits works as follows. One party will
be the circuit generator (call her Alice) and the other will be the circuit evaluator (call him
Bob). For each wire in the circuit, Alice randomly chooses two secret keys, one corresponding
to each of the input bit choices 0 and 1. For each gate, Alice creates a truth table in which
the output wire key is encrypted under the pair of the corresponding input wire keys. Alice
permutes the truth table to hide the order of the rows and sends it to Bob along with the
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keys corresponding to her inputs. These keys are random, so they do not reveal to Bob
anything about Alice’s inputs. Then, using oblivious transfer, Bob obtains the keys from
Alice corresponding to each of his inputs without Alice learning anything about Bob’s inputs.
For each gate, Bob decrypts the appropriate entry in the truth table to get the output wire
key. After evaluating the entire circuit in this way, Bob tells Alice the final output key and
Alice determines whether the output is 0 or 1. Throughout the computation, neither party
learns any information about each other’s inputs except for the output of the function at
the end.

Subsequent works have improved on Yao’s protocol in several dimensions, including
reducing the ciphertext size, reducing the computational cost, and adding malicious security.

Ciphertext size While Yao’s original protocol requires transmitting 4 ciphertexts for the
truth table of each gate, subsequent works have reduced the required number of ciphertexts.
Naor, Pinkas, and Sumner [126] showed how to use only 3 ciphertexts per truth table, and
Pinkas et al. [137] further improved this to only 2 ciphertexts per truth table. Kolesnikov
and Schneider [105] showed how to garble XOR gates “for free” without any ciphertexts;
however, in this method AND gates still require 3 ciphertexts. Kolesnikov, Mohassel, and
Rosulek [104] gave a method that garbles XOR gates using between 0 and 2 ciphertexts
while AND gates require only 2 ciphertexts. Finally, Zahur, Rosulek, and Evans [172] show
how to garble XOR gates with no ciphertexts and AND gates with only 2 ciphertexts.

Computational cost There has been progress reducing the computational cost of garbling
by using different techniques for encrypting a wire label under two keys. Naor, Pinkas,
and Sumner [126] showed how to do this using 2 hash evaluations. Lindell, Pinkas, and
Smart [114] reduced this to 1 hash evaluation. shelat and Shen [155] showed how to use
a single block cipher evaluation, and Bellare et al. [14] further improved the efficiency by
eliminating the key schedule, an expensive part of the block cipher evaluation. Another
line of work reducing the computational cost of garbling was initiated by Huang et al. [91],
who observed that it is possible to pipeline the circuit generation and circuit evaluation
so that the entire circuit does not have to generated and stored all at one time before the
computation.

Malicious security The original protocol of Yao is not secure against malicious adver-
saries because the circuit generator could cheat by sending a garbled circuit for a different
function. One technique for providing malicious security for Yao’s garbled circuits, intro-
duced by Lindell and Pinkas [113], is called “cut and choose.” In this technique, the circuit
generator generates many copies of the circuit and sends them to the circuit evaluator. The
circuit evaluator randomly chooses a subset of these to be opened to check that they indeed
evaluate the correct function, and evaluates the other copies of the circuit. If the circuit
generator cheats, the circuit evaluator will detect it with high probability.

Arithmetic circuits: Many MPC protocols for evaluating arithmetic circuits are based
on a technique called secret sharing. Here we describe secret sharing and then present the
high-level idea of one secret-sharing based MPC protocol.

A t-out-of-n secret sharing of a secret value x creates n values (shares) such that the
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Figure 6: Graphical illustration of the addition of shares in a secret sharing scheme.

combination of any t or more shares can be used to reconstruct x, while any fewer shares
reveal no information about x. Secret sharing can be performed using polynomials [154], as
shown in Figure 6. To do this, choose a random degree-(t − 1) polynomial whose constant
term is the secret value, and give each party a distinct point on the polynomial. Then any
t parties can perform polynomial interpolation and recover the polynomial and the secret
value, while any fewer parties learn no information about the polynomial or the secret value.

The Ben-Or, Goldwasser, Wigderson (BGW) [16] protocol is based on secret sharing.
First, each party secret-shares her input with the other parties. Then, the parties perform
arithmetic operations on the secret-shared values by manipulating the shares. Specifically,
addition of two secret-shared values can be performed by each party adding their shares
locally and then jointly reconstructing using the resulting shares. Similarly, multiplication
of two values can be performed by multiplying the corresponding shares; however, the re-
sulting shares then lie on a higher-degree polynomial, so an interactive degree reduction
procedure is required. Thus, the protocol for any function represented in terms of addition
and multiplication operations can be evaluated securely.

Assuming secure pairwise communication channels between the parties, the BGW pro-
tocol provides information-theoretic, semi-honest security against up to 1/2 of the parties
being corrupted. Using additional techniques, BGW provides malicious security against up
to 1/3 of the parties being corrupted. Improvements by Rabin and Ben-Or [144] and by
Beaver [11] provide malicious security against up to 1/2 of the parties being corrupted, as-
suming that the parties have a broadcast channel. A more recent line of work has addressed
malicious security against more parties being corrupted. Bendlin et al. [18] and Damg̊ard et
al. [53] achieve malicious security against up to all but one of the parties being corrupted,
using a preprocessing “offline” phase that contains the expensive public-key operations and
is computationally secure, followed by an efficient “online” phase for the actual computation
that is information-theoretically secure.
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5.3.4 State of the Art

Several MPC compilers and programming frameworks have been implemented and made
publicly available.

Two-party computation: Fairplay [118] was the first compiler for secure two-party com-
putation, using garbled circuits. TASTY [89] combines garbled circuits and homomorphic
encryption. Since the development of these early compilers, there have been many implemen-
tations of garbled circuits with various optimizations. These include FastGC [91], Kreuter,
shelat, and Shen [107], CBMC-GC [90], PCF [106], JustGarble [14], and TinyGarble [161].
A couple compilers such as SCVM [115] and ObliVM [116] have support for oblivious RAM
(described in Section 4), evaluating secure dynamic memory accesses more efficiently than
performing a linear scan of memory as in circuit representations. Compilers such as PCF,
SCVM, ObliVM, and Wysteria [145] use an intermediate representation of circuits that al-
lows generating the circuit on the fly instead of all at once before computation, reducing the
compilation time.

Multi-party computation: FairplayMP [15] extended Fairplay to multiple parties. VIFF
[52], SEPIA [37], Choi et al. [46], Sharemind [22], PICCO [173], and Wysteria [145], compile
code to secret-sharing based schemes for more than two parties. SEPIA, PICCO, and Share-
mind distinguish between input parties, who secret-share their inputs among the parties but
don’t necessarily participate in the computation, and computational parties, who perform
the actual computation. Sharemind works specifically in the setting of three computational
parties. Wysteria offers formal security guarantees through a special type system.

5.4 Functional Encryption

5.4.1 Introduction

We now consider a situation in which a data owner wishes to allow certain computations
to be performed on their sensitive data, but wishes to retain strict control over this data
and computations. For example, consider a cloud-based email service where users may want
the cloud to be able to perform spam filtering on their encrypted emails but learn nothing
more about the contents of these emails. Here the user wants to allow the cloud to compute
and learn the output of a specific function on their data without giving the cloud any more
access to their emails. A cryptographic primitive that enables this capability is functional
encryption, which achieves both the access control properties of attribute-based encryption
(described in Section 3.2) and the computing on encrypted data of homomorphic encryption
(described in Section 5.1.1), allowing a data owner to control exactly who can compute on
their data and which they functions they can compute.
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5.4.2 Definition

Functional encryption (FE) is a public-key encryption scheme where, in addition to regular
secret keys used to decrypt the data, there are functional secret keys. These are keys that,
instead of decrypting the data, give access to the result of the corresponding function evalu-
ated on the data. More formally, the KeyGen procedure now takes a function f and returns
a key skf . Then Decskf (c) returns f(x) where c = Enc(x). The security guaranteed by FE
is that someone holding the key for function f learns no more information about the data
x than is revealed by f(x). As in the case of ABE, the critical property here is collusion
resistance. Specifically, FE guarantees that even someone holding keys for multiple functions
cannot learn more than the outputs of the corresponding functions.

5.4.3 Survey

The concept of functional encryption was first proposed in 2005 by Sahai and Waters [152]
as a generalization of attribute-based encryption. The first formal treatment of this powerful
primitive was given by Boneh, Sahai, and Waters [29] and O’Neill [131]. However, it was
quickly pointed out that there are some very strong limitations to the types of FE schemes
that can be constructed in terms of efficiency, security, and generality [5, 39].

It turns out that finding the “correct” definition for security of FE is quite non-trivial.
The aforementioned work demonstrated that some natural definitions known as indistinguishability-
based definitions are in some ways too weak to properly capture the desired security, while
other definitions known as simulation-based definitions are too strong in that they cannot
be satisfied by any scheme that works for all functions, as most existing schemes do. Thus,
a lot of work has gone into understanding the relative power and security of these defini-
tions [5, 39].

Despite these limitations, a number of constructions of FE for arbitrary functions have
appeared in the academic literature. Most of these focus on a restricted class of schemes,
where only a single functional key can be given out over the course of the scheme [151, 80].
This limitation was improved slightly by Gorbunov et al. [84] to allow the scheme to issue
a bounded number of keys and thus tolerate a bounded number of collusions. However, the
parameters of this scheme grow with the collusion bound, making it unlikely to be practical
unless one is willing to assume a very small bound on the number of colluding parties. A
somewhat different approach is taken by Naveed et al. [127] who instead require interaction
between the data owner, who generates the keys for functions over his data, and any party
wishing to evaluate a function on the encrypted data. This solution also seems unlikely to be
practical over big data sets unless only a small subset of the data will ever be computed on.
Several very recent works have shown ways to achieve security for FE against unbounded
collusion. However, the security of all such schemes relies on very strong, though not fully
accepted assumptions, such as the existence of indistinguishability obfuscation [67] or the
hardness of certain problems over multi-linear maps [69].
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5.4.4 State of the Art

FE offers great promise to enable very tightly controlled access to computation over sensitive
data. However, it is currently still mostly in the realm of theoretical research. Existing
schemes are most likely too inefficient to be used in practice and rely on very strong security
assumptions. Additionally, very few reference implementations of FE schemes exist, making
it very difficult to evaluate their performance and applicability for real-world use-cases. In
fact, at the time of writing, we are only aware of one prototype implementation of FE in
existence today [127].

Thus, FE is not currently in a state ready to be used in today’s big data applications.
However, we believe that this primitive will play an important role in securing computation
on sensitive data in the future. By including functional encryption in our survey, we hope to
raise awareness about this powerful primitive and draw interest to push researchers to identify
appropriate applications for it and to develop schemes achieving appropriate performance
for these applications in real-world deployments.

6 Conclusion

In this chapter, we have presented a wide variety of cryptographic techniques for securing
data in transit, in storage, and in use. We believe that, as security becomes a critical
requirement for sensitive big data processing, these techniques will become an integral part
of the big data ecosystem. We hope that the exposition in this chapter will raise awareness
of the latest types of tools and protections available for securing big data. We believe
better understanding and closer collaboration between the data science and cryptography
communities will be critical to enabling the future of big data processing.
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[33] Christoph Bösch, Pieter Hartel, Willem Jonker, and Andreas Peter. A survey of prov-
ably secure searchable encryption. ACM Comput. Surv., 47(2):18:1–18:51, August
2014.
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