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Abstract 

Recent research works on potential of different protein surface describing parameters to 

predict protein surface properties gained significance for its possible implication in 

extracting clues on protein’s functional site. In this direction, Surface Roughness Index, a 

surface topological parameter, showed its potential to predict SCOP-family of protein. 

The present work stands on the foundation of these works where a semi-empirical 

method for evaluation of Surface Roughness Index directly from its heat denatured 

protein aggregates (HDPA) was designed and demonstrated successfully. The steps 

followed consist, the extraction of a feature, Intensity Level Multifractal Dimension 

(ILMFD) from the microscopic images of HDPA, followed by the mapping of ILMFD 

into Surface Roughness Index (SRI) through recurrent backpropagation network (RBPN). 

Finally SRI for a particular protein was predicted by clustering of decisions obtained 

through feeding of multiple data into RBPN, to obtain general tendency of decision, as 

well as to discard the noisy dataset. The cluster centre of the largest cluster was found to 

be the best match for mapping of Surface Roughness Index of each protein in our study. 

The semi-empirical approach adopted in this paper, shows a way to evaluate protein’s 

surface property without depending on its already evaluated structure. 
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Introduction 

Structural component of a protein that is responsible for its function is basically localized 

on its surface. Therefore we may expect that knowledge on protein surface may give us 

the clue on its functional site. Current practice of drawing insight about protein surface is 

usually accomplished from the knowledge of its structure. But the difficulty embedded in 

this procedure is described in the following section. 

First let us discuss the difficulty in obtaining a protein structure both by experimental as 

well as predictive methods. Three-dimensional structure of proteins is considered as sole 

and key factor in defining their function. Functional form of a protein is generally the 

tertiary structure or in some cases the quaternary structure that results by folding of 

amino acid chain into tertiary structure and further arrangement of tertiary structure units. 

The folding of a protein results in arrangement of the amino acid residues in specific 

positions in 3D space which form the functional site of that protein. The functional sites 

are always located on the surface of proteins only1. 

Current approach for studying protein surface requires a pre-evaluated 3D structure of 

protein. 3D structure of protein can be derived through X-ray crystallography, NMR and 

in some cases homology modeling and other prediction methods. In spite of the great 

contribution especially of X-ray crystallography and NMR to contribute to the 

development of other molecular structure exploring methods (e.g., homology modeling, 

threading) including ours, where every such methods utilize the molecular structural 

knowledge gained from them to build the methodology, they have their own pitfalls as 

constraints like size limit in NMR method2, requirement of crystal in X-ray 

crystallography method3, which pose strong limitation in their applicability for all 



proteins. In addition, the time and experimental complexity involved in these methods are 

very high. On the other hand, structure prediction methods like homology modeling 

depend upon the repository of already evaluated structures which are close to target 

protein with at least 25% sequence similarity through position specific scoring matrix 

(PSSM). PSSM is also a stringent criteria that is difficult to fulfill for most of the 

proteins4. Furthermore, accuracy of prediction methods including homology model is 

questionable under further optimization through energy minimization process (for 

example, the method adopted in Insight-II) which quite often yields minimum energy 

structure with very low Ramachandran score5.  

Protein structure can be evaluated through microscopy also although the number so far is 

very few. According to current PDB statistics 252 structures in PDB were evaluated 

through electron microscopy 

(http://www.rcsb.org/pdb/statistics/contentGrowthChart.do?content=explMethod-

em&seqid=100). Cryo-electron microscopy has been used for this purpose that enables 

the determination of 3D structures of macromolecular complexes and cells from 2 to 100 

Angstrom resolution (http://emdatabank.org/)6,7. Similarly atomic force microscopy 

(AFM) was also used to yield 3D structure of proteins8. It was shown that AFM gives 

true atomic resolution in ultra-high vacuum (UHV) and, more recently, in liquid 

environments9. High resolution AFM is comparable in resolution to transmission electron 

microscopy. But the resolution obtained through microscopy is not comparable with that 

obtained using x-ray crystallography and NMR, although, electron density maps obtained 

through electron microscopy can be helpful to increase the quality of models obtained 

through comparative modeling10. 



Considering the shortcomings of existing methods of protein-structure evaluation, there is 

a huge sequence-structure gap. The number of structures was 55285 As per PDB statistics 

of August 25, 2009 

(http://www.rcsb.org/pdb/static.do?p=general_information/pdb_statistics/index.html) in 

comparison to 495880 sequence entries in UniProtKB/Swiss-Prot Release 57.6 of July 28 

2009 (http://au.expasy.org/sprot/relnotes/relstat.html). Thus structure is known for only 

11.15% of protein sequences existing in sequence database.  

Secondly, there was also a difficulty in extracting usable surface information from 

protein structure as reported by the existing methods. Even if the structure for a protein 

can somehow be evaluated with the difficulty described above, the next level of difficulty 

commonly faced by researchers is the extraction of information on protein’s functional 

site from its structure. This is a hard to solve problem till today giving approximately 

0.5% success only over the whole set of evaluated structure for enzymatic proteins 

reported in Pfam database11. The reason behind this difficulty can be explained in the 

paradigm of protein surface where, obtaining surface from structure is easy; however the 

usability of that surface remains an issue over decades because of the absence of proper 

surface characterizing parameter. In this light, reports of the following investigations are 

listed as recent example of works. 

Research on protein surface showed how surface active incidents of proteins provide clue 

to individual properties of proteins or their families. The nature of binding sites on 

protein surface differs according to binding molecule with which they interact. Binding 

molecule may be a small molecule or a drug, another protein or a nucleic acid. Binding 

sites on protein-surface are basically part of the surface that may be either more rough or 



clefts for binding small molecules and drugs, or flat area for binding another protein or 

convex area for binding nucleic acids12,13. There is no one to one relationship between 

surface pockets and the ligands because one ligand may have affinity towards more than 

one protein surfaces and same protein surface may bind to different ligands14. 

In an important approach of study on protein surface roughness, Bowie and Pettit, 

showed a correlation between protein surface roughness and small molecular binding 

sites15. By studying Smoothed Atomic Fractal Dimension (SAFD) for each atom, they 

concluded that binding sites for small ligands are rougher in comparison to the binding 

sites for large ligands like DNA. It is so because the binding sites for larger ligands like 

DNA or proteins have large surface area greater than 600 Å2. In these sites binding 

occurs by hydrophobic interactions. But for smaller binding sites additional binding 

interactions are required. Roughness of these small binding sites reflects the complex 

local shapes required for binding interactions. 

Study done by Varadwaj et al., (2005) represented the Surface property of protein 

molecule by Surface Roughness Index (SRI) which is an orientation independent surface 

parameter of a protein molecule12. The surface parameter SRI served as representative of 

surface roughness at eight different surface locations of the concerned protein, whereas 

different surface locations were interpreted as octants of the internal orientation invariant 

coordinate system (ICS) of the concerned protein. Surface roughness index was measured 

as a set of eight indices whereas each index was measured as standard deviation of the 

distances of residues residing at each of the octants, from the ICS origin. Thus SRI of a 

protein can be represented as S = {Si}i=1
N where  
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and {xj} is the set of distances between origin of ICS and M number of residues within ith 

octant and 
−
x  is the mean of {xj}. Application potential of SRI was shown by Singha et 

al., (2006) to predict SCOP class of protein especially the Fold of protein using machine 

learning approach16. 

The example of these works predicate the fact that carefully designed surface parameters 

of proteins can be utilized to extract and identify surface properties of proteins ( an 

ambitious example is the functional site of protein). Outputs of these works also predicate 

the need of derivation of these surface parameters from a simple method, rather than to 

utilize the existing rigorous structure evaluating methods. We think following recent 

examples of researches give important requisites to start such an investigation. 

In another interesting set of research reports the specificity of protein surface-active 

phenomenon to individual proteins was shown. Recently Lahiri et al., showed that an 

protein aggregate image (ordinary microscopic) based parameter, Intensity Level based 

Multi-Fractal Dimension (ILMFD) can be utilized to discriminate individual proteins17,18. 

In this study universally applicable aggregation method of heat denaturation was used to 

produce protein aggregates. Phase contrast microscopic images of heat denatured protein 

aggregates (HDPA) were processed and analyzed to derive the ILMFD. In the subsequent 

step ILMFDs were further used to differentiate the proteins selected for the study by a 

neuro-GA classifier which was customized for this purpose only. 

The aim of the present study however stemmed from the complexity and difficulty in 

finding protein surface property without using its evaluated structure. As discussed 



above, considering the limitations of current techniques available for evaluation of 

protein structure, it appears to be difficult to get information about surface properties 

especially active site without its structure data. In this direction report of several recent 

studies can be listed which are related to development of novel and reliable approaches 

for identification of active site on protein surface19,20. Among these the most significant 

publications are regarding relation of surface roughness to small molecule binding sites 

of proteins1,15,21. Examples of these works point out to the fact that accurate prediction of 

SRI by a simple and fast method is necessary to further utilize it to explore protein 

surface properties. We put our effort exactly in this direction, where we have utilized 

protein aggregate level parameter ILMFD to map it to its individual level parameter, SRI. 

Result 

The aim of the study taken up in this work is to find alternative means to extract 

information on structural properties of protein whereas i) it can avoid methodological 

complexity and inapplicability of x-ray crystallography and NMR (however accurate it 

can be), as well as ii) it can overcome the problem of inaccuracy of mere theoretical 

predictive exercises by, systematically incorporating simple experimental clues generated 

at different layers or stages of the whole methodological process. Whereas, our 

methodology showed a general approach to solve complex biological problem, we have 

taken up the issue of a part of protein structure problem (i.e., to find surface property of 

protein) as a case study to test the efficiency of the given semi-empirical design. Thus the 

result section showcased both the simple experimental and computational predictive 

outputs and also the information extracted through the combination of them. 

Result of the calculated values of SRI for proteins of our study 



Table 1 shows the SRI values calculated from the PDB structure i.e., from coordinate 

information of corresponding protein. Table 1 also shows high similarity of SRI values 

between the proteins cytochrome c and ferritin, and high difference of SRI values of 

albumin from both of these proteins. 

 

In table 2 the difference of SRI values between pairs of proteins were quantified by 

adopting calculation similar to ME calculations. However, table 2 also represented the 

high similarity in SRI values between cytochrome c and ferritin. 

Result of mapping efficiency 

Our recurrent network was built to utilize it as a mapping function. It showed average 

mapping efficiency MEF of data-set as 88.879% as shown in table 8 with its comparison 

with the improved efficiency obtained by clustering of decisions. 

Result of grouping of decision observed through different intervals of frequency 

histogram of ME 

In the frequency histogram of ME of each protein majority of mapped SRI (SRIpred) 

outputs generated through the recurrent network were found to be grouped (on the basis 

of their corresponding mapping error) in first interval (first bin) having highest frequency 

and minimum ME as shown in table 3. The result of grouping of decisions is obtained 

indirectly from their correspondence to their associated mapping error. 

 

 

Result of clustering of decision by k-means clustering 



K-means clustering gives direct results of clustering of decision that is comparable to 

grouping of decision by frequency histogram of ME. For example, the centers of largest 

clusters were found to have minimum deviation from original SRI of corresponding 

proteins. Results of K-means clustering for all proteins are given in following tables.  

 
 
Table 9 presented the matrix of MEs calculated for protein taking SRI of other proteins as 

expected SRI. This exercise was done to show the specificity of mapping. The diagonal 

elements of the matrix showed smallest mapping error and thus proved the efficacy of 

mapping protocol. 

 

 
 

Discussion 

The target of the study described in this pilot work is mainly to find out a fast and simple 

protocol to obtain broadly the structural component of protein and specifically its surface 

property, surface roughness index (SRI), by systematic incorporation of information 

generated from simple experiment or experiments. In this direction, we have designed a 

semi-empirical protocol and applied it with limited number of proteins. The basis of 

selection of materials and methodology adopted by us was discussed in the following 

paragraphs. 

 

Selection of proteins of diverse functionality 

All the proteins used are functionally specific. Albumin acts as binding protein for 

several substances like drugs in blood circulation. Hemoglobin functions in oxygen 



transport from lungs to all the body parts and in carbon dioxide transport from body 

tissues to lungs. Ferritin is a storage protein used for storing iron in the liver cells. 

Cytochrome c is enzymatic protein acting in various metabolic reactions in body. 

 

Requirement of adopting single universal method to get protein aggregation   

Although getting an aggregate of native protein appears to be the most suitable starting 

point for our experimentation, in practice, it is nearly impossible to get it by applying a 

single protocol that is universally applicable for all the existing proteins. On the other 

hand, we find that getting aggregated form of protein is easy if we consider its prior 

denaturation. Also, the fact that protein denaturation is strongly sensitive to a particular 

denaturing method22, encouraged us to find one such denaturation protocol which is 

universally applicable to get aggregation of all types of proteins. Among many examples 

of protein denaturation methods which include denaturation by changing pH, salt 

concentration, heat, or adding urea or mercaptoethanol to the protein solution, we have 

selected heat denaturation method of aggregation that could be used for all the proteins in 

our experiment and other proteins in future23. 

 

Reason for using recurrent backpropagation network 

Elman network, which is a type of recurrent network, was used for mapping ILMFD to 

SRI. Recurrent neural network was chosen because it has superiority over simple feed-

forward neural networks in its capability of auto-association like human brain. Recurrent 

neural networks give better performance even in the presence of corrupted or incomplete 



data which was very much common in case of our data. Moreover Elman network can 

learn to recognize and generate both temporal and spatial patterns24. 

Reason for getting High efficiency in predicting SRI 

In our layer based methodology, we actually tried to systematically build a hierarchical 

graph, whose nodes were either an experimental model or a computational model and 

whose edges were link parameter (or a set of parameters) that served as the output of the 

preceding node as well as input to the next node. Therefore in course of traversing from 

the starting node to the end node via many other nodes of the graph, chance of 

accumulation of error was very high due to additive effect. Therefore to make our layered 

model robust against the possible erroneous or noisy data, we introduced the concept of 

clustering of decisions, which was actually done by clustering of the mapped outputs 

(considered as output-decisions) of the recurrent network. While table 3 gives the 

histogram of ME indicating general trends of large amount of data grouped around 

smallest ME value, similar findings were found as result of clustering of decisions as 

shown in table 4 to 7. Table 8 further shows the extent of improvement of efficiency in 

mapping by decision-clustering in comparison to simple average technique. 

Significance of clustering of decisions 

As a solution we introduced the concept of clustering of many decisions obtained from 

multiple test data. While the largest cluster was considered and tested to obtain general 

tendency of decision, other smaller clusters were discarded as noises. Interestingly, the 

theoretical background of this protocol was also matching with the findings of Wallis and 

Bülthoff (2001)25 on human cognition process involved in object recognition. Wallis and 

Bülthoff described that human recognizes an object correctly from its temporal 



description. While, technical translation of this concept immediately gives the idea of 

utilization of video data of an object for its recognition, we extracted the meaning of 

video as “multiple still images” or in general, “multiple data”. In our case, multiple input 

data were fed into our predictive model to obtain general tendency of the decision. Result 

obtained in Table 2 helped in strengthening our notion in initializing the decision-

clustering protocol. Finally, table 3 to 7 showed the benefit of this protocol to enhance 

the mapping efficiency of SRI even for the test protein insulin. 

Specificity of mapping 

Our main target was to find the value of SRI for a protein for which no already evaluated 

structure was available. Although SRI is a surface-roughness profile of a protein and thus 

may not be the best discriminatory and unique property of a protein, in our pilot study, 

we tested the efficacy of our layered model in specifically mapping SRI values of the 

chosen proteins, some of which are having similar SRI values (example, Cytochrome c 

and Ferritin). For testing, whether the mapped output resulted after decision clustering for 

a particular protein is spurious, we calculated ME taking expected SRI of other proteins 

and found that it is giving least mapping error with the expected SRI of the same protein 

as shown in the table 9. The result confirms that our methodology can be used to find the 

SRI of a protein for which its already evaluated structure is not available. 

 

Significance of the layered protocol adopted in this study 

As mentioned in the introduction-section, surface active incidents like aggregation are 

specific to individual protein. Direct evaluation of important surface properties of protein, 

e.g., active site from any experimental method may be very difficult if not impossible for 



most of the cases. Therefore, our hypothesis was that a layered methodology might be a 

better choice to find protein functional site from simple experiments where  

i) the first layer was designed with simple experiment (or assembly of such 

experiments in general) to generate output parameter (or a set of output 

parameters), say, OP1, that could be considered as effective and important to 

predict complex biomolecular properties (e.g., protein surface property, SRI, 

in our case). As an example, in our study, a simple experiment based on i) 

heat denaturation of protein forming its aggregate and finally ii) visualization, 

acquisition and analysis of ordinary microscopic image of such aggregates, 

gave rise to the generation of parameter ILMFD. 

ii) the second layer was designed with experiment or computational predictive 

model or a set of combination of many simple experiments and computational 

models, that would systematically incorporate the output of first layer to 

generate output of the second layer, say, OP2. At this layer we have utilized 

recurrent network as the predictive model to generate the mapped predicted 

surface parameter, SRIpred. 

iii) formation of methodological layers may be continued following similar 

principle, although in our study, we used two layers only. 

 

We have already shown that further incorporation of SRIpred generated in the last (i.e., 

second) layer of our methodology may be useful to identify more specific properties of 

protein, like, protein-SCOP-family and active sites16. In that case we should consider the 



methodology adopted in this work as the addition of another layer to give the desired 

result. 

We may summarize findings of our study in the following manner. Current protocol of 

finding information about individual properties of protein (e.g., surface properties giving 

functional or active site) requires pre evaluated 3D structure of protein molecule. As the 

prerequisite of evaluated protein structure can not be fulfilled utilizing currently available 

methods like NMR and crystallography for most of the proteins of known sequences, 

there was a requirement of an alternative approach which could bypass the evaluation of 

protein structure for derivation of its individual information. As aggregates of proteins 

were shown as specific to individual proteins by many researchers, we considered that 

there might be a scope of finding an approach to utilize the specificity of aggregates to 

find individual information about protein. We started our exercise with the fact that, 

protein aggregation being a surface mediated phenomenon, it can be used to derive 

surface related information of its smallest subunit i.e., individual protein. Result of our 

work showed that intensity level based multifractal dimension of microscopic images of 

protein aggregates were specific to their surface property, surface roughness index. The 

novelty of this approach is to give a layer wise semi-empirical protocol to find solution of 

a complex biological problem where each layer was designed as a combination of simple 

experiments and computational models and, output of a preceding layer can be 

incorporated systematically to its next layer to yield the final solution. The success of this 

work eventually invoked the possibility of designing a very fast layer based divide and 

conquer strategy to address the complexity associated to the problem of derivation of 

protein structural property. 
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Figure legends 
Figure 1: Architecture of recurrent neural network used 

Tables 
Table 1: SRI values for proteins in our study 

Proteins Octant 
1 2 3 4 5 6 7 8 

Albumin 15.1 16.075 22.405 19.448 18.138 9.480 15.043 7.996 
Cytochrome 

c 
5.379 5.830 4.702 2.545 5.112 4.191 3.401 3.699 

Ferritin 4.123 5.229 4.991 3.079 6.327 3.139 3.655 3.227 
Hemoglobin 5.951 8.818 8.593 10.985 9.285 4.963 8.706 8.363 
 
 
Table 2: Difference of SRI values between all possible pairs of proteins 

Albumin - 
Cytochrome 
c 

0.950 - 

Ferritin 0.975 0.183 - 
Hemoglobin 0.602 0.623 0.628 - 
 Albumin Cytochrome c Ferritin Hemoglobin 
 
Table 3: Grouping of outputs at each interval of frequency histogram generated by data of 

protein albumin 



Bin Serial Number Bin center Number of outputs 
clustered 

1                   0.023 34 
2 0.044 8 
3 0.064 2 
4 0.085 2 
5 0.105 1 
6 0.126 2 
7 0.146 0 
8 0.167 0 
9 0.187 0 
10 0.208 1 

 
 
 
Table 4: Result of k-means clustering for albumin 
 

Cluster Serial number Number of vectors 
clustered 

Deviations of cluster-centers 
from original SRI values  

1 3 0.150 
2 5 0.077 
3 11 0.036 
4 31 0.015 

 
 

Table 5: Result of k-means clustering for cytochrome c 
 

Cluster Serial number Number of vectors 
clustered 

Deviations of cluster-centers 
from original SRI values  

1 2 0.678 
2 18 0.078 
3 25 0.069 
4 5 0.296 

 
 
Table 6: Result of k-means clustering for ferritin 
 

Cluster Serial number Number of vectors 
clustered 

Deviations of cluster-centers 
from original SRI values  

1 15 0.142 
2 18 0.029 
3 12 0.215 
4 5 0.459 

 
 



Table 7: Result of k-means clustering for hemoglobin 
 

Cluster Serial number Number of vectors 
clustered 

Deviations of cluster-centers 
from original SRI values  

1 10 0.207 
2 15 0.062 
3 21 0.049 
4 4 0.161 

 
 
Table 8: Mapping error (ME) and mapping efficiency for proteins in our study calculated 
from “simple average” and “largest cluster centre” of the mapped output 
 

Protein Average Calculated from largest 
cluster centre 

ME % MEF% ME % MEF% 
Albumin 3.472 96.528 1.477 98.523 

Cytochrome c 14.587 85.413 6.922 93.077 
Ferritin 16.355 83.645 2.868 97.132 

Hemoglobin 10.072 89.928 4.942 95.058 
 

 
Table 9: ME values calculated for proteins considering calculated SRI of other 
proteins(including the proteins of study) as expected SRI. 
 
     Expected SRI  
                 taken   
                  from       
ME          
calculated  
for 

Albumin 
(original) 

Cytochrome c 
(original) 

Ferritin 
(original) 

Hemoglobin 
(original) 

Albumin  0.015 0.952 0.976 0.600 

Cytochrome c 0.924 0.069 0.179 0.582 

Ferritin 0.966 0.183 0.029 0.614 

Hemoglobin  0.571 0.638 0.646 0.049 

 
Methods 
 
Experimental 
 
Proteins and other materials used in study 



The proteins of some well-known pathophysiological significance have been selected for 

our study because the broader objective of our work is to develop a tool for faster 

derivation of their functional sites. For our study, we used five proteins, albumin, 

haemoglobin, ferritin, and cytochrome c. The proteins were obtained from Sigma Aldrich 

(USA) and were of analytical grade. Milipore water was used as a medium to dissolve the 

proteins to make solution of proteins. 

Getting aggregates of proteins 

Each protein was suspended in Millipore water at concentration of 50 mg/cc and was kept 

in hot water bath at 100°C for 15 minutes to get its Heat Denatured Protein Aggregates 

(HDPAs). 

Visualization of aggregates through phase contrast Microscopy and Creation of 

Aggregate Image Dataset 

Homogeneously distributed HDPAs were visualized at 400× magnification under phase 

contrast mode of Leica Microscope Model DML-B2. We used hemocytometer slides 

(Model: Neubauer Chamber, Marienfeld, Germany) which had sample mounting area of 

depth 0.1 mm so that the aggregates were less likely to be deformed. Slides were covered 

with a thin microscopic glass cover slip and put under the microscope to collect digital 

images of aggregates using a camera (Canon PowerShot S50) attached with the 

microscope. Optical zoom of camera was adjusted to 2×. Thus total optical zoom 

combining the microscope and the camera was 800×. 50 images of HDPAs at different 

fields of views were taken for each protein. Thus a dataset Comprising 200 images of 

protein aggregates was created and kept for further analysis. 

 



Computational 

Preprocessing of aggregate images  

Each image of original size in pixel 2592x1944 was converted to grey scale and resized 

to 1/3rd of the original size. Aggregate part was segmented out from each resized gray 

scale image using Adobe Photoshop 7.0 keeping the background pixel intensity as zero. 

Dividing the images into intensity plane slices  

Each segmented image of aggregates was divided into ten equally spaced intensity levels 

considering the intensity range of the image from zero to maximum intensity (255) 

following the protocol given by Singh et al26. Each preprocessed image, I was sliced into 

10 binary images from fixed intensity-intervals by the following protocol:  

           Bi = 1 for si ≤ I < si+1,  and 

           Bi = 0, otherwise           for i = 1 to 11 

           where  

           si = 0 for i = 1, and 

            si = (m/10)(i-1) + 1, for i > 1 where m is the maximum intensity of the image, I. 

            and, 

            B1 is referred as binary image form of 1st bit plane, 

            B2 is referred as image of 2nd bit plane, 

            and so on up to 10th bit plane. 

 

Calculation of ILMFD for aggregate images 



Fractal dimensions were measured for each of the 10 binary images using box counting 

method27,28. Thus each aggregate image was represented by a set of 10 fractal 

dimensions, D whereas, each fractal dimension corresponds to one intensity level: 

{ }10
0== iiDD

  

Calculation of SRI for proteins 

SRI was calculated following the protocol given by Varadwaj et al12. First PDB files 

corresponding to individual proteins were downloaded from Protein data bank (PDB). 

Next, all PDB file coordinates were converted to orientation invariant coordinate system 

(ICS) to put all proteins in similar coordinate space. Surface of each protein was divided 

into eight octants and surface roughness index was measured as set of eight standard 

deviations of distances of residues in each octant calculated from ICS-origin. 

Application of Recurrent neural network for predicting SRI through mapping 

ILMFD to SRI 

The ILMFD data obtained from four proteins, comprised of 50 images for each protein 

(albumin, cytochrome c, ferritin and hemoglobin). ILMFD and SRI values of these 

proteins were used as input and target output respectively for mapping. ILMFD data was 

normalized by subtracting their mean from them.  

For the purpose of mapping the output data (i.e., SRI data having a set of 8 surface 

roughness indices) the target was scaled to the range 0 to 1 by dividing each of them by 

their corresponding index-maximum. 8 such maxima thus constitute the SRImax. 

For mapping ILMFD to SRI, we used Elman network, which is a backpropagation 

network having a feedback connection from the output of hidden layer to its input with 

delay of one time step. The network architecture used in our work comprised of three 



layers viz., input, hidden and output layer comprising 10, 12 and 8 neurons respectively 

(Fig. 1). Hidden layer was the recurrent layer. Transfer functions in the hidden layer and 

output layer were tan sigmoid and log sigmoid respectively. Mean square error was used 

as a performance function. 

Assessment of average efficiency of mapping ILMFD into SRI for a particular 

protein 

We calculated the efficiency of mapping of ILMFD to SRI for a particular protein, p for 

each j-th data of this protein, by using the following steps: 

Step 1) first we calculated the predicted SRI for j-th data of this protein, as 

SRIj
pred = outputj × SRImax 

Step 2) next we calculated the mapping error (ME) for j-th data of protein, p by taking 

mean of the squared deviation of SRIj
pred from its corresponding target SRIj as:  
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Where net_oji is i-th element of the rescaled output, SRIj
pred and targ_oji is the i-th index 

of the corresponding actual SRIj.  

Naturally for all 50 ILMFD data of the protein, p the mean mapping error can be 

calculated as: 

MEp = <{MEj
p}j=1

50 >  

Finally to assess the mapping efficiency (MEF) of prediction of SRI for a particular p-th 

protein we used the formula as: 

MEFp = (1 – MEp)×100 



Overall efficiency of the network was however calculated as the average of the above 

efficiency taken over  the data of all 4 proteins, 

MEF = 〈MEFp〉  

Assessment of efficiency of mapping ILMFD into SRI for a particular protein by 

clustering of decision protocol 

For a particular protein, in order to screen out the general tendency of mapping decision 

from that generated through noisy input feature, we have adopted two methods: 

1) calculation of statistical mode of decisions using 10 interval frequency histogram 

of mapping errors ranging from least to maximum mapping error and finally 

choosing the decision for which the mapping error is closest to the mid point of 

the highest-frequency-interval. This exercise has been done in order to visualize 

whether there is any major tendency of decisions as well as to identify presence of 

“decisions generated through noisy input feature” in other bins. 

2) Clustering of decisions (i.e., neural network outputs) methodology has been 

adapted from method 1, to get the general tendency of decision for data where 

primarily we should not take the help of expected decision and thus measurement 

of mapping error is not possible. In this direction, we have applied k-means 

clustering fixing cluster number, k as 4 after certain trials. 
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