132 research outputs found

    Multi-level anomaly detection in industrial control systems via package signatures and LSTM networks

    Get PDF
    We outline an anomaly detection method for industrial control systems (ICS) that combines the analysis of network package contents that are transacted between ICS nodes and their time-series structure. Specifically, we take advantage of the predictable and regular nature of communication patterns that exist between so-called field devices in ICS networks. By observing a system for a period of time without the presence of anomalies we develop a base-line signature database for general packages. A Bloom filter is used to store the signature database which is then used for package content level anomaly detection. Furthermore, we approach time-series anomaly detection by proposing a stacked Long Short Term Memory (LSTM) network-based softmax classifier which learns to predict the most likely package signatures that are likely to occur given previously seen package traffic. Finally, by the inspection of a real dataset created from a gas pipeline SCADA system, we show that an anomaly detection scheme combining both approaches can achieve higher performance compared to various current state-of-the-art techniques

    AVOIDIT IRS: An Issue Resolution System To Resolve Cyber Attacks

    Get PDF
    Cyber attacks have greatly increased over the years and the attackers have progressively improved in devising attacks against specific targets. Cyber attacks are considered a malicious activity launched against networks to gain unauthorized access causing modification, destruction, or even deletion of data. This dissertation highlights the need to assist defenders with identifying and defending against cyber attacks. In this dissertation an attack issue resolution system is developed called AVOIDIT IRS (AIRS). AVOIDIT IRS is based on the attack taxonomy AVOIDIT (Attack Vector, Operational Impact, Defense, Information Impact, and Target). Attacks are collected by AIRS and classified into their respective category using AVOIDIT.Accordingly, an organizational cyber attack ontology was developed using feedback from security professionals to improve the communication and reusability amongst cyber security stakeholders. AIRS is developed as a semi-autonomous application that extracts unstructured external and internal attack data to classify attacks in sequential form. In doing so, we designed and implemented a frequent pattern and sequential classification algorithm associated with the five classifications in AVOIDIT. The issue resolution approach uses inference to educate the defender on the plausible cyber attacks. The AIRS can work in conjunction with an intrusion detection system (IDS) to provide a heuristic to cyber security breaches within an organization. AVOIDIT provides a framework for classifying appropriate attack information, which is fundamental in devising defense strategies against such cyber attacks. The AIRS is further used as a knowledge base in a game inspired defense architecture to promote game model selection upon attack identification. Future work will incorporate honeypot attack information to improve attack identification, classification, and defense propagation.In this dissertation, 1,025 common vulnerabilities and exposures (CVEs) and over 5,000 lines of log files instances were captured in the AIRS for analysis. Security experts were consulted to create rules to extract pertinent information and algorithms to correlate identified data for notification. The AIRS was developed using the Codeigniter [74] framework to provide a seamless visualization tool for data mining regarding potential cyber attacks relative to web applications. Testing of the AVOIDIT IRS revealed a recall of 88%, precision of 93%, and a 66% correlation metric

    ANNTAX - an artificial intelligence based decision support system

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    An integrated cyber security risk management framework and risk predication for the critical infrastructure protection

    Get PDF
    Cyber security risk management plays an important role for today’s businesses due to the rapidly changing threat landscape and the existence of evolving sophisticated cyber attacks. It is necessary for organisations, of any size, but in particular those that are associated with a critical infrastructure, to understand the risks, so that suitable controls can be taken for the overall business continuity and critical service delivery. There are a number of works that aim to develop systematic processes for risk assessment and management. However, the existing works have limited input from threat intelligence properties and evolving attack trends, resulting in limited contextual information related to cyber security risks. This creates a challenge, especially in the context of critical infrastructures, since attacks have evolved from technical to socio-technical and protecting against them requires such contextual information. This research proposes a novel integrated cyber security risk management (i-CSRM) framework that responds to that challenge by supporting systematic identification of critical assets through the use of a decision support mechanism built on fuzzy set theory, by predicting risk types through machine learning techniques, and by assessing the effectiveness of existing controls. The framework is composed of a language, a process, and it is supported by an automated tool. The paper also reports on the evaluation of our work to a real case study of a critical infrastructure. The results reveal that using the fuzzy set theory in assessing assets' criticality, our work supports stakeholders towards an effective risk management by assessing each asset's criticality. Furthermore, the results have demonstrated the machine learning classifiers’ exemplary performance to predict different risk types including denial of service, cyber espionage and crimeware

    Cyber Security of Critical Infrastructures

    Get PDF
    Critical infrastructures are vital assets for public safety, economic welfare, and the national security of countries. The vulnerabilities of critical infrastructures have increased with the widespread use of information technologies. As Critical National Infrastructures are becoming more vulnerable to cyber-attacks, their protection becomes a significant issue for organizations as well as nations. The risks to continued operations, from failing to upgrade aging infrastructure or not meeting mandated regulatory regimes, are considered highly significant, given the demonstrable impact of such circumstances. Due to the rapid increase of sophisticated cyber threats targeting critical infrastructures with significant destructive effects, the cybersecurity of critical infrastructures has become an agenda item for academics, practitioners, and policy makers. A holistic view which covers technical, policy, human, and behavioural aspects is essential to handle cyber security of critical infrastructures effectively. Moreover, the ability to attribute crimes to criminals is a vital element of avoiding impunity in cyberspace. In this book, both research and practical aspects of cyber security considerations in critical infrastructures are presented. Aligned with the interdisciplinary nature of cyber security, authors from academia, government, and industry have contributed 13 chapters. The issues that are discussed and analysed include cybersecurity training, maturity assessment frameworks, malware analysis techniques, ransomware attacks, security solutions for industrial control systems, and privacy preservation methods

    An Integrated Cybersecurity Risk Management (I-CSRM) Framework for Critical Infrastructure Protection

    Get PDF
    Risk management plays a vital role in tackling cyber threats within the Cyber-Physical System (CPS) for overall system resilience. It enables identifying critical assets, vulnerabilities, and threats and determining suitable proactive control measures to tackle the risks. However, due to the increased complexity of the CPS, cyber-attacks nowadays are more sophisticated and less predictable, which makes risk management task more challenging. This research aims for an effective Cyber Security Risk Management (CSRM) practice using assets criticality, predication of risk types and evaluating the effectiveness of existing controls. We follow a number of techniques for the proposed unified approach including fuzzy set theory for the asset criticality, machine learning classifiers for the risk predication and Comprehensive Assessment Model (CAM) for evaluating the effectiveness of the existing controls. The proposed approach considers relevant CSRM concepts such as threat actor attack pattern, Tactic, Technique and Procedure (TTP), controls and assets and maps these concepts with the VERIS community dataset (VCDB) features for the purpose of risk predication. Also, the tool serves as an additional component of the proposed framework that enables asset criticality, risk and control effectiveness calculation for a continuous risk assessment. Lastly, the thesis employs a case study to validate the proposed i-CSRM framework and i-CSRMT in terms of applicability. Stakeholder feedback is collected and evaluated using critical criteria such as ease of use, relevance, and usability. The analysis results illustrate the validity and acceptability of both the framework and tool for an effective risk management practice within a real-world environment. The experimental results reveal that using the fuzzy set theory in assessing assets' criticality, supports stakeholder for an effective risk management practice. Furthermore, the results have demonstrated the machine learning classifiers’ have shown exemplary performance in predicting different risk types including denial of service, cyber espionage, and Crimeware. An accurate prediction can help organisations model uncertainty with machine learning classifiers, detect frequent cyber-attacks, affected assets, risk types, and employ the necessary corrective actions for its mitigations. Lastly, to evaluate the effectiveness of the existing controls, the CAM approach is used, and the result shows that some controls such as network intrusion, authentication, and anti-virus show high efficacy in controlling or reducing risks. Evaluating control effectiveness helps organisations to know how effective the controls are in reducing or preventing any form of risk before an attack occurs. Also, organisations can implement new controls earlier. The main advantage of using the CAM approach is that the parameters used are objective, consistent and applicable to CPS

    Advanced Topics in Systems Safety and Security

    Get PDF
    This book presents valuable research results in the challenging field of systems (cyber)security. It is a reprint of the Information (MDPI, Basel) - Special Issue (SI) on Advanced Topics in Systems Safety and Security. The competitive review process of MDPI journals guarantees the quality of the presented concepts and results. The SI comprises high-quality papers focused on cutting-edge research topics in cybersecurity of computer networks and industrial control systems. The contributions presented in this book are mainly the extended versions of selected papers presented at the 7th and the 8th editions of the International Workshop on Systems Safety and Security—IWSSS. These two editions took place in Romania in 2019 and respectively in 2020. In addition to the selected papers from IWSSS, the special issue includes other valuable and relevant contributions. The papers included in this reprint discuss various subjects ranging from cyberattack or criminal activities detection, evaluation of the attacker skills, modeling of the cyber-attacks, and mobile application security evaluation. Given this diversity of topics and the scientific level of papers, we consider this book a valuable reference for researchers in the security and safety of systems

    Ami-deu : un cadre sémantique pour des applications adaptables dans des environnements intelligents

    Get PDF
    Cette thĂšse vise Ă  Ă©tendre l’utilisation de l'Internet des objets (IdO) en facilitant le dĂ©veloppement d’applications par des personnes non experts en dĂ©veloppement logiciel. La thĂšse propose une nouvelle approche pour augmenter la sĂ©mantique des applications d’IdO et l’implication des experts du domaine dans le dĂ©veloppement d’applications sensibles au contexte. Notre approche permet de gĂ©rer le contexte changeant de l’environnement et de gĂ©nĂ©rer des applications qui s’exĂ©cutent dans plusieurs environnements intelligents pour fournir des actions requises dans divers contextes. Notre approche est mise en Ɠuvre dans un cadriciel (AmI-DEU) qui inclut les composants pour le dĂ©veloppement d’applications IdO. AmI-DEU intĂšgre les services d’environnement, favorise l’interaction de l’utilisateur et fournit les moyens de reprĂ©senter le domaine d’application, le profil de l’utilisateur et les intentions de l’utilisateur. Le cadriciel permet la dĂ©finition d’applications IoT avec une intention d’activitĂ© autodĂ©crite qui contient les connaissances requises pour rĂ©aliser l’activitĂ©. Ensuite, le cadriciel gĂ©nĂšre Intention as a Context (IaaC), qui comprend une intention d’activitĂ© autodĂ©crite avec des connaissances colligĂ©es Ă  Ă©valuer pour une meilleure adaptation dans des environnements intelligents. La sĂ©mantique de l’AmI-DEU est basĂ©e sur celle du ContextAA (Context-Aware Agents) – une plateforme pour fournir une connaissance du contexte dans plusieurs environnements. Le cadriciel effectue une compilation des connaissances par des rĂšgles et l'appariement sĂ©mantique pour produire des applications IdO autonomes capables de s’exĂ©cuter en ContextAA. AmI- DEU inclut Ă©galement un outil de dĂ©veloppement visuel pour le dĂ©veloppement et le dĂ©ploiement rapide d'applications sur ContextAA. L'interface graphique d’AmI-DEU adopte la mĂ©taphore du flux avec des aides visuelles pour simplifier le dĂ©veloppement d'applications en permettant des dĂ©finitions de rĂšgles Ă©tape par Ă©tape. Dans le cadre de l’expĂ©rimentation, AmI-DEU comprend un banc d’essai pour le dĂ©veloppement d’applications IdO. Les rĂ©sultats expĂ©rimentaux montrent une optimisation sĂ©mantique potentielle des ressources pour les applications IoT dynamiques dans les maisons intelligentes et les villes intelligentes. Notre approche favorise l'adoption de la technologie pour amĂ©liorer le bienĂȘtre et la qualitĂ© de vie des personnes. Cette thĂšse se termine par des orientations de recherche que le cadriciel AmI-DEU dĂ©voile pour rĂ©aliser des environnements intelligents omniprĂ©sents fournissant des adaptations appropriĂ©es pour soutenir les intentions des personnes.Abstract: This thesis aims at expanding the use of the Internet of Things (IoT) by facilitating the development of applications by people who are not experts in software development. The thesis proposes a new approach to augment IoT applications’ semantics and domain expert involvement in context-aware application development. Our approach enables us to manage the changing environment context and generate applications that run in multiple smart environments to provide required actions in diverse settings. Our approach is implemented in a framework (AmI-DEU) that includes the components for IoT application development. AmI- DEU integrates environment services, promotes end-user interaction, and provides the means to represent the application domain, end-user profile, and end-user intentions. The framework enables the definition of IoT applications with a self-described activity intention that contains the required knowledge to achieve the activity. Then, the framework generates Intention as a Context (IaaC), which includes a self-described activity intention with compiled knowledge to be assessed for augmented adaptations in smart environments. AmI-DEU framework semantics adopts ContextAA (Context-Aware Agents) – a platform to provide context-awareness in multiple environments. The framework performs a knowledge compilation by rules and semantic matching to produce autonomic IoT applications to run in ContextAA. AmI-DEU also includes a visual tool for quick application development and deployment to ContextAA. The AmI-DEU GUI adopts the flow metaphor with visual aids to simplify developing applications by allowing step-by-step rule definitions. As part of the experimentation, AmI-DEU includes a testbed for IoT application development. Experimental results show a potential semantic optimization for dynamic IoT applications in smart homes and smart cities. Our approach promotes technology adoption to improve people’s well-being and quality of life. This thesis concludes with research directions that the AmI-DEU framework uncovers to achieve pervasive smart environments providing suitable adaptations to support people’s intentions
    • 

    corecore