1,318 research outputs found

    The Use of Firewalls in an Academic Environment

    No full text

    OnionBots: Subverting Privacy Infrastructure for Cyber Attacks

    Full text link
    Over the last decade botnets survived by adopting a sequence of increasingly sophisticated strategies to evade detection and take overs, and to monetize their infrastructure. At the same time, the success of privacy infrastructures such as Tor opened the door to illegal activities, including botnets, ransomware, and a marketplace for drugs and contraband. We contend that the next waves of botnets will extensively subvert privacy infrastructure and cryptographic mechanisms. In this work we propose to preemptively investigate the design and mitigation of such botnets. We first, introduce OnionBots, what we believe will be the next generation of resilient, stealthy botnets. OnionBots use privacy infrastructures for cyber attacks by completely decoupling their operation from the infected host IP address and by carrying traffic that does not leak information about its source, destination, and nature. Such bots live symbiotically within the privacy infrastructures to evade detection, measurement, scale estimation, observation, and in general all IP-based current mitigation techniques. Furthermore, we show that with an adequate self-healing network maintenance scheme, that is simple to implement, OnionBots achieve a low diameter and a low degree and are robust to partitioning under node deletions. We developed a mitigation technique, called SOAP, that neutralizes the nodes of the basic OnionBots. We also outline and discuss a set of techniques that can enable subsequent waves of Super OnionBots. In light of the potential of such botnets, we believe that the research community should proactively develop detection and mitigation methods to thwart OnionBots, potentially making adjustments to privacy infrastructure.Comment: 12 pages, 8 figure

    Practical privacy enhancing technologies for mobile systems

    Get PDF
    Mobile computers and handheld devices can be used today to connect to services available on the Internet. One of the predominant technologies in this respect for wireless Internet connection is the IEEE 802.11 family of WLAN standards. In many countries, WLAN access can be considered ubiquitous; there is a hotspot available almost anywhere. Unfortunately, the convenience provided by wireless Internet access has many privacy tradeoffs that are not obvious to mobile computer users. In this thesis, we investigate the lack of privacy of mobile computer users, and propose practical enhancements to increase the privacy of these users. We show how explicit information related to the users' identity leaks on all layers of the protocol stack. Even before an IP address is configured, the mobile computer may have already leaked their affiliation and other details to the local network as the WLAN interface openly broadcasts the networks that the user has visited. Free services that require authentication or provide personalization, such as online social networks, instant messengers, or web stores, all leak the user's identity. All this information, and much more, is available to a local passive observer using a mobile computer. In addition to a systematic analysis of privacy leaks, we have proposed four complementary privacy protection mechanisms. The main design guidelines for the mechanisms have been deployability and the introduction of minimal changes to user experience. More specifically, we mitigate privacy problems introduced by the standard WLAN access point discovery by designing a privacy-preserving access-point discovery protocol, show how a mobility management protocol can be used to protect privacy, and how leaks on all layers of the stack can be reduced by network location awareness and protocol stack virtualization. These practical technologies can be used in designing a privacy-preserving mobile system or can be retrofitted to current systems

    FAIR: Forwarding Accountability for Internet Reputability

    Full text link
    This paper presents FAIR, a forwarding accountability mechanism that incentivizes ISPs to apply stricter security policies to their customers. The Autonomous System (AS) of the receiver specifies a traffic profile that the sender AS must adhere to. Transit ASes on the path mark packets. In case of traffic profile violations, the marked packets are used as a proof of misbehavior. FAIR introduces low bandwidth overhead and requires no per-packet and no per-flow state for forwarding. We describe integration with IP and demonstrate a software switch running on commodity hardware that can switch packets at a line rate of 120 Gbps, and can forward 140M minimum-sized packets per second, limited by the hardware I/O subsystem. Moreover, this paper proposes a "suspicious bit" for packet headers - an application that builds on top of FAIR's proofs of misbehavior and flags packets to warn other entities in the network.Comment: 16 pages, 12 figure

    Toward Network-based DDoS Detection in Software-defined Networks

    Get PDF
    To combat susceptibility of modern computing systems to cyberattack, identifying and disrupting malicious traffic without human intervention is essential. To accomplish this, three main tasks for an effective intrusion detection system have been identified: monitor network traffic, categorize and identify anomalous behavior in near real time, and take appropriate action against the identified threat. This system leverages distributed SDN architecture and the principles of Artificial Immune Systems and Self-Organizing Maps to build a network-based intrusion detection system capable of detecting and terminating DDoS attacks in progress

    An insight into internet sector in Iraq

    Get PDF
    The internet is considered to be the most advanced technology today and a gateway to modern communication and the sharing of information, products, services, and technology. Nowadays, users want to be able to access anywhere and anytime several services and applications, which is increasing data traffic and triggering a mobile data explosion. Iraq has major problems in increasing the growth and use of the internet and changing the standard method of communication. This is a big challenge, however, since there are several variables that characterize this phase of transformation. In this paper, the problems, vision, and solutions are presented in details. This study aims to clarify the factors of internet use in Iraq by the use of an acceptable approach and by suggesting new solutions for all the presented problems. This work also, clarify the expected traffic and the mechanism to transform the traffic between local ISP’s networks (AS) internet exchange points
    • …
    corecore