57,576 research outputs found

    A proposal for a coordinated effort for the determination of brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale

    Get PDF
    In this era of complete genomes, our knowledge of neuroanatomical circuitry remains surprisingly sparse. Such knowledge is however critical both for basic and clinical research into brain function. Here we advocate for a concerted effort to fill this gap, through systematic, experimental mapping of neural circuits at a mesoscopic scale of resolution suitable for comprehensive, brain-wide coverage, using injections of tracers or viral vectors. We detail the scientific and medical rationale and briefly review existing knowledge and experimental techniques. We define a set of desiderata, including brain-wide coverage; validated and extensible experimental techniques suitable for standardization and automation; centralized, open access data repository; compatibility with existing resources, and tractability with current informatics technology. We discuss a hypothetical but tractable plan for mouse, additional efforts for the macaque, and technique development for human. We estimate that the mouse connectivity project could be completed within five years with a comparatively modest budget.Comment: 41 page

    Evaluation of protein surface roughness index using its heat denatured aggregates

    Get PDF
    Recent research works on potential of different protein surface describing parameters to predict protein surface properties gained significance for its possible implication in extracting clues on protein's functional site. In this direction, Surface Roughness Index, a surface topological parameter, showed its potential to predict SCOP-family of protein. The present work stands on the foundation of these works where a semi-empirical method for evaluation of Surface Roughness Index directly from its heat denatured protein aggregates (HDPA) was designed and demonstrated successfully. The steps followed consist, the extraction of a feature, Intensity Level Multifractal Dimension (ILMFD) from the microscopic images of HDPA, followed by the mapping of ILMFD into Surface Roughness Index (SRI) through recurrent backpropagation network (RBPN). Finally SRI for a particular protein was predicted by clustering of decisions obtained through feeding of multiple data into RBPN, to obtain general tendency of decision, as well as to discard the noisy dataset. The cluster centre of the largest cluster was found to be the best match for mapping of Surface Roughness Index of each protein in our study. The semi-empirical approach adopted in this paper, shows a way to evaluate protein's surface property without depending on its already evaluated structure

    Managing Uncertainty: A Case for Probabilistic Grid Scheduling

    Get PDF
    The Grid technology is evolving into a global, service-orientated architecture, a universal platform for delivering future high demand computational services. Strong adoption of the Grid and the utility computing concept is leading to an increasing number of Grid installations running a wide range of applications of different size and complexity. In this paper we address the problem of elivering deadline/economy based scheduling in a heterogeneous application environment using statistical properties of job historical executions and its associated meta-data. This approach is motivated by a study of six-month computational load generated by Grid applications in a multi-purpose Grid cluster serving a community of twenty e-Science projects. The observed job statistics, resource utilisation and user behaviour is discussed in the context of management approaches and models most suitable for supporting a probabilistic and autonomous scheduling architecture

    A network approach for managing and processing big cancer data in clouds

    Get PDF
    Translational cancer research requires integrative analysis of multiple levels of big cancer data to identify and treat cancer. In order to address the issues that data is decentralised, growing and continually being updated, and the content living or archiving on different information sources partially overlaps creating redundancies as well as contradictions and inconsistencies, we develop a data network model and technology for constructing and managing big cancer data. To support our data network approach for data process and analysis, we employ a semantic content network approach and adopt the CELAR cloud platform. The prototype implementation shows that the CELAR cloud can satisfy the on-demanding needs of various data resources for management and process of big cancer data

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues
    corecore