25,950 research outputs found

    A bird's eye view of quantum computers

    Full text link
    Quantum computers are discussed in the general framework of computation, the laws of physics and the foundations of quantum mechanics.Comment: 6 pages, 1 figur

    Bionanomedicine: A “Panacea” In Medicine?

    Full text link
    Recent advances in nanotechnology, biotechnology, bioinformatics, and materials science have prompted novel developments in the field of nanomedicine. Enhancements in the theranostics, computational information, and management of diseases/disorders are desperately required. It may now be conceivable to accomplish checked improvements in both of these areas utilising nanomedicine. This scientific and concise review concentrates on the fundamentals and potential of nanomedicine, particularly nanoparticles and their advantages, nanoparticles for siRNA conveyance, nanopores, nanodots, nanotheragnostics, nanodrugs and targeting mechanisms, and aptamer nanomedicine. The combination of various scientific fields is quickening these improvements, and these interdisciplinary endeavours to have significant progressively outstretching influences on different fields of research. The capacities of nanomedicine are immense, and nanotechnology could give medicine a completely new standpoint

    Simulating chemistry using quantum computers

    Get PDF
    The difficulty of simulating quantum systems, well-known to quantum chemists, prompted the idea of quantum computation. One can avoid the steep scaling associated with the exact simulation of increasingly large quantum systems on conventional computers, by mapping the quantum system to another, more controllable one. In this review, we discuss to what extent the ideas in quantum computation, now a well-established field, have been applied to chemical problems. We describe algorithms that achieve significant advantages for the electronic-structure problem, the simulation of chemical dynamics, protein folding, and other tasks. Although theory is still ahead of experiment, we outline recent advances that have led to the first chemical calculations on small quantum information processors.Comment: 27 pages. Submitted to Ann. Rev. Phys. Che

    Quantum Computing: Pro and Con

    Get PDF
    I assess the potential of quantum computation. Broad and important applications must be found to justify construction of a quantum computer; I review some of the known quantum algorithms and consider the prospects for finding new ones. Quantum computers are notoriously susceptible to making errors; I discuss recently developed fault-tolerant procedures that enable a quantum computer with noisy gates to perform reliably. Quantum computing hardware is still in its infancy; I comment on the specifications that should be met by future hardware. Over the past few years, work on quantum computation has erected a new classification of computational complexity, has generated profound insights into the nature of decoherence, and has stimulated the formulation of new techniques in high-precision experimental physics. A broad interdisciplinary effort will be needed if quantum computers are to fulfill their destiny as the world's fastest computing devices. (This paper is an expanded version of remarks that were prepared for a panel discussion at the ITP Conference on Quantum Coherence and Decoherence, 17 December 1996.)Comment: 17 pages, LaTeX, submitted to Proc. Roy. Soc. Lond. A, minor correction

    Magnetic qubits as hardware for quantum computers

    Full text link
    We propose two potential realisations for quantum bits based on nanometre scale magnetic particles of large spin S and high anisotropy molecular clusters. In case (1) the bit-value basis states |0> and |1> are the ground and first excited spin states Sz = S and S-1, separated by an energy gap given by the ferromagnetic resonance (FMR) frequency. In case (2), when there is significant tunnelling through the anisotropy barrier, the qubit states correspond to the symmetric, |0>, and antisymmetric, |1>, combinations of the two-fold degenerate ground state Sz = +- S. In each case the temperature of operation must be low compared to the energy gap, \Delta, between the states |0> and |1>. The gap \Delta in case (2) can be controlled with an external magnetic field perpendicular to the easy axis of the molecular cluster. The states of different molecular clusters and magnetic particles may be entangled by connecting them by superconducting lines with Josephson switches, leading to the potential for quantum computing hardware.Comment: 17 pages, 3 figure

    CMOL: Second Life for Silicon?

    Get PDF
    This report is a brief review of the recent work on architectures for the prospective hybrid CMOS/nanowire/ nanodevice ("CMOL") circuits including digital memories, reconfigurable Boolean-logic circuits, and mixed-signal neuromorphic networks. The basic idea of CMOL circuits is to combine the advantages of CMOS technology (including its flexibility and high fabrication yield) with the extremely high potential density of molecular-scale two-terminal nanodevices. Relatively large critical dimensions of CMOS components and the "bottom-up" approach to nanodevice fabrication may keep CMOL fabrication costs at affordable level. At the same time, the density of active devices in CMOL circuits may be as high as 1012 cm2 and that they may provide an unparalleled information processing performance, up to 1020 operations per cm2 per second, at manageable power consumption.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    Excited states with selected CI-QMC: chemically accurate excitation energies and geometries

    Get PDF
    We employ quantum Monte Carlo to obtain chemically accurate vertical and adiabatic excitation energies, and equilibrium excited-state structures for the small, yet challenging, formaldehyde and thioformaldehyde molecules. A key ingredient is a robust protocol to obtain balanced ground- and excited-state Jastrow-Slater wave functions at a given geometry, and to maintain such a balanced description as we relax the structure in the excited state. We use determinantal components generated via a selected configuration interaction scheme which targets the same second-order perturbation energy correction for all states of interest at different geometries, and we fully optimize all variational parameters in the resultant Jastrow-Slater wave functions. Importantly, the excitation energies as well as the structural parameters in the ground and excited states are converged with very compact wave functions comprising few thousand determinants in a minimally augmented double-ζ\zeta basis set. These results are obtained already at the variational Monte Carlo level, the more accurate diffusion Monte Carlo method yielding only a small improvement in the adiabatic excitation energies. We find that matching Jastrow-Slater wave functions with similar variances can yield excitations compatible with our best estimates; however, the variance-matching procedure requires somewhat larger determinantal expansions to achieve the same accuracy, and it is less straightforward to adapt during structural optimization in the excited state.Comment: 11 pages, 4 figure
    • …
    corecore