26,402 research outputs found

    Designing and evaluating the usability of a machine learning API for rapid prototyping music technology

    Get PDF
    To better support creative software developers and music technologists' needs, and to empower them as machine learning users and innovators, the usability of and developer experience with machine learning tools must be considered and better understood. We review background research on the design and evaluation of application programming interfaces (APIs), with a focus on the domain of machine learning for music technology software development. We present the design rationale for the RAPID-MIX API, an easy-to-use API for rapid prototyping with interactive machine learning, and a usability evaluation study with software developers of music technology. A cognitive dimensions questionnaire was designed and delivered to a group of 12 participants who used the RAPID-MIX API in their software projects, including people who developed systems for personal use and professionals developing software products for music and creative technology companies. The results from the questionnaire indicate that participants found the RAPID-MIX API a machine learning API which is easy to learn and use, fun, and good for rapid prototyping with interactive machine learning. Based on these findings, we present an analysis and characterization of the RAPID-MIX API based on the cognitive dimensions framework, and discuss its design trade-offs and usability issues. We use these insights and our design experience to provide design recommendations for ML APIs for rapid prototyping of music technology. We conclude with a summary of the main insights, a discussion of the merits and challenges of the application of the CDs framework to the evaluation of machine learning APIs, and directions to future work which our research deems valuable

    Adaptive development and maintenance of user-centric software systems

    Get PDF
    A software system cannot be developed without considering the various facets of its environment. Stakeholders – including the users that play a central role – have their needs, expectations, and perceptions of a system. Organisational and technical aspects of the environment are constantly changing. The ability to adapt a software system and its requirements to its environment throughout its full lifecycle is of paramount importance in a constantly changing environment. The continuous involvement of users is as important as the constant evaluation of the system and the observation of evolving environments. We present a methodology for adaptive software systems development and maintenance. We draw upon a diverse range of accepted methods including participatory design, software architecture, and evolutionary design. Our focus is on user-centred software systems

    Assessing the effectiveness of multi-touch interfaces for DP operation

    Get PDF
    Navigating a vessel using dynamic positioning (DP) systems close to offshore installations is a challenge. The operator's only possibility of manipulating the system is through its interface, which can be categorized as the physical appearance of the equipment and the visualization of the system. Are there possibilities of interaction between the operator and the system that can reduce strain and cognitive load during DP operations? Can parts of the system (e.g. displays) be physically brought closer to the user to enhance the feeling of control when operating the system? Can these changes make DP operations more efficient and safe? These questions inspired this research project, which investigates the use of multi-touch and hand gestures known from consumer products to directly manipulate the visualization of a vessel in the 3D scene of a DP system. Usability methodologies and evaluation techniques that are widely used in consumer market research were used to investigate how these interaction techniques, which are new to the maritime domain, could make interaction with the DP system more efficient and transparent both during standard and safety-critical operations. After investigating which gestures felt natural to use by running user tests with a paper prototype, the gestures were implemented into a Rolls-Royce DP system and tested in a static environment. The results showed that the test participants performed significantly faster using direct gesture manipulation compared to using traditional button/menu interaction. To support the results from these tests, further tests were carried out. The purpose is to investigate how gestures are performed in a moving environment, using a motion platform to simulate rough sea conditions. The key results and lessons learned from a collection of four user experiments, together with a discussion of the choice of evaluation techniques will be discussed in this paper

    Understanding the fidelity effect when evaluating games with children

    Get PDF
    There have been a number of studies that have compared evaluation results from prototypes of different fidelities but very few of these are with children. This paper reports a comparative study of three prototypes ranging from low fidelity to high fidelity within the context of mobile games, using a between subject design with 37 participants aged 7 to 9. The children played a matching game on either an iPad, a paper prototype using screen shots of the actual game or a sketched version. Observational data was captured to establish the usability problems, and two tools from the Fun Toolkit were used to measure user experience. The results showed that there was little difference for user experience between the three prototypes and very few usability problems were unique to a specific prototype. The contribution of this paper is that children using low-fidelity prototypes can effectively evaluate games of this genre and style

    Mediating between AI and highly specialized users

    Get PDF
    We report part of the design experience gained in X-Media, a system for knowledge management and sharing. Consolidated techniques of interaction design (scenario-based design) had to be revisited to capture the richness and complexity of intelligent interactive systems. We show that the design of intelligent systems requires methodologies (faceted scenarios) that support the investigation of intelligent features and usability factors simultaneously. Interaction designers become mediators between intelligent technology and users, and have to facilitate reciprocal understanding

    Analysis of research methodologies for neurorehabilitation

    Get PDF

    Views from within a narrative : Evaluating long-term human-robot interaction in a naturalistic environment using open-ended scenarios

    Get PDF
    Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. Date of acceptance: 16/06/2014This article describes the prototyping of human–robot interactions in the University of Hertfordshire (UH) Robot House. Twelve participants took part in a long-term study in which they interacted with robots in the UH Robot House once a week for a period of 10 weeks. A prototyping method using the narrative framing technique allowed participants to engage with the robots in episodic interactions that were framed using narrative to convey the impression of a continuous long-term interaction. The goal was to examine how participants responded to the scenarios and the robots as well as specific robot behaviours, such as agent migration and expressive behaviours. Evaluation of the robots and the scenarios were elicited using several measures, including the standardised System Usability Scale, an ad hoc Scenario Acceptance Scale, as well as single-item Likert scales, open-ended questionnaire items and a debriefing interview. Results suggest that participants felt that the use of this prototyping technique allowed them insight into the use of the robot, and that they accepted the use of the robot within the scenarioPeer reviewe

    Applications of high and low fidelity prototypes in researching intuitive interaction

    Get PDF
    This paper addresses some of the issues involved in incorporating use of prototypes into a research program. Definitions, merits and uses of both low and high-fidelity prototypes are discussed and then the applications of prototypes in our research program into intuitive interaction are explored. It has previously been established that intuitive interaction is based on past experience, and can be encouraged by designing interfaces that contain familiar features (Blackler, 2006; Blackler, Popovic, & Mahar, 2007b). Two aspects of the research program which are relevant to prototyping are: researching the issues of how intuitive use happens and how it can be better facilitated; and developing ways to help designers include investigations about users and their existing knowledge into their design processes in order to make interfaces more intuitive. The current and future planned applications of high and low-fidelity prototypes in each of these areas are explored. Then experiences with using high-fidelity touchscreen prototypes for experimental research into intuitive interaction are discussed, including problems with the prototypes, how they were addressed and what we have learned from the process. Next the potential for low-fidelity prototypes to elicit users’ tacit knowledge during the design process is explored. This has exciting possibilities due to the link between intuitive interaction and tacit knowledge. Finally, the challenges of developing prototype-based design tools for use by older people are discussed and future directions for using prototypes in our research program are considered. Keywords: Prototypes; intuitive interaction; experimental methodology; implicit or tacit knowledge</p

    Design Fiction Diegetic Prototyping: A Research Framework for Visualizing Service Innovations

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Purpose: This paper presents a design fiction diegetic prototyping methodology and research framework for investigating service innovations that reflect future uses of new and emerging technologies. Design/methodology/approach: Drawing on speculative fiction, we propose a methodology that positions service innovations within a six-stage research development framework. We begin by reviewing and critiquing designerly approaches that have traditionally been associated with service innovations and futures literature. In presenting our framework, we provide an example of its application to the Internet of Things (IoT), illustrating the central tenets proposed and key issues identified. Findings: The research framework advances a methodology for visualizing future experiential service innovations, considering how realism may be integrated into a designerly approach. Research limitations/implications: Design fiction diegetic prototyping enables researchers to express a range of ‘what if’ or ‘what can it be’ research questions within service innovation contexts. However, the process encompasses degrees of subjectivity and relies on knowledge, judgment and projection. Practical implications: The paper presents an approach to devising future service scenarios incorporating new and emergent technologies in service contexts. The proposed framework may be used as part of a range of research designs, including qualitative, quantitative and mixed method investigations. Originality: Operationalizing an approach that generates and visualizes service futures from an experiential perspective contributes to the advancement of techniques that enables the exploration of new possibilities for service innovation research
    corecore