16 research outputs found

    Evaluation of 3D fat-navigator based retrospective motion correction in the clinical setting of patients with brain tumors

    Get PDF
    Purpose A 3D fat-navigator (3D FatNavs)-based retrospective motion correction is an elegant approach to correct for motion as it requires no additional hardware and can be acquired during existing ‘dead-time’ within common 3D protocols. The purpose of this study was to clinically evaluate 3D FatNavs in the work-up of brain tumors. Methods An MRI-based fat-excitation motion navigator incorporated into a standard MPRAGE sequence was acquired in 40 consecutive patients with (or with suspected) brain tumors, pre and post-Gadolinium injection. Each case was categorized into key anatomical landmarks, the temporal lobes, the infra-tentorial region, the basal ganglia, the bifurcations of the middle cerebral artery, and the A2 segment of the anterior cerebral artery. First, the severity of motion in the non-corrected MPRAGE was assessed for each landmark, using a 5-point score from 0 (no artifacts) to 4 (non-diagnostic). Second, the improvement in image quality in each pair and for each landmark was assessed blindly using a 4-point score from 0 (identical) to 3 (strong correction). Results The mean image improvement score throughout the datasets was 0.54. Uncorrected cases with light and no artifacts displayed scores of 0.50 and 0.13, respectively, while cases with moderate artifacts, severe artifacts, and non-diagnostic image quality revealed a mean score of 1.17, 2.25, and 1.38, respectively. Conclusion Fat-navigator-based retrospective motion correction significantly improved MPRAGE image quality in restless patients during MRI acquisition. There was no loss of image quality in patients with little or no motion, and improvements were consistent in patients who moved more

    Quality Control of Structural MRI Images Applied Using FreeSurfer—A Hands-On Workflow to Rate Motion Artifacts

    Get PDF
    In structural magnetic resonance imaging motion artifacts are common, especially when not scanning healthy young adults. It has been shown that motion affects the analysis with automated image-processing techniques (e.g. FreeSurfer). This can bias results. Several developmental and adult studies have found reduced volume and thickness of gray matter due to motion artifacts. Thus, quality control is necessary in order to ensure an acceptable level of quality and to define exclusion criteria of images (i.e. determine participants with most severe artifacts). However, information about the quality control workflow and image exclusion procedure is largely lacking in the current literature and the existing rating systems differ. Here we propose a stringent workflow of quality control steps during and after acquisition of T1-weighted images, which enables researchers dealing with populations that are typically affected by motion artifacts to enhance data quality and maximize sample sizes. As an underlying aim we established a thorough quality control rating system for T1-weighted images and applied it to the analysis of developmental clinical data using the automated processing pipeline FreeSurfer. This hands-on workflow and quality control rating system will aid researchers in minimizing motion artifacts in the final data set, and therefore enhance the quality of structural magnetic resonance imaging studies

    Prospective motion correction of 3D echo-planar imaging data for functional MRI using optical tracking.

    Get PDF
    We evaluated the performance of an optical camera based prospective motion correction (PMC) system in improving the quality of 3D echo-planar imaging functional MRI data. An optical camera and external marker were used to dynamically track the head movement of subjects during fMRI scanning. PMC was performed by using the motion information to dynamically update the sequence's RF excitation and gradient waveforms such that the field-of-view was realigned to match the subject's head movement. Task-free fMRI experiments on five healthy volunteers followed a 2×2×3 factorial design with the following factors: PMC on or off; 3.0mm or 1.5mm isotropic resolution; and no, slow, or fast head movements. Visual and motor fMRI experiments were additionally performed on one of the volunteers at 1.5mm resolution comparing PMC on vs PMC off for no and slow head movements. Metrics were developed to quantify the amount of motion as it occurred relative to k-space data acquisition. The motion quantification metric collapsed the very rich camera tracking data into one scalar value for each image volume that was strongly predictive of motion-induced artifacts. The PMC system did not introduce extraneous artifacts for the no motion conditions and improved the time series temporal signal-to-noise by 30% to 40% for all combinations of low/high resolution and slow/fast head movement relative to the standard acquisition with no prospective correction. The numbers of activated voxels (p<0.001, uncorrected) in both task-based experiments were comparable for the no motion cases and increased by 78% and 330%, respectively, for PMC on versus PMC off in the slow motion cases. The PMC system is a robust solution to decrease the motion sensitivity of multi-shot 3D EPI sequences and thereby overcome one of the main roadblocks to their widespread use in fMRI studies

    Neuroimaging of structural pathology and connectomics in traumatic brain injury: Toward personalized outcome prediction.

    Get PDF
    Recent contributions to the body of knowledge on traumatic brain injury (TBI) favor the view that multimodal neuroimaging using structural and functional magnetic resonance imaging (MRI and fMRI, respectively) as well as diffusion tensor imaging (DTI) has excellent potential to identify novel biomarkers and predictors of TBI outcome. This is particularly the case when such methods are appropriately combined with volumetric/morphometric analysis of brain structures and with the exploration of TBI-related changes in brain network properties at the level of the connectome. In this context, our present review summarizes recent developments on the roles of these two techniques in the search for novel structural neuroimaging biomarkers that have TBI outcome prognostication value. The themes being explored cover notable trends in this area of research, including (1) the role of advanced MRI processing methods in the analysis of structural pathology, (2) the use of brain connectomics and network analysis to identify outcome biomarkers, and (3) the application of multivariate statistics to predict outcome using neuroimaging metrics. The goal of the review is to draw the community's attention to these recent advances on TBI outcome prediction methods and to encourage the development of new methodologies whereby structural neuroimaging can be used to identify biomarkers of TBI outcome

    Structural plasticity of the social brain: Differential change after socio-affective and cognitive mental training

    Get PDF
    Although neuroscientific research has revealed experience-dependent brain changes across the life span in sensory, motor, and cognitive domains, plasticity relating to social capacities remains largely unknown. To investigate whether the targeted mental training of different cognitive and social skills can induce specific changes in brain morphology, we collected longitudinal magnetic resonance imaging (MRI) data throughout a 9-month mental training intervention from a large sample of adults between 20 and 55 years of age. By means of various daily mental exercises and weekly instructed group sessions, training protocols specifically addressed three functional domains: (i) mindfulness-based attention and interoception, (ii) socio-affective skills (compassion, dealing with difficult emotions, and prosocial motivation), and (iii) socio-cognitive skills (cognitive perspective-taking on self and others and metacognition). MRI-based cortical thickness analyses, contrasting the different training modules against each other, indicated spatially diverging changes in cortical morphology. Training of present-moment focused attention mostly led to increases in cortical thickness in prefrontal regions, socio-affective training induced plasticity in frontoinsular regions, and socio-cognitive training included change in inferior frontal and lateral temporal cortices. Module-specific structural brain changes correlated with training-induced behavioral improvements in the same individuals in domain-specific measures of attention, compassion, and cognitive perspective-taking, respectively, and overlapped with task-relevant functional networks. Our longitudinal findings indicate structural plasticity in well-known socio-affective and socio-cognitive brain networks in healthy adults based on targeted short daily mental practices. These findings could promote the development of evidence-based mental training interventions in clinical, educational, and corporate settings aimed at cultivating social intelligence, prosocial motivation, and cooperation

    VOLUMETRIC AND VBM MEASURES IN 1.5-5 YEARS OLD CHILDREN OBTAINED USING ADULT SEGMENTATION TOOLS

    Get PDF
    MRI-based volumetric and morphometric studies in a healthy pediatric population give a unique opportunity to investigate brain development, potentially leading to development of structural markers for neurological and psychiatric diseases. However, pediatric data analysis presents significant challenges for established processing tools, which were initially developed for adult population. This study aimed to investigate sexual dimorphism and age-related changes in neural tissues in healthy 1.5-5-years-old children and to critically assess the feasibility of the use of popular software such as CAT-12, FSL SIENAX and FSL VBM to obtain volumetric and VBM measures in this age group. Results showed inter-method inconsistency in estimations of total intracranial (TIV), grey (GM) and white matter (WM) volumes. Nonetheless, TIV and GM measures proved to be highly correlated with each other regardless of the chosen processing tool. As tissue segmentation is an essential part of the VBM analysis, quality of the GM and WM segmentations were assessed using Dice coefficients against manually corrected, curated FreeSurfer segmentations. Regardless of the used method, the quality of the segmentation was higher for the group of children of age 5 compared to 1.5-2-years-old group (toddlers); and for GM compared to WM. The amount of statistically significant voxels for FSL VBM results was noticeably higher than for CAT-12. FSL VBM analysis revealed higher GM volumes in females compared to males in the left auditory cortex, while CAT-12 showed no statistically significant difference. CAT-12 and FSL VBM agreed on increased GM volumes in toddlers compared to 5-year-olds in the frontal lobe, lingual gyri and cerebellum; and in putamina in 5-year-olds compared to toddlers. The results indicate that we need to be cautious when interpreting the neuroimaging findings in younger children as they may significantly vary due to the differences in used preprocessing methods and statistical analysis

    Processing of structural neuroimaging data in young children:bridging the gap between current practice and state-of-the-art methods

    Get PDF
    The structure of the brain is subject to very rapid developmental changes during early childhood. Pediatric studies based on Magnetic Resonance Imaging (MRI) over this age range have recently become more frequent, with the advantage of providing in vivo and non-invasive high-resolution images of the developing brain, toward understanding typical and atypical trajectories. However, it has also been demonstrated that application of currently standard MRI processing methods that have been developed with datasets from adults may not be appropriate for use with pediatric datasets. In this review, we examine the approaches currently used in MRI studies involving young children, including an overview of the rationale for new MRI processing methods that have been designed specifically for pediatric investigations. These methods are mainly related to the use of age-specific or 4D brain atlases, improved methods for quantifying and optimizing image quality, and provision for registration of developmental data obtained with longitudinal designs. The overall goal is to raise awareness of the existence of these methods and the possibilities for implementing them in developmental neuroimaging studies
    corecore