71,393 research outputs found

    Securitisation of Ukrainian Critical Infrastructures: The Case of the Failure of SCADA System in Protecting the Power Grids

    Get PDF
    Critical infrastructures are the important element to support the social cohesion in a certain area. Therefore, it is necessary to protect critical infrastructures in order to maintain the sustainability of the assets. There are many attempts of states to control the security of their critical infrastructures, one of them is using Supervisory Control and Data Acquisition (SCADA) system, a control system in which to monitor and retrieve data under the supervision of an operator. However, although countries are aware of the preventive action over their critical infrastructures, it is still possible to fail. In this case, Ukraine which has a relatively secure control system was failed in protecting its power grids from multiple hacker attacks which contributed to blackouts in December 2015. The devastating failure of Ukraine’s security system has led public opinion to point a finger to Russia since the relationship of both countries is at stake. In this sense, Ukraine issued a speech act to securitise its critical infrastructures. By exercising securitisation theory, this article would discuss further about the fruitfulness of the speech act after the failure of the security system in protecting Ukraine’s power grids.

    The power of creative thinking in situations of uncertainties: the almost impossible task of protecting critical infrastructures

    Get PDF
    A good and scientific analysis starts with a closer look at the conceptualisation at hand. The definition of CIP is not easy because of its wide range. This paper examines infrastructures that are critical and need protection. Each word entails a specific connotation and is characterized by several components

    The power of creative thinking in situations of uncertainties: the almost impossible task of protecting critical infrastructures

    Get PDF
    A good and scientific analysis starts with a closer look at the conceptualisation at hand. The definition of CIP is not easy because of its wide range. This paper examines infrastructures that are critical and need protection. Each word entails a specific connotation and is characterized by several components

    Understanding Malicious Attacks Against Infrastructures - Overview on the Assessment and Management of Threats and Attacks to Industrial Control Systems

    Get PDF
    This report describes approaches to the assessment and management of malicious threats and attacks relating to critical infrastructures in general, and electric power infrastructures in particular. Securing infrastructures implies taking into account both the natural and man-made (intentional) events. While protecting against the natural disruptive events is a feasible (yet not trivial) task, benefiting by well-established practices, dealing with intentional attacks comes up across many difficulties, especially due to the unpredictability of such events. The report outlines the state-of-the-art in dealing with threats and malicious attacks, considering both physical and cyber actions. Several approaches taken at national and international levels towards securing the critical infrastructures are also provided.JRC.G.6-Sensors, radar technologies and cybersecurit

    Anonymizing cybersecurity data in critical infrastructures: the CIPSEC approach

    Get PDF
    Cybersecurity logs are permanently generated by network devices to describe security incidents. With modern computing technology, such logs can be exploited to counter threats in real time or before they gain a foothold. To improve these capabilities, logs are usually shared with external entities. However, since cybersecurity logs might contain sensitive data, serious privacy concerns arise, even more when critical infrastructures (CI), handling strategic data, are involved. We propose a tool to protect privacy by anonymizing sensitive data included in cybersecurity logs. We implement anonymization mechanisms grouped through the definition of a privacy policy. We adapt said approach to the context of the EU project CIPSEC that builds a unified security framework to orchestrate security products, thus offering better protection to a group of CIs. Since this framework collects and processes security-related data from multiple devices of CIs, our work is devoted to protecting privacy by integrating our anonymization approach.Peer ReviewedPostprint (published version

    Integrating security solutions to support nanoCMOS electronics research

    Get PDF
    The UK Engineering and Physical Sciences Research Council (EPSRC) funded Meeting the Design Challenges of nanoCMOS Electronics (nanoCMOS) is developing a research infrastructure for collaborative electronics research across multiple institutions in the UK with especially strong industrial and commercial involvement. Unlike other domains, the electronics industry is driven by the necessity of protecting the intellectual property of the data, designs and software associated with next generation electronics devices and therefore requires fine-grained security. Similarly, the project also demands seamless access to large scale high performance compute resources for atomic scale device simulations and the capability to manage the hundreds of thousands of files and the metadata associated with these simulations. Within this context, the project has explored a wide range of authentication and authorization infrastructures facilitating compute resource access and providing fine-grained security over numerous distributed file stores and files. We conclude that no single security solution meets the needs of the project. This paper describes the experiences of applying X.509-based certificates and public key infrastructures, VOMS, PERMIS, Kerberos and the Internet2 Shibboleth technologies for nanoCMOS security. We outline how we are integrating these solutions to provide a complete end-end security framework meeting the demands of the nanoCMOS electronics domain

    Foreword

    Get PDF

    Autonomic computing architecture for SCADA cyber security

    Get PDF
    Cognitive computing relates to intelligent computing platforms that are based on the disciplines of artificial intelligence, machine learning, and other innovative technologies. These technologies can be used to design systems that mimic the human brain to learn about their environment and can autonomously predict an impending anomalous situation. IBM first used the term ‘Autonomic Computing’ in 2001 to combat the looming complexity crisis (Ganek and Corbi, 2003). The concept has been inspired by the human biological autonomic system. An autonomic system is self-healing, self-regulating, self-optimising and self-protecting (Ganek and Corbi, 2003). Therefore, the system should be able to protect itself against both malicious attacks and unintended mistakes by the operator

    Autonomic computing meets SCADA security

    Get PDF
    © 2017 IEEE. National assets such as transportation networks, large manufacturing, business and health facilities, power generation, and distribution networks are critical infrastructures. The cyber threats to these infrastructures have increasingly become more sophisticated, extensive and numerous. Cyber security conventional measures have proved useful in the past but increasing sophistication of attacks dictates the need for newer measures. The autonomic computing paradigm mimics the autonomic nervous system and is promising to meet the latest challenges in the cyber threat landscape. This paper provides a brief review of autonomic computing applications for SCADA systems and proposes architecture for cyber security
    • 

    corecore