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MRI-based volumetric and morphometric studies in a healthy pediatric population give a 

unique opportunity to investigate brain development, potentially leading to development of 

structural markers for neurological and psychiatric diseases. However, pediatric data analysis 

presents significant challenges for established processing tools, which were initially devel-

oped for adult population. This study aimed to investigate sexual dimorphism and age-related 

changes in neural tissues in healthy 1.5-5-years-old children and to critically assess the feasi-

bility of the use of popular software such as CAT-12, FSL SIENAX and FSL VBM to obtain 

volumetric and VBM measures in this age group. Results showed inter-method inconsistency 

in estimations of total intracranial (TIV), grey (GM) and white matter (WM) volumes. None-

theless, TIV and GM measures proved to be highly correlated with each other regardless of 

the chosen processing tool. As tissue segmentation is an essential part of the VBM analysis, 

quality of the GM and WM segmentations were assessed using Dice coefficients against man-

ually corrected, curated FreeSurfer segmentations. Regardless of the used method, the quality 

of the segmentation was higher for the group of children of age 5 compared to 1.5-2-years-old 

group (toddlers); and for GM compared to WM. The amount of statistically significant voxels 

for FSL VBM results was noticeably higher than for CAT-12. FSL VBM analysis revealed 

higher GM volumes in females compared to males in the left auditory cortex, while CAT-12 

showed no statistically significant difference. CAT-12 and FSL VBM agreed on increased 

GM volumes in toddlers compared to 5-year-olds in the frontal lobe, lingual gyri and cerebel-

lum; and in putamina in 5-year-olds compared to toddlers. The results indicate that we need to 

be cautious when interpreting the neuroimaging findings in younger children as they may sig-

nificantly vary due to the differences in used preprocessing methods and statistical analysis. 

----------------------------------------------------------------------------------------------------------------- 

KEYWORDS: Magnetic resonance imaging, voxel-based morphometry, volumetric 

measures, neurodevelopment, segmentation
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1. Introduction 

In the last decade, developmental neuroscience has been one of the fast-progressing fields, and 

the accumulating neuroimaging findings have provided much insight into many facets of typical 

and atypical brain development. Recent results have shown that many processes, that ultimately 

lead to diseases, begin in childhood – much earlier than the clinical onset (Knickmeyer, et al., 

2014). In the light of these discoveries understanding of the underlying processes of neurode-

velopment and factors that may disrupt them during critical periods became a crucial step to-

wards prevention and early medical intervention in neurological and neuropsychiatric disorders 

(Knickmeyer, et al., 2014). 

Neurodevelopmental research owes its rapid progress to the advancements in neuroimaging and 

magnetic resonance imaging (MRI) in particular. With the development of MRI protocols, high-

resolution pediatric imaging became possible in vivo (Vogel et al., 2016). However, despite 

having technological means to acquire high-quality brain images in the pediatric population, 

there is still a relative paucity of tools to process and analyze them as existing algorithms are 

developed for the adult population and not automatically suited for children (Phan et al., 2018). 

Regarding already published data, there is a relative abundance of infant scans soon after birth. 

In contrast, however, the age range of 6 months to 4 years is poorly covered (Knickmeyer et 

al., 2008). Child scans including ages above 4 years are more established. This has led to the 

lack of information on developmental leaps within the central nervous system before, during 

and right after toddlerhood. A similar situation can be seen in methodology studies: while the 

adult processing methods have been adapted and widely used in older children (Ghosh et al., 

2010; Schoemaker et al., 2016; Vijayakumar et al., 2018), the feasibility of their use for subjects 

of preschool age is yet to be thoroughly tested. 

This study aims to help to fill in the existing gap in the literature and investigate the develop-

mental changes in children between 18 months to 5 years of age. The second objective of the 

study is to assess the reliability of existing (pre)processing pipelines. 

1.1 Challenges of pediatric MRI processing 

First and foremost, it is important to note that pediatric brain cannot be seen as a scaled-down 

version of an adult brain. Neurodevelopment is a highly non-linear process as different areas 

follow their own maturation timeline and pace. It has been shown that, for example, age-related 

apparent cortical thinning is significantly more prominent in parietal and occipital lobes 
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compared to the frontal and temporal cortex (Ball et al., 2012). In the case of subcortical areas, 

the development trajectories also vary depending on the structure: relative volumes of the thal-

amus and caudate decrease with age, while, for example, hippocampal volume increases (Suss-

man et al., 2016). 

It is important to keep in mind that we have to be critical while interpreting these findings. 

Changes in volumes of neural tissues during childhood and adolescence are commonly ex-

plained by synaptic pruning and myelination for grey and white matter, respectively. However, 

the underlying processes are likely to be less straightforward and include different mechanisms. 

Such decrease in cortical thickness seems to originate not only from the removal of inefficient 

synapses (a core component of pruning), but may also be explained by the myelination of intra-

cortical axons, which increases voxel intensity in T1-weighted MR images, shifting gray-white 

matter boundary (Paus et al., 2008). 

A major challenge for adult MRI processing software, when used in the pediatric population, 

occurs at the brain extraction, often the very first phase of image preprocessing. During this 

procedure, non-brain tissues are differentiated from the brain and excluded from the image be-

fore further processing. This step often yields erroneous results for children, one potential ex-

planation being the significant age-related changes in distance between cerebral cortex surface 

and cranial bone (Beauchamp et al., 2011). Sharp intensity changes between the skull, CSF, 

and neural tissues are used for the determination of brain boundaries by a number of brain 

extraction tools such as FSL BET (Smith, 2002) and AFNI 3DSkullStrip (Cox, 1996). Com-

pared to the adult population, the layer of non-brain tissues surrounding the cortex is narrower, 

which can create difficulties for algorithms in regard to finding the boundary between the brain 

and the skull (Phan et al., 2018). 

Challenges often arise during segmentation procedure as well – in pediatric images neural tis-

sues can often be mislabeled. Segmentation algorithms commonly utilize intensity probability 

distribution at some part of the estimation to differentiate between brain tissues (Despotović et 

al., 2015). However, tissue intensity can vary depending on the area: for example, grey matter 

in central structures has higher intensity compared to the cortex (Murgasova et al., 2006). To 

avoid misclassifications caused by intensity overlaps, many popular brain tissue segmentation 

toolboxes, including SPM and FSL, rely on probabilistic atlases to spatially constrain segmen-

tation (Fonov et al., 2011), and provide initial estimates of the individual tissue maps. As the 

standard atlases are derived from the MR scans taken of the adult population, they likely do not 
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match tissue distribution in children. This often leads to errors in tissue labeling, especially in 

younger children. 

There is a need to create children-specific processing protocols that would take into account the 

significant variability in brain structures depending on the age group. As current approaches 

tend to suffer from improper tissue segmentation (Phan et al., 2018), the accuracy of the 

measures obtained from neonates and young children is compromised. It can be especially crit-

ical in longitudinal studies, which generally aim to follow changes in the brain structure 

throughout the participants’ lives. Preprocessing errors, especially if they cause random errors, 

can lead to inadequate representation of younger age groups, thus skewing the results.  

1.2 Quality of pediatric MRI data 

As we know, it is difficult for young children to remain still for long periods of time. This is 

especially challenging in the case of MR scans as the environment is unfamiliar and can be 

uncomfortable even for adults. While in clinical work patients are often sedated for the scan 

duration, in research it is very rarely utilized as sedation is still associated with some health 

risks and thus not, understandably, considered ethical. Additionally, the use of sedation can be 

costly as it typically requires pediatric anesthesiologists and experienced nurses to be present. 

Consequently, MRI data obtained from the pediatric population is highly susceptible to distor-

tions and other poor data quality due to movement. 

Subject motion during the data acquisition can lead to motion artifacts such as ghosting and 

blurring (Brown et al., 2010). Motion artifacts do not have to be severe to interfere with the 

analysis. Even subtle motion that cannot be detected by the human eye can cause significant 

errors in volumetric and morphometric measures (Alexander-Bloch et al., 2016; Reuter et al., 

2015). While in some cases it is possible to correct the motion bias, it is still quite common for 

pediatric scans to be too severely distorted to be usable, reducing the amount of the data avail-

able for analysis. 

Another challenge in pediatric neuroimaging arises from the myelination process and corre-

sponding contrast changes. Neonatal brain shows reversed tissue contrast compared to adults 

on T1 images caused by low myelination: the intensity of white matter is lower than grey matter 

(Branson, 2013). During the time period between 6 and 12 months of age, the differentiation 

between grey and white matter becomes more difficult as both tissues can have similar intensi-

ties (Saunders et al., 2007). While the active myelination phase lasts longer and is most 
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prominent up to approximately until 2 years of age, after 12 months tissue intensities become 

adult-like, making segmentation processes easier compared to neonates. 

1.3 Volumetric measures 

One type of measurement that can be obtained from MRI is the volume of the brain structures, 

as well as total GM and WM volumes. It is a quite straightforward way to quantify the structural 

anatomy of the brain, which allows us to track the volumetric changes during healthy aging or 

to analyze the correlation of brain volumes with different conditions. 

Volumetric measures have been actively investigated in connection to normal developmental 

processes (Gennatas et al., 2017; Gilmore et al., 2012; Gogtay et al., 2004; Hu et al., 2013). 

Further, abnormalities in adjusted total intracranial volume, as well as grey matter volume, have 

been shown to be present in children with attention-deficit/hyperactivity disorder, autism spec-

trum disorders and dyslexia (Batty et al., 2010; Nordahl et al., 2011; Ramus et al., 2018; Cas-

tellanos et al., 2002). Grey matter volume abnormalities were also detected in metabolism-as-

sociated conditions such as type 1 diabetes (Mazaika et al., 2016), childhood obesity (Bauer et 

al., 2015; Perlaki et al., 2018), and various psychiatric and neurological conditions such as bi-

polar disorder (DelBello et al., 2004), psychosis (Okada et al., 2018), epilepsy and anxiety 

(Jones et al., 2015), depression (Merz et al., 2018).  

1.4 VBM 

Voxel-based morphometry (VBM) is a neuroimaging method that involves a voxel-by-voxel 

analysis of grey matter differences. This method was originally developed (Ashburner & Fris-

ton, 2000) to investigate the differences in brain morphology between groups of subjects and 

has been actively utilized in neurodevelopmental research since.  

VBM analysis starts with the segmentation of brain-extracted MR images into grey matter, 

white matter, and cerebrospinal fluid. Grey matter is further spatially normalized by non-linear 

transformation to a chosen template and smoothed, followed by voxel-wise statistical tests per-

formed to identify regions that have a significant difference in grey matter structure. 

Compared to the traditional morphometry approach, which involves the analysis of volumes of 

a priori chosen regions of interest (ROI), i.e., the hippocampus, VBM allows us to perform 

analysis on the whole-brain-level without introducing any spatial constraints.  
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Another important distinction between VBM and volumetric analysis is that the former’s ob-

jective is significantly less straightforward in interpretation. While volumetric GM measures 

are easy to comprehend as they are exactly what the name states – volumes, measured in milli-

liters, VBM output can be interpreted in two different ways, depending on the optional step of 

the analysis called modulation, which corrects the values for the amount of warp from individ-

ual to template image yielding “proportional volumes”. The choice of the terminology to de-

scribe what VBM results actually represent is, at times, not so consistent, which adds to the 

complexity of the matter. Depending on the source, GM volume, density, concentration, or 

mass can be used interchangeably, although none of these are absolutely correct.  

GM segmentation procedure used in VBM does not give binary results, in case of which each 

voxel that is treated as GM would have an intensity equal to 1 and 0 for all other voxels. Instead, 

it assigns a relative value from 0 to 1 for each voxel, reflecting the relative amount of GM in 

the voxel compared to other tissues (Gennatas et al., 2017). As the GM segmentation is further 

spatially normalized to the template, it introduces volume changes. Consequently, in this case, 

VBM does not compare volumes, but rather regional GM concentrations or GM density (which 

should not be confused with the cell density) (Good et al., 2001; Mechelli et al., 2005). This 

approach is referred to as “non-modulated” VBM. 

“Modulated” VBM, which is currently the default VBM method, accounts for volume changes 

due to spatial registration from the subject’s native space to the template by adjusting the VBM 

maps using the Jacobian determinant calculated from the deformation matrix (Ashburner & 

Friston, 2003). In this case, VBM detects regional differences in volume, but in terms of the 

absolute amount of GM in the region (Good et al., 2001; Mechelli et al., 2005). Results of the 

modulated VBM in literature are often referred to as changes in GM (regional) volumes or 

changes in GM mass. However, it is quite common to see the use of the word “density” as well, 

making it indistinguishable from non-modulated VBM. This study uses the modulated version 

of the VBM analysis and will use the term “volume” for the description of the results. 

Despite these shortcomings, VBM has frequently been used and allows us to detect subtle neu-

roanatomical differences and presents a valuable tool for MRI analysis that complements the 

classic volumetric comparisons. 

VBM has been successfully used in the pediatric population to investigate brain abnormalities 

in subjects with various neurological and neurodevelopmental disorders (Carducci et al., 2013; 

McAlonan et al., 2005; Tondelli et al., 2018; Villagran et al., 2013; Xiao et al., 2014) as well 
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as to study regional neural tissue differences in obese (Kennedy et al., 2016; Perlaki et al., 2018) 

and healthy children (Gennatas et al., 2017; Ou et al., 2016; Peterson et al., 2003). The work of 

Gennatas et al. is of particular interest regarding the discussion on how to interpret VBM results. 

In this study, it was demonstrated that GM volumes, density, and modulated VBM volumes do 

not necessarily follow similar trajectories. VBM analysis performed on the young subjects rang-

ing in age from 8 to 23 years showed that GM volume significantly decreases with age, while 

GM density increases and modulated VBM volumes show only a slight decline. Therefore, it is 

important to remember that volumetric measures and VBM-derived differences in volume are 

not directly comparable, but only as results that supplement each other. 

1.5 Sexual dimorphism in neurodevelopment 

Gender differences in total intracranial volume (TIV) have been reported for both adults and 

children (Gilmore et al., 2007). Over the life span, TIV is greater in males by approximately 

10%, with grey matter showing a similar tendency.  

Sex-related differences in developmental trajectories can be seen in grey matter development 

as well. Cortical grey matter growth follows an inverted U shape with peaks of volume hap-

pening earlier for females at approximately 10 years of age compared to 14 years for males 

(Giedd et al., 2012). 

In contrast to grey matter, white matter growth continues throughout adolescence into adult-

hood. WM growth is more rapid for males, and the magnitude of the differences between 

sexes in WM volumes increases with age (Giedd et al., 2012). 

2. Aims and hypothesis 

This study aims to characterize the gross tissue changes that occur within the brain from tod-

dlerhood (18-24 months) to 5 years of age. An additional objective is to perform exploratory 

analysis to find gender and age correlations with cortical volumes in children. 

Previously reported sexual dimorphism is expected, including a relatively bigger GM volume 

for females compared to age-matched males after correction for total intracranial volume. 

From the methodological standpoint, this study aims to provide children-tailored recommenda-

tions and assess the feasibility of the use of MRI processing software packages commonly used 

in the adult population as well as conclude on which tools seem to be best suited for the pediatric 

population of a given age.  
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3. Methods 

3.1 Participants 

The study utilized subjects belonging to the FinnBrain Birth Cohort Study (Karlsson et al., 

2018) – longitudinal study investigating the combined influence of environmental and genetic 

factors on child development. MR scans of 38 healthy, normally developing children (see Table 

1) were used for data analysis.  

Age Total number Male Female 

18 months 1 0 1 

24 months 7 3 4 

5 years 30 15 15 

Table 1. Study population demographic description. 

For analysis purposes, participants have been further separated into two age groups: “toddlers” 

(18-24 months) and 5-year-olds. 

3.2 MRI Acquisition  

MR imaging was performed at the Turku University Hospital with Siemens Skyra 3T scanner. 

The T1-weighted images were acquired using MPRAGE sequence with 1mm3 spatial resolu-

tion, and with the following parameters: 172 slices, 256 mm FOV, TR 1900 ms, TE 3.26 ms, 

9° flip angle. 

3.3 Data analysis 

For the study two different preprocessing pipelines were used: SPM12 (www.fil.ion.ucl.ac.uk) 

with use of the CAT-12 toolbox (Gaser & Dahnke, 2016) and FSL (Jenkinson et al., 2012). 

Additionally, images were segmented using the FreeSurfer toolbox (www.surfer.nmr.mgh.har-

vard.edu) that has been chosen as the reference technique to estimate the performance of CAT-

12 and FSL segmentations. FreeSurfer has been shown to provide good accuracy in tissue seg-

mentations compared to other automated segmentation software packages in the pediatric 

http://www.fil.ion.ucl.ac.uk/
http://www.surfer.nmr.mgh.harvard.edu/
http://www.surfer.nmr.mgh.harvard.edu/
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population (Ghosh et al., 2010; Mayer et al., 2016), however, being still inferior to current gold-

standard – manual segmentation (Schoemaker et al., 2018). As manual segmentation is an ex-

tremely time consuming, it is not an optimal choice for studies with even relatively large sam-

ples. With that in mind, for purposes of this study, visually inspected and corrected FreeSurfer 

output decided to be utilized as an etalon for segmentation accuracy comparisons. Of note, the 

FinnBrain Neuroimaging Lab has extensive quality control and manual edit protocol for con-

trolling the quality of FreeSurfer output, which includes but is not limited to all steps recom-

mended by Enigma consortium (http://enigma.ini.usc.edu/protocols/imaging-protocols/). 

3.3.1 Intermediary image manipulations 

FSL tools have shown a particular sensitivity towards the field of view (FOV) of the image. 

The presence of the large amount of non-neural tissues of the neck and lower head resulted in 

an overestimation of brain volume at the step of brain extraction.  

To assist the FSL BET algorithm, images’ FOV was edited using FSL command “robustfov” 

to exclude the neck part of the image. Removal of the part of non-neural tissues from the image 

significantly improved the accuracy of the produced brain masks. 

The cropped images were back-registered to full-size, and the same transformation matrix was 

used to bring segmentations to space with the same dimensions to assess the accuracy of the 

segmentations against CAT-12 and FreeSurfer output. 

3.3.2 FSL VBM 

VBM data preprocessing was performed on structural images using FSL VBM tool 

(www.fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLVBM), which includes following steps: brain extrac-

tion, tissue segmentation (into grey matter, white matter and CSF), creation of study-specific 

GM template, non-linear registration of GM tissue images to the template and smoothing. 

Brain extraction for 5-year-olds was performed with FSL BET parameters “-b -R -f 0.3”. Brain 

masks were visually inspected to confirm successful skull stripping. 

Brain masks for toddler scans provided by FSL BET were consistently erroneous, despite the 

FOV and extraction parameters manipulations. Consequently, additional tools have been used 

in attempts to obtain better quality masks. ROBEX (Iglesias et al., 2011) and LABEL skull 

stripping toolkit (Shi et al., 2012) were tried, but the results were not satisfactory. After review-

ing the available methods, it was decided to utilize brain masks provided by FreeSurfer software 

http://enigma.ini.usc.edu/protocols/imaging-protocols/
http://www.fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLVBM
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(http://surfer.nmr.mgh.harvard.edu/) and its “recon‐all” command, with flags “-autorecon1 -

wsmore”. Obtained brain masks were then transformed back from FreeSurfer conformed space 

to the subjects’ native space and further used in VBM analysis. 

After gross tissue segmentation, partial volume GM images were non-linearly registered to GM 

ICBM-152 standard space template. Resulting images were averaged and flipped along the x-

axis to create a symmetric study-specific GM template. Native space GM images were then 

non-linearly registered to the template and underwent Gaussian smoothing with a sigma of 

3.3973 mm, which is equivalent to FWHM of 8 mm. 

3.3.3 FSL SIENAX 

FSL SIENAX (Smith et al., 2002) was used to obtain volumetric measures. T1-weighted images 

underwent brain extraction and affine registration to the standard MNI template. Normalized 

brains were used for tissue segmentation, and estimates of total intracranial, gray, and white 

matter volumes, normalized for the head sizes as well as non-normalized, were reported. 

As SIENAX takes as an input original T1-weighted images and does not provide an option to 

add custom brain-extracted images, it has not been possible to use it on toddler scans (as FSL 

BET fails in the case of younger children). Thus, only the analysis of 5-years old participants 

was performed. 

3.3.4 CAT-12 

Using SPM toolbox CAT-12, T1-weighted scans were corrected for bias-field inhomogeneities, 

segmented into grey matter, white matter, and cerebrospinal fluid and spatially normalized us-

ing diffeomorphic non-linear registration algorithm (DARTEL). Total intracranial volume, as 

well as GM, WM, and CSF volumes, were calculated based on segmentation in the native space 

to be further used as covariates in statistical analysis. GM images in the standard MNI space 

were then smoothed with a Gaussian kernel of 8 mm, matching the one used with FSL VBM. 

3.3.5 FreeSurfer 

Visually inspected and edited (Pulli et al., in preparation) FreeSurfer segmentations were reg-

istered back to subjects’ native space. Grey and white matter masks with excluded cerebellum 

and brainstem were created for assessing the quality of FSL and CAT-12 segmentations. For 

each subject, cerebellum and brainstem masks have also been created to exclude those areas 

http://surfer.nmr.mgh.harvard.edu/


10 

 

out of FSL and CAT-12 images as well. This was done since the primary interest was on the 

cortical and subcortical nucleus segmentation.  

As subcortical segmentation can be especially challenging due to non-population-specific tissue 

priors (Loh et al., 2016), exclusion masks containing subcortical nuclei, cerebellum, and brain-

stem were created to additionally assess agreement between segmentation procedures in cortical 

GM. 

For TIV as well as grey and white matter volumes aseg statistical data was extracted. Total 

white matter volume was estimated as the sum of cerebral WM, cerebellar WM, brainstem, and 

corpus callosum. 

3.4 Statistical analysis 

3.4.1 Volumetric measures 

Total intracranial, grey matter and white matter volume estimations were directly compared 

using Pearson’s correlation coefficients to evaluate the inter-method agreement. A statistical 

significance threshold of p<0.05 before Bonferroni correction for multiple comparisons was 

chosen. 

3.4.2 VBM analysis 

To investigate differences in brain structure between genders and the two age groups, smoothed 

grey matter images were entered into 2x2 ANOVA GLM model with age and sex as explanatory 

variables. 

For FSL output permutation-based nonparametric testing was performed using FSL randomize 

method (Winkler et al., 2014) with 10000 permutations. Significant clusters were identified 

using threshold-free cluster enhancement (TFCE) with the significance threshold p < 0.05. 

In the case of CAT-12 output, statistical analysis was performed using SPM. The significance 

threshold was set up as p<0.05, FWE corrected. According to CAT-12 manual recommenda-

tions, TIV was used as a covariate. 

3.4.3 Dice scores 

To evaluate the quality of brain segmentations, the Dice similarity coefficient (DSC) was used 

(Dice, 1945; Taha & Hanbury, 2015). DSC is a spatial overlap index, value of which varies 
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from 0, meaning no overlap between two binarized segmentations, to 1, which indicates com-

plete overlap. The calculation is performed using the following simple formula: DSC(A, B)= 

2(A∩B)/(A+B), where ∩ refers to the intersection, A and B refer to segmented tissue provided 

by processing pipeline under consideration and chosen golden standard accordingly. For pur-

poses of this work, DSC computation was estimated using Python 3.8.1, NiBabel (NIfTI images 

processing), NumPy (mathematical functions) and os, glob, and pathlib libraries (system and 

shell manipulations). 

Visually inspected and manually corrected FreeSurfer segmentations have been chosen as a 

gold standard or the “closest to ground truth” segmentations for this study. 

4. Results 

4.1 Brain extraction 

As discussed previously, the brain extraction step presents significant difficulties for pediatric 

data. FSL tool for skull stripping, BET, utilizes variability in intensities of pixels representing 

different tissues to differentiate between tissues. In the adult population, brain tissues are sur-

rounded by a noticeable dark band of CSF in subarachnoid space and skull, which is further 

encircled by hyper-intensive voxels of the scalp. The resulting changes in voxel intensities are 

used to determine brain outlines. However, as the distance between the cerebral cortex and the 

scalp is significantly smaller in younger children, changes in intensity may not be sufficient, 

resulting in the estimated mask expanding further. For the data used in this study, FSL BET 

produced erroneous brain masks for the images of children aged between 18 and 24 months. 

The best results have been obtained using the following parameters: “-b -R -f 0.3 -g -0.2”. 

However, the resulting brain masks still contained a large amount of non-neural tissues. 

LABEL and ROBEX algorithms faced the opposite problem, erroneously removing significant 

areas of the cortex. Figure 1 illustrates brain extraction results for one of the toddler subjects 

for FSL BET, LABEL, ROBEX, and FreeSurfer. Based on similar results obtained for the rest 

of the subjects, it was concluded that FreeSurfer is the most reliable tool for skull stripping for 

the pediatric population of the given age. 

4.2 Neural tissue volumes 

Total intracranial, grey, and white matter volumes were estimated using CAT-12, FSL 

SIENAX, and FreeSurfer. The results are detailed in Table 2. Only data on 5-year-olds is 
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available for FSL SIENAX, as it has not been possible to utilize it with toddler subjects,making 

the overall mean skewed compared to the other two software tools. 

 

Figure 1. Example of brain extraction results from FSL BET (red), LABEL (blue), ROBEX (violet) and FreeSurfer 

(cyan). 

 TIV, cm3 GM volume, cm3 WM volume, cm3 

Gender CAT-12 FSL 

SIENAX* 

Free-

Surfer 

CAT-12 FSL 

SIENAX* 

Free-

Surfer 

CAT-

12 

FSL 

SIENAX* 

Free-

Surfer 

Female 1379(10

6) 

1257(97) 1353(209) 765(55) 748(54) 752(62) 402(45) 509(47) 423(71) 

Male 1498(10

6) 

1369(80) 1517(220) 793(48) 799(49) 805(67) 460(55) 569(41) 425(61) 

Mean 

diff.** 

7.9% 8.2% 10.8% 3.5% 6.4% 6.6% 12.6% 10.5% 0.5% 

Table 2. Total intracranial, grey, and white matter volume estimations obtained using CAT-12, FSL SIENAX, 

and FreeSurfer. Data reported as Mean(SD). *: Values for SIENAX are provided only for 5-years-old subjects. 

**: % difference between means is calculated as 100 ∗
𝑀𝑎𝑙𝑒̅̅ ̅̅ ̅̅ ̅−𝐹𝑒𝑚𝑎𝑙𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑀𝑎𝑙𝑒̅̅ ̅̅ ̅̅ ̅
 for each column. 
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Figure 2. Total intracranial volume estimation obtained using CAT-12, FSL SIENAX, and FreeSurfer. Subjects 

are coded in the following way: "gender-age group-number". 

 

Figure 3. Grey matter volume estimations. 
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Figure 4. White matter volume estimations. 

As can be seen in Figure 2, total intracranial volume estimates are not very consistent across 

image processing packages, with FSL SIENAX giving the smallest estimates. Grey matter vol-

ume estimates (Figure 3) are the most consistent out of the measures across software packages 

as well as across both age groups. In the case of white matter volume (see Figure 4), FSL 

SIENAX provides the highest estimates. The expected increase in white matter volume between 

toddlers and 5-years-olds is also clearly visible.  

Assessing the differences in the obtained results, it is important to consider that the methods 

utilized to estimate the volumes differ from software to software. While the most straightfor-

ward way to calculate TIV from an MRI scan would be to count the number of voxels within 

the skull borders, such approach is rarely used due to the ambiguity of the skull-CSF border in 

T1-weighted images. Both FreeSurfer (Buckner et al., 2004) and FSL SIENAX (Smith et al., 

2002) base their estimations on scaling factors and transformation matrices from the subject’s 

native space to the standard MNI space. While CAT-12 documentation does not clearly state 

the method used for the neural tissue volume estimation, it is likely to be based on the warps 

as well. Consequently, while it is clear that volumetric measures are not consistent between 

software packages, they may still correlate with each other.  
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Table 3 presents the correlation coefficients for the compared pairs of software tools and cor-

responding p-values. In the case of 5-year-olds, both TIV and GM volumes are strongly corre-

lated. However, the addition of the toddler data significantly lowers the correlation coeffi-

cients for all types of tissue between CAT-12 and FreeSurfer. Interestingly, FreeSurfer’s 

white matter volume estimations do not seem to correlate with either CAT-12 or FSL 

SIENAX, while the latter two show a strong correlation.  

 TIV GM WM 

CAT-12 vs FreeSurfer 

5-years-olds 0.911 (2.93E-16)  0.911 (2.78E-12) 0.091 (0.633)* 

whole population 0.674 (3.53E-6) 0.787 (4.56E-9) 0.528 (6E-4) 

CAT-12 vs FSL SIENAX 0.932 (7.44E-14) 0.974 (2.73E-15)  0.935 (4E-14) 

FSL SIENAX vs FreeSurfer 0.958 (1.05E-16) 0.912 (2.46E-12) 0.222 (0.238)* 

Table 3. Pearson’s correlation coefficients and paired t-test p-values for volumetric measures, comparing CAT-

12, FSL SIENAX, and FreeSurfer output. As FSL SIENAX could not provide volume estimations for toddlers, 

correlation with FSL SIENAX is calculated only for the 5-years-old part of the study population. For CAT-12 

and FreeSurfer, correlation coefficients were calculated for both 5-year-olds subset and the whole population. * 

marks the results that have not reached statistical significance. 

4.3 VBM 

4.3.1 FSL 

FSL VBM revealed statistically significant clusters both for age and gender effect. However, 

no significant interaction between age and gender effects was observed. 

A comparison between females and males showed a small area of increased GM volume in the 

left auditory cortex (Figure 5).  

FSL VBM further revealed statistically significant areas in which the 5-year-olds showed 

higher GM volume compared to toddlers: right superior temporal gyrus, putamina, precentral 

and superior frontal gyri (more pronounced in the right hemisphere), precuneus cortex, frontal 

orbital cortex, temporal poles and cerebellum (Figure 6). The large cluster next to the brain-

stem is likely to be due to differences in brain extraction between FSL BET (5-year-olds) and 

FreeSurfer (toddlers). 
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Figure 5. FSL-VBM detected increased GM volume in females compared to males in the left auditory cortex. 
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Figure 6. FSL-VBM results revealed increased GM volumes in 5-year-olds compared to the toddlers in putamina, 

frontal lobe, precuneus cortex, temporal poles, and cerebellum. 
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Figure 7. FSL-VBM results showed that in toddler subjects compared to 5-year-olds a higher GM volume is pre-

sented in occipital pole, lingual gyrus, middle temporal gyrus, frontal pole, and medial frontal cortex. 
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In the case of toddlers compared to 5-year-olds, FSL VBM revealed statistically significant 

clusters in occipital pole, lateral occipital cortex in both hemispheres, caudates, thalami, left 

supramarginal gyrus, auditory cortex (Heschl’s gyrus, planum temporale) on both sides, left 

one showing a larger cluster, frontal pole, medial frontal cortex in both hemispheres, lingual 

gyri, hippocampi, occipital fusiform gyri, cuneal cortex, cerebellum (Figure 7). 

4.3.2 CAT-12 

In contrast with FSL output, CAT-12 VBM results for gender differences have not reached a 

statistically significant level. One obvious explanation for that would be the small population 

size. It is also important to consider that the statistical algorithms used in FSL and CAT-12 

differ, and it is likely for them to exhibit different levels of sensitivity. However, investigating 

the reasons behind the contradictory results exceeds the purposes of this study, and remains to 

be explored with a larger sample. 

In 5-year-olds compared to toddlers CAT-12 revealed areas of increased GM volumes in pu-

tamina and the thalami (cluster on the left side is significantly larger) (Figure 8). 

In toddlers compared to the 5-year-olds, higher GM volume areas were located in medial 

frontal gyri, frontal pole, cuneal cortex, lateral occipital cortex in both hemispheres, occipital 

pole, lingual gyri and cerebellum (Figure 9). 

4.4 Dice coefficients 

Gross segmentations of brain tissues into the gray and white matter were compared by creating 

an overlap map between the outputs obtained from each tool. Dice similarity coefficient (DSC) 

was calculated to act as a statistical validation metric to evaluate the performance of the ob-

tained segmentations against quality-controlled FreeSurfer segmentations, which serve as the 

gold standard for the accuracy of the procedures.  

Figure 10 illustrates the results of spatial overlap between the segmentations. As can be seen, 

CAT-12 demonstrated a more considerable variance between the dice scores, especially in the 

case of the white matter segmentations. At the same time, the quality of the CAT-12 white 

matter segmentations is generally higher compared to FSL. 
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Figure 8. CAT-12 for 5-year-olds compared to toddlers showed clusters of increased GM volume in putamina 

and thalami. 
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Figure 9. CAT-12 revealed areas with higher GM volume in toddlers compared to 5-year-olds in the frontal 

lobe, temporal occipital fusiform cortex, lingual gyri, and cerebellum. 
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FSL has been shown to be more robust regarding grey matter segmentations, especially in the 

case of younger children. However, the quality of the toddler scan segmentations is relatively 

low for both software packages. 

 

 

Figure 10. Dice coefficients for CAT-12 and FSL segmentations compared to FreeSurfer. 

As the segmentation of subcortical structures presents even more challenges compared to cor-

tical areas due to the lesser contrast between grey and white matter and the high dependency 

on tissue probability maps that do not take into account the age-related changes in the nuclei 

(Lorio et al., 2016). As erroneous segmentation of the deep brain structure would lead to 

lower Dice coefficients, the Dice scores of total grey matter segmentations were compared to 

the images including only the cortical part of grey matter to assess the magnitude of the effect 

of subcortical nuclei on the quality of segmentation. However, the results (Figure 11) revealed 

that the exclusion of subcortical structures either did not improve the Dice coefficients at all 

or did so to a minimal extent.  
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Figure 11. Dice coefficients for total and cortical grey matter segmentations. 

 CAT-12 vs FreeSurfer FSL vs FreeSurfer 

 toddlers 5-year-olds toddlers 5-year-olds 

GM 0.69 (0.03) 0.82 (0.03) 0.74 (0.02) 0.81 (0.03) 

Cortical GM 0.68 (0.03) 0.82 (0.03) 0.75 (0.02) 0.81 (0.03) 

WM 0.62 (0.02) 0.79 (0.05) 0.65 (0.03) 0.75 (0.03) 

Table 4. Dice coefficients for GM, cortical GM, and WM. Values are reported as Mean(SD). 

Due to the small sample size, it is difficult to fully assess the viability of preference of one 

tool over another in the case of older children. In the pediatric population of younger ages, 

taking into account that FSL is not sufficient to perform the skull stripping on its own, 

FreeSurfer segmentation would likely be the primary choice. 
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Finally, it was of interest to compare to what extent the CAT-12 and FSL segmentations differ 

from each other. While it does not necessarily give us information about the quality of the 

segmentation, it can help us to understand the overall agreement between tools’ outputs. 

 

Figure 12. Dice coefficients for FSL segmentations compared against CAT-12. 

As shown in Figure 12, the agreement between FSL and CAT-12 has quite similar magnitude 

as the agreement between two aforementioned tools and FreeSurfer, with WM segmentations 

being considerably less consistent across methods. Interestingly, there is noticeably better 

agreement between FSL and CAT-12 in the case of toddlers, than either tool has with Free-

Surfer. 

5. Discussion 

This study investigated the age- and gender-related differences in children of preschool age 

and assessed the feasibility of adult processing tools in these ages. The results demonstrated 

that there is high inter-method variability in terms of tissue volume estimations, segmenta-

tions, and VBM results. 
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5.1 The challenges of image preprocessing 

Extremely rapid brain development in early childhood presents not only a fascinating phe-

nomenon to study, but also a significant challenge for the image preprocessing algorithms. 

While the MRI scans of 5-year-olds are close enough to adult ones to demand only minor ad-

justments (FOV correction, brain extraction settings calibration), in the case of younger chil-

dren preprocessing can be an extremely toilsome process, involving the use of several tools 

and following multiple registration procedures to match the subject spaces across the soft-

ware. Moreover, pediatric data demands extensive visual control of every subject after each 

step, which can be a problem in large-scale studies. 

CAT-12 has proved itself to be much more robust when processing toddler subjects when 

compared to FSL. In the current study, it was decided to not create a custom age-specific tem-

plate due to the relatively small sample size. However, using such templates might improve 

its efficiency even further.  

In its turn FSL was not able to perform brain extraction procedure on toddler subjects. While 

it is possible to use brain extracted images produced by other tools in FSL VBM, FSL 

SIENAX does not provide such option. Thus the tissue volume estimations were not possible 

to obtain for younger children. The use of external tools may raise some problems with study 

repeatability, so in the light of our results, the use of FSL tools may be preferred only in the 

case of subjects of age 5 and older. 

5.2 Volumetric measures 

TIV difference between genders was observed across all software tools, being ~8% for FSL 

SIENAX and CAT-12 and ~11% for FreeSurfer. Despite certain disagreement between meth-

ods, the obtained numbers stay in line with the results observed in previously published litera-

ture. Larger-scale studies reported a ~6% difference for neonates (Knickmeyer et al., 2014), 

~10% for older children and adolescents (Ball et al., 2012) and ~12% for adults (Ruigrok et 

al., 2014). 

For GM volumes, the agreement was higher between CAT-12 and FreeSurfer, yielding a dif-

ference of 6.4% and 6.6%, while FSL SIENAX detected only a 3.5% difference. However, 

the FSL SIENAX estimations were done only for the 5-year-old part of the population, and 

that might have affected the result. Nonetheless, the estimated difference was significantly 
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lower than previously published 9 to 12% for children (Paus, 2010; Wilke et al., 2007) or 8% 

for newborns (Dean et al., 2018). 

Differences in the WM volume estimations are the least consistent, varying from 0.5% for 

FreeSurfer to 10.5% for FSL SIENAX and 12.6% for CAT-12. In contrast with GM, FSL and 

CAT-12 WM estimations stay in line with existing literature showing 6 to 8% difference in 

neonates (Dean et al., 2018; Gilmore et al., 2007; Paus, 2010) and 7 to 12% in children (Paus, 

2010; Wilke et al., 2007). 

The results of this study clearly show that total intracranial, as well as GM and WM, volume 

estimations will be highly dependent on the chosen method. However, TIV and GM volume 

measures turned out to be highly correlated with all three software tools. WM volumes corre-

lated well only between FSL SIENAX and CAT-12, which contradicts the previously pub-

lished result (Ávila et al., 2019), where the correlation between FreeSurfer and FSL was sig-

nificantly higher for WM than for TIV or GM. 

While it is not possible to conclude the most accurate neural tissue volume estimation ap-

proach, it is likely that at least the TIV and GM volumes can be used for scaling purposes in-

terchangeably between software tools. Nonetheless, it still demands to be tested in a larger 

study, preferably one comparing several age groups to get a better picture of the interchangea-

bility of processing methods. 

5.3 Discrepancy in VBM analysis 

Before discussing VBM results, it is essential to address the significant differences in the re-

sults between FSL VBM and CAT-12. Dissimilarities in VBM results have been previously 

studied for FSL VBM and SPM8 in normal aging (Callaert et al., 2014) as well as in clinical 

population: amyotrophic lateral sclerosis (Rajagopalan et al., 2014) and multiple sclerosis 

(Popescu et al., 2016) patients.  

While intuitively, it would seem that the results obtained from two similar procedures should 

replicate each other, in practice, the output is heavily influenced by the differences in prepro-

cessing approaches, particularly in segmentation and registration. 

The CAT-12 segmentation relies on several techniques; first, it utilizes SPM unified segmen-

tation (Ashburner & Friston, 2005) to perform the spatial normalization and the skull-strip-

ping using SPM tissue probability maps and then proceeds to the Adaptive Maximum a Poste-

rior (AMAP) segmentation (Rajapakse et al., 1997), which does not rely on any tissue 
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probabilities given a priori. CAT-12 segmentation procedure is then finalized by an estima-

tion of the amount of each tissue in partial volume voxels (Tohka et al., 2004). FSL FAST, in 

its turn, relies on the hidden Markov random field (HMRF) model and the use of the expecta-

tion-maximization algorithm (Zhang et al., 2001) to estimate the parameters for the said 

model. The registration procedure also differs between CAT-12 (Ashburner, 2007) and FSL 

(Andersson et al., 2007) in terms of deformation models, similarity measures, and regulariza-

tion methods (Klein et al., 2009). These significant differences in approaches lead to a mis-

match between resulting segmentations and the magnitude of this mismatch will depend on 

various parameters such as age (Figure 12) or image quality. 

On top of the differences already pointed out, the statistical analysis approaches also vary. 

While FSL VBM recommends the use of non-parametric statistics with threshold-free cluster 

enhancement, the default statistical method for CAT-12 is parametric, so it is reasonable to 

expect certain variance in sensitivity between the two tools. Additionally, CAT-12 insists on 

the correction for TIV to be included in the model, while FSL VBM does not provide TIV es-

timations, making it impossible to use it as a nuisance variable. 

It is difficult to assess which aspect contributes the most to the noticeable difference in the 

amount of statistically significant voxels in VBM results, and it is out of the scope of this 

study to systematically compare the preprocessing steps. However, it is important to keep in 

mind that certain discrepancy in the VBM results is to be expected and always to be cautious 

with interpretations. To detect truly reliable differences in GM volumes, large-scale studies 

and meta-analyses are required. 

5.4 VBM: age and gender effect on GM 

FSL VBM detected sex-related differences located in the left auditory cortex, namely females 

having higher GM volume than males. While not directly supporting the VBM output, sexual 

dimorphism in the auditory cortex was previously shown in terms of volumetric measures in 

adults (de Lima Xavier et al., 2019; Ruigrok et al., 2014) as well as in children (Lombardo et 

al., 2012). This potentially indicates the gender-related differences in the processing of audio 

cues, which have been previously hypothesized and studied using functional neuroimaging 

modalities (Brun et al., 2009; Burman et al., 2008; Ruytjens et al., 2007). However, there are 

results that both support and contradict the idea of sexual dimorphism in the auditory cortex 

(Kaiser et al., 2009). Conducting a VBM study with a larger sample to replicate this result 

would be necessary to confirm the existence of gender effect. 
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Age-related GM growth has been shown in the frontal orbital cortex, temporal poles, precu-

neus cortex, putamina, precentral and superior frontal gyri, and right superior temporal gyrus 

by FSL VBM, while CAT-12 revealed statistically significant clusters in putamina and thal-

ami.  

While the previously published literature for this age is scarce, some of the findings may be 

supported by volumetric evidence in other closely related age groups. Volume growth in 

frontal lobe has been previously reported to last until approximately 6 years of age (Tanaka et 

al., 2013). Putamen in both hemispheres has been reported to undergo significant growth from 

birth to 2 years of age (Nishijima et al., 2016) and then to start to reduce in relative volume 

starting from age 4 (Sussman et al., 2016), which would indicate a volume peak somewhere 

between these time points. Age-related increases in thalamus volume have been shown in 

children from age 4 onward (Ball et al., 2012; Muftuler et al., 2011). 

Curiously, FSL VBM showed an increase in GM volume in the primary motor cortex, while it 

is one of the areas that would be expected to mature early (Gogtay et al., 2004).This suggests 

that the age-related decline in GM volume in the motor cortex may start around 5 years of 

age. 

FSL VBM and CAT-12 agreed on the decrease in GM volume with age in the occipital lobe, 

cuneal cortex, lingual gyri, medial frontal gyri. Additionally, FSL VBM showed clusters in 

the auditory cortex, caudate nucleai, hippocampi, and thalami.  

Interestingly, CAT-12 has shown age-associated growth in the anterior parts of thalami, while 

FSL VBM revealed GM decline in the posterior regions. While it might indicate regional dif-

ferences in development trajectories, the lack of overlap between the two methods’ results in 

that area makes it seem very inconclusive. 

Previously published VBM results in older children and young adults showed the prevalence 

of age-dependent GM loss in parietal areas (Guo et al., 2007, Mu et al., 2017, Wilke et al., 

2007). Such a tendency can be seen in this study as well, with additional involvement of the 

occipital lobe, which goes in line with the functional development of the visuospatial pro-

cessing in young children. Interestingly, one VBM study performed on a wide age group from 

7 to 23 years contradicts with presented results considering hippocampi, which were shown to 

have a positive correlation with age (Guo et al., 2007). 
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In volumetric studies in older children age-dependent GM decrease has been previously re-

ported in visual cortex and lingual gyri (Ball et al., 2012; Muftuler et al., 2011) as well as in 

caudate (Giedd et al., 1996), suggesting that maturation in these areas starts in early child-

hood.  

5.5 Segmentation quality assessment 

Use of Dice coefficient to estimate volume overlap between segmentations obtained from the 

utilization of different methods is a quite commonly used approach (Hosseini et al., 2014; 

Kazemi & Noorizadeh, 2014), especially within the rapidly growing field of neural networks-

based segmentation algorithms (Duong et al., 2019; Moeskops et al., 2016; Tushar et al., 

2019). However, the existing literature on pediatric segmentation mostly covers agreement 

between methodologies on subcortical structures segmentations (Herten et al., 2019; Lee et 

al., 2015; Loh et al., 2016; Schoemaker et al., 2016). Accuracy of brain tissue segmentations 

remains scarcely investigated in children. 

In this study, segmentation quality assessment was done using manually edited FreeSurfer 

segmentations as a gold standard. The results for both CAT-12 and FSL were fairly similar 

for 5-year-olds in the case of GM and cortical GM segmentations with a mean value of DSC 

being 0.82 for CAT-12 and 0.81 for FSL. WM segmentation quality was relatively higher, 

with CAT-12 – 0.79 versus 0.75 with FSL. This indicates that in older children, the choice of 

the processing method can be arbitrary, as long as possible segmentation errors are considered 

in further analysis. 

The agreement between segmentations of toddler scans was generally lower than in 5-year-

olds. FSL segmentations showed better result than CAT-12: 0.74 versus 0.69 for GM and 0.65 

versus 0.62 for WM. However, the DSCs are relatively low, and considering the need to pro-

vide externally brain-extracted images to FSL, FreeSurfer may be the best approach in the 

processing of toddler data. 

While 80% overlap between FreeSurfer output and CAT-12 and FSL segmentations can be 

considered satisfactory in some cases, segmentation-sensitive analysis such as VBM would 

benefit greatly from more robust methods with a better agreement. 
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6. Conclusions 

The current study has shown that both volumetric and VBM measures may vary significantly 

depending on the chosen method. While in the case of TIV or GM volume estimations high 

correlation between results may allow us to disregard the differences in absolute volumes and 

rather analyze development trajectories, we can hardly ignore the partial disagreement in 

VBM results. This highlights the importance of practicing caution in interpretation and per-

forming extensive quality controls while dealing with pediatric data. It should be emphasized 

that there is still a strong need for the development of new preprocessing tools that would be 

more reliable in the case of young children. 
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