18 research outputs found

    Design of an Autonomous Swimming Miniature Robot Based on a Novel Concept of Magnetic Actuation

    Get PDF
    Abstract-In this work, we propose a new concept for locomotion of a miniature jellyfish-like robot based on the interaction of mobile permanent magnets. The robot is 35 mm in length and 15 mm in width, and it incorporates a rotary actuator, a magnetic rotor, several elastic magnetic tails and a polymeric body embedding a wireless microcontroller and power supply. The novel magnetic mechanism is very versatile for numerous applications and can be tailored and adapted on the basis of different specifications. An analytical model of the magnetic mechanism allows to shape the robot design based on the specific application. The working principle of the robot together with the design, prototyping and testing phases are illustrated in this paper

    An overview of multiple DoF magnetic actuated micro-robots.

    No full text
    International audienceThis paper reviews the state of the art of untethered, wirelessly actuated and controlled micro-robots. Research for such tools is being increasingly pursued to provide solutions for medical, biological and industrial applications. Indeed, due to their small size they o er both high velocity, and accessibility to tiny and clustered environments. These systems could be used for in vitro tasks on lab-on-chips in order to push and/or sort biological cells, or for in vivo tasks like minimally invasive surgery and could also be used in the micro-assembly of microcomponents. However, there are many constraints to actuating, manufacturing and controlling micro-robots, such as the impracticability of on-board sensors and actuators, common hysteresis phenomena and nonlinear behavior in the environment, and the high susceptibility to slight variations in the atmosphere like tiny dust or humidity. In this work, the major challenges that must be addressed are reviewed and some of the best performing multiple DoF micro-robots sized from tens to hundreds m are presented. The di erent magnetic micro-robot platforms are presented and compared. The actuation method as well as the control strategies are analyzed. The reviewed magnetic micro-robots highlight the ability of wireless actuation and show that high velocities can be reached. However, major issues on actuation and control must be overcome in order to perform complex micro-manipulation tasks

    Improved kinematic models for two-link helical micro/nano-swimmers

    Get PDF
    Accurate prediction of the three-dimensional trajectories of micro/nano-swimmers is a key element as to achieve high precision motion control in therapeutic applications. Rigid-body kinematics of such robotic systems is dominated by viscous forces. The induced flow field around a two-link swimmer is investigated with a validated computational fluid dynamics (CFD) model. Force-free-swimming constraints are employed in order to simulate motion of bacteria-like swimmers in viscous medium. The fluid resistance exerted on the body of the swimmer is quantified by an improved resistance matrix, which is embedded in a validated resistive force theory (RFT) model, based on complex-impedance approach. Parametric studies confirmed that the hydrodynamic interaction between body and tail are of great importance in predicting the trajectories for such systems
    corecore