
Managing Uncertainty: A Case for Probabilistic Grid
Scheduling

Aleksandar Lazarević, Lionel Sacks, Ognjen Prnjat

Dept. of Electronic and Electrical Engineering, University College London, Torrington
Place, London WC1E 7JE, UK

{a.lazarevic, lsacks, oprnjat}@ee.ucl.ac.uk

Abstract. The Grid technology is evolving into a global, service-orientated
architecture – a universal platform for delivering future high demand
computational services. Strong adoption of the Grid and the utility computing
concept is leading to an increasing number of Grid installations running a wide
range of applications of different size and complexity. In this paper we address
the problem of delivering deadline/economy based scheduling in a
heterogeneous application environment using statistical properties of job’s
historical executions and its associated meta-data. This approach is motivated
by a study of six-month computational load generated by Grid applications in a
multi-purpose Grid cluster serving a community of twenty e-Science projects.
The observed job statistics, resource utilisation and user behaviour is discussed
in the context of management approaches and models most suitable for
supporting a probabilistic and autonomous scheduling architecture.

1. Introduction

Increasing demand for high-performance computer systems in recent years has
helped establish Grid technology as an attractive choice for academic research
clusters and high-demand business computing alike [1]. But proliferation of Grid
installations, encouraged by low entry barriers typical of off-the-shelf components
and open source licensing, has also meant that Grid is evolving into a global, service-
orientated utility platform. Grid’s migration from cutting edge to the mainstream is
already evident, and is driven in part by the financial benefits (such as reduced total
cost of ownership and better value through economies of scale) as well as policy
shifts within large computational consumers. As this shift takes place, an associated
change of the Grid application landscape will follow. Our work is focused on
enabling a more efficient and user-friendlier scheduling in a future Grid serving a rich
mix of diverse e-Science applications. We will argue that in such environments, a
combination of deadline and economy based scheduling can be delivered by utilising
statistical models of application execution times and resource requirements based on
historical data, meta-data normally associated with submitted jobs, and the current
state of the Grid system.

The need for a more efficient scheduling has been discussed previously [2-5].
Departing from a batch model inherited from legacy cluster systems, a

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/1673394?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Aleksandar Lazarević, Lionel Sacks, Ognjen Prnjat

deadline/economy based system more suited to human workflow would allow users to
specify a deadline and a nominative price by which they would expect their job
finished. Such scheduling systems could not be built unless certain predictions could
be made on the length of execution and resource requirements of the jobs pending in
the queue. Previous research in predicting the execution times has focused on deep
analysis of the application source code [6], instrumentation of the application, or re-
linking to specialised prediction libraries customised for both the type of the
application and its target hardware [7]. Some of these methods have given
encouraging results [8], but the development, deployment and administration effort
can only be justified in cases of highest-end computational resources.

We have taken the view that in delivering predictions in a varied application
landscape executing on a utility Grid platform, spot prediction accuracy would come
second to the prediction speed and the level of administrator intervention. With this in
mind, we have strived to develop a significantly self-managing system. Working in a
heterogeneous application space, and delivering statistics-based predictions requires a
good understanding of computational load presented to a Grid cluster. Studies of
production, multi-purpose Grids are rare, and the interaction and multiplexing effects
of various applications are unknown. Therefore, in Section 2 we present important
aspects of our six month study of University College London (UCL) production Grid
cluster and their implication in cluster resource management and scheduling. Section
3 details the proposed probabilistic Grid scheduling model, while Section 4 gives
preliminary simulation results. The direction of our future work and conclusions are
outlined in Section 5, while Section 6 gives references.

2. Study of e-Science Grid Application

To establish the feasibility of the statistical prediction methods, and to gain further
understanding into the dynamics of job scheduling on a production Grid, a study of
workload generated by twenty e-Science projects on a two hundred CPU Sun Grid
Engine [9] cluster was undertaken. The fully analysed data includes around 50,000
jobs from the six month period July – Dec 2004, while validation of observations was
run on the data up to and including May 2005. Considering that the ultimate source of
the computational load was human workflow, a significant degree of correlation,
patterns and trends was expected. Our aim was to establish whether these really do
occur, and if so whether they can be exploited for predictions with usable accuracy in
the context of resource management and scheduling.

In our previous publication [10], we have reported on the data collection and
analysis process. The observations here presented are based on the analysis of wall-
clock execution times – real time value of process execution time which is larger or,
for a perfectly optimised process, equal to the actual CPU time. The data has been
examined in two ways: by treating every job consecutively (Figure 1) and by
clustering them according to their meta-data (Figure 2). The latter shows clustering
based on one of the readily available fields in the accounting file – the Unix group
name of the submitter. The group is assigned by the administrator and is loosely
related to the e-Science project the users are involved with.

Managing Uncertainty: A Case for Probabilistic Grid Scheduling 3

0 10000 20000 30000 40000
100

101

102

103

104

105

106

Job Number

W
al

lc
lo

ck
 E

xe
cu

tio
n

Ti
m

e
lo

g[
s]

Fig. 1. Time-series plot of wall-clock execution times for a six month period

Figure 1 shows a log-normal plot of all recorded job execution times in the
observed six month period (43,100 jobs). The first and most immediate feature is the
large difference in execution times between the jobs. A small number of submitted
jobs either fail, or are test runs of less than 10 seconds (around 4%), while another
2.5% are extremely long jobs running for more than 105 seconds. Overall, execution
times span six orders of magnitude and no meaningful model can be developed by
treating the data indiscriminately.

Clustering the jobs based on the (group) identity of the submitter results in a
clearer view in which differences between execution patterns and job lengths of
different groups become obvious (Figure 2). This is but one example of the possible
clustering metric used in our scheduler, which has yielded good results for three
groups but has not managed to transform the ocotir group into a more predictable
dataset. We defer further discussion of clustering metrics and methods until Section 4.

Separating raw data based on associated meta-data makes it more suitable for
statistical analysis and modelling. In the scheduling context the resulting set contains
two distinct modes. In one, execution times are suitable for modelling and prediction
by the virtue of either being correlated and randomly distributed within a narrow
distribution, or by following a distribution which can be successfully modelled using
one of the algorithms implemented in the scheduler. The other mode represents the
opposite situation in which abrupt changes in execution times or seemingly random
fluctuations prevent predictions within required confidence interval.

As seen in Figure 2, majority of execution points fall in between abrupt
discontinuities, and represent an execution instance in which a certain scientific
experiment is taking place. The periods of such activity are of most interest to the
scheduler, and predictability of behaviour in these regions is crucial. Most
encouragingly, these run times show significant levels of short term autocorrelation.

4 Aleksandar Lazarević, Lionel Sacks, Ognjen Prnjat

0 10,000 20,000 30,000
100

105

E
xe

cu
tio

n
Ti

m
e

lo
g[

s]

Group: matsim

0 1000 2000
100

105

Group: geogrs

0 500 1000 1500
100

105

Group: ocotir

0 500 1000 1500
100

105

Job Number

Group: chemccs

Fig. 2. Wall-clock execution times by submitter’s credentials

A suitable forecasting algorithm should therefore be able to track and predict future
execution times and provide a confidence level for such predictions.

The execution times also exhibit areas with discontinuities and anomalous changes
at different frequencies and time scales. Sustained and significant changes in
execution times seem to indicate an alteration of the underlying scientific workflow: a
new data set might have been introduced, a new scientific objective identified,
application updated, or perhaps the group members have taken on a completely
different project. This is evident in the group plots in Figure 2 where well
differentiated mode changes can be observed. In the scheduling context, these events
present instances at which appropriate action should be taken. Conversely, localised
and transient deviations from the current statistical distribution of the given process
indicate an anomalous event which may be related to an application or resource crash,
peculiarity of the data set or other non-permanent behaviour change. One such
possible event would be at around job number 350 in the matsim group plot in Figure
5. Although these events occur as part of the normal operation of the system, unless
their occurrence and nature can be modelled, no immediate action by the scheduler is
warranted or justified.

Diversity of jobs in terms of resource requirements and job duration is a
prerequisite if a fully probabilistic scheduling approach is to work. In parallel to
dimensioning techniques used for telephone networks, statistical multiplexing is
possible only if a range of user behaviours results in a variation of service requests in
space and time. The cumulative execution time distribution function for all jobs in the
six monthly period, as shown in Figure 3, indicates that even a small number of

Managing Uncertainty: A Case for Probabilistic Grid Scheduling 5

100 101 102 103 104 105 106
0

0.5

1

Wallclock Execution Time log[s]

P
ro

ba
bi

lit
y

of
 O

bs
er

va
tio

n

Fig. 3. Job wall-clock execution times cumulative distribution function

different scientific projects and applications give rise to a heterogeneous environment
in terms of the job length and complexity. The distribution has a very good linear fit
from 10% to 90% of likely observations, covering execution times from around 50
seconds to 5000 seconds. This implies any execution time duration from that range is
as likely to occur as any other and ensures that the scheduler will work on a broad mix
of job sizes suitable for out-of-order execution and backfilling.

 The linearity of the cumulative distribution function is artificially altered at the top
and bottom ends by the user’s own limiting of the range of applications they can
sensibly run on this Grid – it is unlikely they will invest the effort of setting up and
running very small jobs which can equally well be run on their own workstations,
while at the same time abstaining from running jobs which on this hardware would
take impracticably long time to complete. We anticipate that the penetration of
interoperable Grid middleware into ever lower as well as higher end platforms will
enable even broader range of applications and extend the linearity range, but that
user’s local decision making will invariably impose tail-off effects which need to be
suitably handled.

All aforementioned properties of the data were present throughout the six monthly
period of the job trace. However, events such as changes in the mode of operation and
the frequencies of anomalous, out-of-distribution execution times showed significant
temporal locality. Some of the causes for clustering of these events will be further
discussed in Section 4, but such behaviour has to be considered when building a
probabilistic scheduler model. Similarly, classes of applications, users or groups
evolve their behaviour altering the parameters of the best fit distribution of their
execution times, as well as shifting them from one statistical distribution to another.
As a consequence, rather than applying fixed assignments, the scheduling model must
be able to adapt and evolve its model of any given class of jobs through time and
according to the current state of the Grid environment.

Overall, this study of e-Science Grid applications, their execution times and
associated workflow has shown the repetitive nature of jobs and their correlation with
historical runs as well as related meta-data. Following section will present a suitable
scheduling model able to use this data to predict the execution time of a newly
submitted job in order to maximise the likelihood of successful completion before the
requested deadline.

6 Aleksandar Lazarević, Lionel Sacks, Ognjen Prnjat

3. Probabilistic Scheduling Model

Our motivation for developing deadline based scheduling was to extend natural
human workflow into the Grid environment. Scientific experiments, and business
projects especially, run to certain deadlines and monetary constraints. While overall
completion of a complex task may be due in several years, sustained progress may be
dependant on a set of smaller tasks finishing by the end of the lunch hour, by next
morning or over the weekend. As Grid systems are usually space- and time-shared
environments, prioritising jobs is important aspect of current batch schedulers. These
policies, however granular and flexible they may be, assign fixed weights to certain
user groups and do not automatically account for changing priorities of such groups
on a task to task basis. The deadline implies a priority measure for each job, and
should prevent a highly urgent job from a low priority user group being blocked by a
non-critical job submitted by a high priority user. To prevent the user “playing” the
scheduler, we envisage that an economy system will complement the deadline
scheduler by assigning a nominal currency cost to computational resources and
execution priorities. Although this is an important line of research in Grid scheduling
[11], it is not within the scope of our work.

Our probabilistic scheduling model, shown in Figure 4, embraces the stochastic
nature of the underlying execution time data, anomaly thresholds and job clustering to
offer a probabilistic guarantee of deadline adherence: a job will be allocated enough
time and resources to finish by a certain deadline based on its historical performance
and the confidence level depending on the priority (or economy constraints) of the
user. The methodology tries to extract maximum value from the data already routinely
collected in Grid clusters. Job meta-data kept in the accounting files is actively
analysed for patterns and correlations, while schedule performance and monitoring
data is fed back from the Grid management layer into the scheduler forming a control
loop influencing scheduling decisions.

Fig. 4. Probabilistic grid scheduling architecture diagram

The model is envisaged as a core component of a stand-alone scheduler, or
integrated into a modular scheduler like ICENI [12]. It consists of three main
functional parts: job classification & clustering, forecasting & predictions, and
anomaly detection.

Managing Uncertainty: A Case for Probabilistic Grid Scheduling 7

3.1. Job Classification and Clustering

Job classification and clustering module is responsible for locating correlations
between job execution times, resource utilisation and its associated meta-data. Meta-
data is extracted from the accounting file, and while it will differ slightly between
Grid middleware it will contain at least the job submitter credentials, submitting time
stamp and the submitting host. The result of this clustering step is a grouping of jobs
with similar statistical properties, arrival rates and execution time distributions, and
association of this class of jobs with some meta-data criteria.

One example would be that at the time of invocation of the algorithm, a certain
user is submitting queries to a protein database from her workstation and has been
doing so repeatedly over the period of several work days. Any subsequent job
submission from her username and her workstation, invoking such application within
normal workday office hours will initially be considered as part of the same workflow
and likely to behave in a way consistent with the developed model. A number of
orthogonal models can be developed, and an alternative one may be describing a more
intensive job set this user is submitting overnight or over the weekend.

Currently we have developed raw data import filters for Ganglia Cluster
Monitoring system and Sun Grid Engine, the middleware of choice at the UCL Grid
installation, but other open data sources could as easily be accommodated.

3.2. Prediction Models and Forecasts

The forecasting module produces a prediction, with a defined confidence level, of
the job’s execution time and resource utilisation on a known hardware node based on
historical data. For each class of applications identified by the clustering algorithm, a
number of different models are fitted. Considering that our context is on-line, fast and
automated forecasting, we have opted for univariate prediction models that can be
parameterised using automated search or heuristic methods. We have tested several
algorithms which should suite a wide range of application behaviour.

A range of simple and fast methods was used, these include mean or median
estimation technique based on different order polynomials and exponential smoothing
with or without trends (Holt method) [13]. The number of required parameters is
small, and their estimation a quick iterative procedure. The performance of these
algorithms will be discussed in more detail in Section 4, but despite their simplicity
they yield acceptable results.

A more complex prediction method treats measures of historic execution times as
time-series values and builds a model based on auto-regressive (AR) and moving-
average (MA) approaches. These have been used extensively in modelling of
stochastic processes (from financial data to seismic observations), and have the ability
of estimating variations of a value over a long prediction horizon. The
parameterisation of AR and MA processes is computationally expensive, but heuristic
approaches can be used to optimise the search and develop a fully automated system.
We have successfully used combined AR, MA, ARMA and ARIMA models as
further described in Box and Jenkins [14].

8 Aleksandar Lazarević, Lionel Sacks, Ognjen Prnjat

As a future development, we intend to investigate the use of wavelets in modelling
and forecasting execution times and resource requirements. With faster hardware and
more efficient algorithms, wavelet’s ability to offer superior fit across the frequency
spectrum is becoming more appealing despite their computational complexity.

Given the variations observed in the execution time data, it is not likely that any
one model can be pre-selected for any given class of jobs or that any one job class
will remain well described by a particular model for a prolonged period of time. To
accommodate this dynamic nature of Grid applications, all forecasting methods will
work together in an expert system, giving simultaneous predictions with one or more
differently parameterised models. A feedback loop from the monitoring system will
report on the actual values observed once the job has run, and these will be used to
positively enforce the best algorithm and model parameterisation.

3.3. Mode Changes and Anomaly Detection

The analysis of Grid application in Section 2 has shown that execution times and
resource utilisation of submitted jobs can vary significantly in short periods of time.
The reasons for such behaviour are many, but in a truly probabilistic approach these
events should be seen as a less likely occurrence rather than an anomaly.

In the predictive scheduling context, events of special interest are transitions
between different modes of operation within a specific class of jobs. From the large
changes in job execution times between different modes of operation for each user
group, as shown in Figure 2, it is clear that significant prediction errors will occur
while the forecasting algorithm acquires enough training data points.

We define these transients as areas in which a trained forecasting model shows
sudden, significant and sustained drop in the accuracy of predictions. At this point, it
is likely that for whatever underlying reason the job class has shifted significantly and
is not adequately described by the model any longer.

The primary difficulty is in establishing whether an event is a short-lived deviation
from the current model or a significant change of behaviour is occurring. Immediate
indication is given by the increase in forecasting error, and this can be further
corroborated by analysing job meta-data for changes (executable name or command
line parameters for example). We have expanded this approach with the use of
smoothing or moving average functions which acts as a low-pass filter on the
execution times series. By monitoring the difference between the actual data points
and values produced by a smoothing or moving average function a trigger can be fired
when a significant deviation is observed. Black diamond markers in Figure 5 indicate
positives from the anomaly detection module. This is by no means the only or the
most sophisticated approach to detecting sudden changes, and a method based on
wavelet analysis is being pursued as further work on this topic.

Regardless of the detection method used, the handling of anomalous events is
guided by the principle that positive action should only be taken if it would lead to an
improvement in the accuracy of predictions. On detecting a sudden and significant
forecast error, the system will immediately start training an alternative model and
produce forecasts in parallel. If the event turns out to be a short lived deviation, the
new model will not have enough training points and will not be able to produce

Managing Uncertainty: A Case for Probabilistic Grid Scheduling 9

results better that the model already in use. Should the event be a mode change, the
old model will be phased out at the point at which the new one has started producing
superior forecasts. Together with this staged discarding of training data, anomaly
detection module reacts to the reduced confidence in forecast by shrinking the
prediction horizon and communicating the drop in the level of certainty to the
scheduler which can ensure quality of service by applying a larger safety margin to
forecasted values and a more conservative schedule.

4. Prediction Algorithm Simulation Results

The functionality so far described has been implemented as an emulation platform
using MathWorks MATLAB™ and add-in components programmed in C. Testing
and improvement of the model is done on a subset of data points in which particular
behaviour or events of interest, such as mode changes, sudden deviations from
modelled behaviour or execution times with different distributions, occur. The data
collected from the UCL Grid cluster is fed into the simulation via a trace reply
system, and resulting predictions compared with the actual observed values.

The functionality so far developed includes:
• Data acquisition from the Sun Grid Engine accounting files and Ganglia

round-robin databases [15]
• Meta-data grouping according to submitting username/group
• Forecasting using third order polynomial and automated ARMA algorithm
• Anomaly and mode change detection using prediction error tracking and

Lowess smoothing [16]
The quality of the prediction algorithm and its parameterisation is assessed using a

summary plot produced by the simulation, shown in Figures 5 and 6. It shows one-
step-ahead predicted and actual execution times, percentage prediction errors, error
values histogram and data points flagged as anomalous values. In Figure 5, the
forecasting method used is third order polynomial fitted to 10 historical data points
and anomaly detection was based on fixed threshold values of 50% for prediction
errors and 25% for deviation from a Lowess smoothed curve. The performance of the
prediction algorithm was in the range of 25% to 75% error rate except in the areas in
which anomalous behaviour or mode change occurs. However, the variance of the
actual values is exaggerated by the piece-wise polynomial trend fitting resulting in a
considerably noisy forecasted series. The anomaly detection algorithm has given good
results, indicating the point at which mode change occurs and points at which the
model has returned unsatisfactory predictions. A number of false positives are also
present, but their effect is mitigated by the policy of staged transition to the new
forecasting model. As part of our further work we will investigate a more
sophisticated anomaly triggers with floating thresholds.

A similar summary plot in Figure 6 demonstrates the performance of a 4th order
autoregressive, 4th order moving average prediction model. The model produces very
good results with consistently small prediction errors, fast convergence after mode
changes and smaller variance of the prediction errors, as indicated by the error value
histogram. The order of the model was selected manually in this case, although we are

10 Aleksandar Lazarević, Lionel Sacks, Ognjen Prnjat

Fig. 5. 3rd order polynomial forecasting performance plot

0 100 200 300 400 500 600 700 800 900
-400

-200

0

200

400

600

800

1000

Job NumberE
xe

cu
tio

n
Ti

m
e

[s
] -

 P
re

di
ct

io
n

E
rro

r [
%

]

Actual v Predicted Values (1-step ahead)

0 200 400
Number of Obs.

Error Histogram

Actual
Anomaly
Forecast
% Error

testing different heuristic methods to automate this process. There is an increased
computational cost associated with a more complex model such as ARMA, but we
defer a more thorough investigation of its effects on the overall scheduling model
until later in the optimisation phase.

The purpose of these preliminary tests was to provide us with a guide as to the
predictability of the execution times and the areas in which largest improvements can
be made. No extensive optimisation of the model parameters was done, and for
reasons of implementation simplicity anomaly detection was implemented purely as
an observation function and did not trigger any actions. Over a large number of
samples the prediction algorithms achieved an almost zero mean percentage error rate
indicating that in a normal deployment scenario with a constant stream of requests
underestimates on certain jobs will cancel overestimates on others. This further
supports our probabilistic policy which guarantees that completion within a deadline
will follow a certain distribution function, but does not offer assurance that any one
specific job will be executed on time.

Development of the simulation raised several practical issues with the data and
algorithms involved. Due to the lack of standardization in the evolving Grid
community, utilisation and accounting records are not uniform, complete or fully
documented. This prevents the exchange of workload traces across different clusters
and verification of developed model on alternative Grid installations. In depth
analysis of accounting logs revealed significant opacity in the executable
identification and run time parameters. In the case of Sun Grid Engine, a single field
maintains the name of the executable submitted, which is usually a generic shell
script, thus hampering the effort to identify changes in the name of the application
run, possible recompilation of the application or a change in run time parameters.
Sharing of usernames and running of jobs under generic credentials also seems to be a
widely used practice, and has an adverse effect on the granularity of our job
classification and clustering module. The forecasting algorithms tested handled
different job distributions well. The simplicity and speed of trend estimation makes it
an appealing option for classes of numerous short processes where the delay in
creating a more complex model may not be justified compared to the gain in accuracy

Managing Uncertainty: A Case for Probabilistic Grid Scheduling 11

0 200 400 600 800
-200

0

200

400

600

800
Actual v Predicted Values (1-step ahead)

Job NumberE
xe

cu
tio

n
Ti

m
e

[s
] -

 P
re

di
ct

io
n

E
rro

r [
%

]

0 100 200

Error Histogram

Number of Obs.

Actual
Forecast
% Error

Fig. 6. 4th order autoregressive, 4th order moving average forecasting performance plot

and the total execution time of the process. However, these simpler methods are
particularly susceptible to the ringing effect from large deviations in the data.

5. Issues and Conclusions

Our research group has previously looked at the issues of resource discovery and
intrusion detection, proposing distributed and self-organising approaches to these
problems [20, 21]. Presented scheduling model has been motivated by the need for a
light-weight, autonomous and self-managing scheduler suitable for the dynamic
nature of service-orientated utility Grid environments and their numerous
heterogeneous applications.

To understand the demands that such Grid may experience, we have studied the
computational load on a multi-purpose production Grid serving a number of different
e-Science projects. We consider the data sample to be both exhaustive and relevant; in
addition to the six months job set directly used in this paper our ongoing analysis
confirms observed patterns and features of the data. The Grid cluster in question is a
multi-purpose facility, connected to the UK’s national Grid infrastructure, and as such
is used by collaborating projects throughout Europe. The authors have approached
several other multi-purpose Grid operators for utilisation data, and preliminary
analysis from one of the largest pan-European Grid and one of the earliest adopters of
Grid technology in the banking sector indicate very similar job characteristics as
described in this paper.

This study has established that the heterogeneous overall job population can be
separated into smaller classes with more consistent statistical properties by using
meta-data relating to submitted jobs. Cumulative distribution plots also indicate that
job execution times may have scale-free properties. By using traces of e-Science

12 Aleksandar Lazarević, Lionel Sacks, Ognjen Prnjat

applications run on the production Grid in our probabilistic scheduler emulation
environment, we have demonstrated that a statistical model can be used to describe
the properties of these job classes and deliver predictions on the execution times of
jobs pending in the scheduling queue. This will form the basis of our future work on
the deadline/economy based scheduler.

The scheduling approach presented is not dependant or based on any specific Grid
middleware or scheduler implementation. It is rather a methodology for converting
accounting and monitoring information normally collected into scheduling
intelligence able to support self-managing deadline scheduling. Depending on the
operating environment, the implementation framework can be modified to use as
much meta-data as iis available, or as much local scheduling capability as the system
will support (such as reservations, checkpointing or job migration). The approach
presented departs from current practice of scheduling on the Grid by treating the
workload in a probabilistic manner similar to other networked service delivery
platforms. The system is able to offer added value to the end user in the form of job
deadline execution in an autonomous and self-managed way, while providing the Grid
operator with the ability to satisfy different service level requirements at different
“cost” points.

The feasibility and value of our approach has been strengthened by encouraging
results reported in this paper. We remain confident that given the vertical expansion
of the utility computing approaches across hardware of different computational
power, and associated broadening of the applications spectrum, statistical treatment of
application load will find its use in a range of resource management tasks from
planning and provisioning at longer time scales to scheduling at cluster, host and CPU
levels at increasingly finer granularity.

Although we have not directly treated the economy part of the scheduling problem,
it is nevertheless an important aspect required for delivering deadline scheduling.
Without a notion of nominal cost, each user could request their jobs to be turned
around as quickly as possible, in which case the whole approach would revert back to
a batch scheduler.

The means of assessing the feasibility of the deadline is an equally important
question and an area of our future work. Due to its intended target environment,
probabilistic nature and inability to guarantee adherence to the deadline for any
particular and singular job, our approach may not be suitable for mission-critical or
real-time systems, or for execution on very specialised hardware for which (semi-
)manual job admission is used.

The scheduling implementation described in this paper would act as a local level
scheduler on a Grid connected cluster able to develop statistical models of
applications running in that specific, homogeneous, environment. This is in line with
current Grid provisioning practices whereby these clusters are confederated into
larger heterogeneous Grids. We envisage an extension of our system to provide higher
level scheduling capability by enabling local schedulers to communicate their best
deadlines and nominative prices as a bid value to an economy based super-scheduler.
We are working on a suitable encoding of the statistical model describing a certain
class of jobs and its effective communication to other local level scheduler using one
of the distributed protocols developed by our research group [20, 21].

Managing Uncertainty: A Case for Probabilistic Grid Scheduling 13

Ultimately, regardless of the potential for data clustering based on orthogonal
meta-data, certain number of jobs for which no suitable model can be developed will
remain. These can be dealt with in a number of ways, from running on dedicated
nodes to hard-limiting, but at the very least the scheduler will be able to recognise on
job submission (within given confidence level) that a certain process belongs to such
group and hence take appropriate actions to minimise the impact of its
unpredictability.

6. Related and Future Work

Previous work in the area of Grid resource management has recognised the need
for a departure from first-in-first-out batch approach, and has established the benefit
of predictive scheduling approaches. AppLeS [7,17] relies on custom developed
models of target application and hardware platform to deliver scheduling to a target
turnaround time, but requires extensive modification of application’s source code.
Nimrod/G [18, 19] uses a novel “budget” metric to support a market-based framework
for deadline scheduling. However, its scope is limited to parametric study applications
whose execution times are very narrowly distributed, and generally independent of
the input parameters. ICENI scheduler [12] provides a general framework for a
predictive scheduler and implements a forecasting module based on directed acyclic
graph analysis of the running application. Running time advisory (RTA) [22] uses
similar time-series techniques as presented here but is focused on estimating task
execution time as a function of current and forecasted host load. RTA predictions are
computed from a nominal execution time of a task on an unloaded machine, but
although this value is essential to the algorithm, RTA authors propose no method of
calculating it. Our work produces exactly those estimates and can be extended with
RTA-like approaches in cases where Grid nodes are non-dedicated hosts.

Deployment on a production system with enough jobs with varying characteristics
at such an early stage in concept development may not be suitable or feasible. Having
established the methods for modelling of historical job execution times, our future
work will be centred on developing a validation tool based on real job traces from
production environments. We would like to further investigate cyclic effects of job
submissions, and will investigate ways of circumventing opacity and non-
standardisation in current Grid middleware. In this aspect, global identification of job
submitter through certificate’s Distinguished Names will be looked at. A
complementary line of research will look at deeper workflow analysis and possible
interaction with Grid workflow tools in order to obtain better understanding of user’s
actions and anticipation of next steps he is likely to take. Finally, through a deeper
analysis of statistics of anomalous events, a heuristic model for setting appropriate
trigger thresholds will be investigated.

14 Aleksandar Lazarević, Lionel Sacks, Ognjen Prnjat

7. References

[1] Quocirca and Oracle "Oracle Grid Index Report: Mapping the Global Journey To Grid
Computing," 2005.

[2] R.W. Conway, W.L. Maxwell and L.W. Miller "Theory of Scheduling," 1967.
[3] K. Vairavan and R.A. DeMillo "On the Computational Complexity of a Generalised

Scheduling Problem," IEEE Trans. Computing vol. C-25, no. 11, pp. 1067-1073, 1976.
[4] K. Aida, A. Tekefusa, H. Nakada, S. Matsuoka, "Performance Evaluation Model for

Scheduling in Global Computing Systems," The International Journal of High Performance
Computing Applications vol. 14, no. 3, pp. 268-279, 2000.

[5] A. Takefusa, H. Casanova, S. Matsuoka and F. Berman "A study of deadline scheduling for
client-server systems on the computational grid," Proceedings of 10th IEEE International
Symposium on High Performance Distributed Computing 2001.

[6] V. Sarkar "Determining Average Program Execution Times and their Variance," SIGPLAN
Conference on Programming Language Design and Implementation pp. 298-312, 1989.

[7] Berman et al, "Adaptive computing on the Grid using AppLeS," Parallel and Distributed
Systems, IEEE Transactions on vol. 14, no. 4 SN - 1045-9219, pp. 369-382, 2003.

[8] L. Byoung Dai and J.M. Schopf "Run-time prediction of parallel applications on shared
environments," Cluster Computing, 2003. Proceedings. 2003 IEEE International Conference
on no. SN -, pp. 487-491, 2003.

[9] Grid Engine, http://gridengine.sunsource.net/
[10] A. Lazarevic and L. Sacks "A Study of Grid Applications: Scheduling Perspective,"

London Communications Symposium 2005.
[11] R. Buyya, D. Abramson and J. Giddy "An Economy Driven Resource Management

Architecture for Computational Power Grids," International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA2000) 2000.

[12] L. Young, S. McGough, S. Newhouse and J. Darlington "Scheduling Architecture and
Algorithms within the ICENI Grid Middleware," 2003.

[13] C. Chatfield and M. Yar "Holt-Winters forecasting: Some practical issues," Statistician
vol. 37, no. 2, pp. 129-140, 1988.

[14] A. Pankratz "Forecasting with univariate Box-Jenkins models: Concepts and cases," 1983.
[15] Ganglia, http://ganglia.sourceforge.net/
[16] W.S. Cleveland "Lowess: Robust Locally Weighted Regression for Smoothing and

Graphing Data in Two or More Dimensions," Graphical Techniques for Exploring Data vol.
23, 1983.

[17] F. Berman, R. Wolski, S. Figueira, J. Schopf and G. Shao "Application-level scheduling
on distributed heterogeneous networks," Supercomputing vol. '96, 1996.

[18] D. Abramson, R. Sosic, J. Giddy and B. Hall "Nimrod: a tool for performing parametrised
simulations using distributed workstations," High Performance Distributed Computing,
1995., Proceedings of the Fourth IEEE International Symposium on pp. 112-121, 1995.

[19] R. Buyya, D. Abramson and J. Giddy "Nimrod/G: an architecture for a resource
management and scheduling system in a global computational grid," High Performance
Computing in the Asia-Pacific Region, 2000. Proceedings. The Fourth International
Conference/Exhibition on vol. 1, pp. 283-289 vol.1, 2000.

[20] I. Liabotis, O. Prnjat, L. Sacks, "SORD: Self-Organizing Resource Discovery Protocol for
ALAN", IFIP 5th Intl. Working Conference on Active Networks, Kyoto, Japan, 2003.

[21] L. Sacks, O. Prnjat, I. Liabotis, et al., "Active Robust Resource Management in Cluster
Computing Using Policies", Journal of Network and Systems Management , Special Issue
on Policy Based Management of Networks and Services, Vol. 11 , No. 3 pp 329-350.

[22] P. A. Dinda, "Online prediction of the running time of tasks," in High Performance
Distributed Computing, 2001.Proceedings.10th IEEE International Symposium on, 2001,
pp. 383-394.

