

To my parents

 iv

ACKNOWLEDGMENT

First and foremost, all praise is due to Allah, the Almighty, Who gave me the

opportunity, strength, and patience to carry out this work.

 Acknowledgment is due to King Fahd University of Petroleum & Minerals,

and the Systems Engineering Department, for their support of this research

work.

Special thanks go to Dr. Lahouari Cheded and Dr. Onur Toker, thesis

advisors, for their patient guidance and generous support for this research, and

to Dr. Moustafa El-Shafei for his valuable advice and helpful remarks. I would

also like to thank all faculty and staff members who provided support for this

research.

 I would like to express my appreciation to my colleagues at Saudi Aramco

for their support and encouragement, and for sharing the wealth of information

that enriched the content of this research.

 Finally, I would like to express my sincere gratitude to my mother for her

continuous moral support, my father for his valuable comments on this

research, my wife for her constant support and patience during those difficult

days, and for all friends and family members for their concerns and

encouragement.

 v

TABLE OF CONTENTS

ACKNOWLEDGMENT iv

TABLE OF CONTENTS v

LIST OF TABLES viii

LIST OF FIGURES ix

THESIS ABSTRACT (ENGLISH) xi

THESIS ABSTRACT (ARABIC) xii

CHAPTER 1. INTRODUCTION 1

1.1 History of Process Automation 2
1.2 Typical Applications of Computer Control 9

1.2.1 Process Monitoring 10
1.2.2 Continuous Process Control 11
1.2.3 Discrete Process Control 13

1.3 Use of Internet in Process Automation 14
1.4 Literature Review 18

1.4.1 Academic Experiments 18
1.4.2 Industrial Applications 20

1.5 Objective of the Thesis 25
1.6 Organization of the Report 27

CHAPTER 2. TRADITIONAL SCADA SYSTEMS 28

2.1 Definition of SCADA 28
2.2 Applications of SCADA Systems 30

2.2.1 Applications Suitable for SCADA 30
2.2.2 Applications Not Suitable for SCADA 31
2.2.3 Industry Demand for SCADA 32

2.3 Components of SCADA Systems 35
2.3.1 Field Instrumentation 35
2.3.2 Remote Terminal Unit (RTU) 37
2.3.3 Master Terminal Unit (MTU) 38
2.3.4 Communications 39

2.4 Evolution of SCADA systems 43
2.4.1 Field-Level Communications 43
2.4.2 High-Level Communications 44

2.5 Cost of implementing a SCADA System 45
2.6 Disadvantages/Implementation Concerns 46

 vi

CHAPTER 3. INTERNET-BASED SCADA SYSTEMS 49

3.1 Internet Technologies Applicable to SCADA 49
3.1.1 Networking Technologies 49
3.1.2 Web Technologies 52

3.2 Definition of Internet-Based SCADA 58
3.3 Case Studies from Oil & Gas Industry 59

3.3.1 British Petroleum 59
3.3.2 Shell 62
3.3.3 ChevronTexaco 64
3.3.4 Saudi Aramco 66

3.4 Advantages of Internet-Based SCADA 68
3.5 Disadvantages/Implementation Concerns 69

CHAPTER 4. JAVA AND XML 73

4.1 Why Java and XML? 73
4.2 Overview of Java 74

4.2.1 Java Platform 74
4.2.2 Java Program Structure 76
4.2.3 Java Characteristics 76

4.3 Overview of XML 78
4.3.1 The XML Document 79
4.3.2 XML Constraints 79
4.3.3 XML Parsing 81
4.3.4 XML Characteristics 85

4.4 Java and XML Combined 86
4.4.1 Methods to Combine Java and XML 86
4.4.2 Characteristics of Combined Java and XML 87

4.5 Applications of Java and XML in e-Business 90
4.5.1 Web Services 90
4.5.2 Web Services Standards 92
4.5.3 Web Services Platforms 93

4.6 Applications of Java and XML in Process Automation 96
4.6.1 Web-Enabling 96
4.6.2 Web-Integration 96

CHAPTER 5. DESIGN OF WEB-ENABLED CONTROL SYSTEM 97

5.1 Dual Tank Process 97
5.2 System Components 100

5.2.1 Data Acquisition (DAQ) Card 100
5.2.2 Digital Signal Processing (DSP) Card 101
5.2.3 Video Capture Card 101

5.3 Java Development 102
5.3.1 Java Drivers 102
5.3.2 Java Servlets 102
5.3.3 Java Applets 104

 vii

CHAPTER 6. DESIGN OF WEB-INTEGRATED SCADA SYSTEM 106

6.1 Tank Transfer Process 106
6.2 Use Case Diagram 108
6.3 Component/Deployment Diagram 110

6.3.1 Document-Oriented Web Services 110
6.3.2 RPC-Oriented Web Services 110

6.4 Class Diagram 112
6.4.1 Process Entities 112
6.4.2 Java Drivers 114
6.4.3 Java Servlets 114
6.4.4 Java Applets 115

6.5 Sequence Diagram 116
6.5.1 Monitoring Process 116
6.5.2 Shipping Process 121

6.6 State Diagram 141
6.6.1 Order States 141
6.6.2 System States 143

CHAPTER 7. FINDINGS AND RESULTS 144

7.1 Research Findings 144
7.1.1 Java Uses 144
7.1.2 XML Uses 146

7.2 Hypothesis Test Results 147
7.3 Conclusions 152
7.4 Future Work 152

REFERENCES 154

VITA 157

 viii

LIST OF TABLES

TABLE 3.1: FUNCTIONAL COMPARISON BETWEEN WEB CLIENTS 55

TABLE 7.1: COMPARISON BETWEEN TRADITIONAL AND INTERNET-

 BASED SCADA SYSTEMS 148

 ix

LIST OF FIGURES

Figure 1.1: Distributed Control System (DCS) 4

Figure 1.2: Programmable Logic Controller (PLC) System 6

Figure 1.3: Supervisory Control and Data Acquisition (SCADA) System 8

Figure 1.4: Web enabling of a process control system 16

Figure 1.5: Research plan 26

Figure 2.1: SCADA market 33

Figure 2.2: A typical SCADA system architecture 36

Figure 2.3: Typical industrial networks compared to the Internet 48

Figure 3.1: ISO/OSI network model 50

Figure 3.2: Web services and web browsers 53

Figure 3.3: BP's system implements each RTU as a web server 60

Figure 3.4: Shell's system implements the MTU as a web server 63

Figure 3.5: ChevronTexaco's web portal uses Java and XML 65

Figure 3.6: Saudi Aramco's integrated system 67

Figure 3.7: Cost comparison (from BP case study) 70

Figure 4.1: The Java Platform 75

Figure 4.2: Sample XML document 80

Figure 4.3: Sample DTD file 82

Figure 4.4: Sample XML Schema 83

Figure 4.5: XML Parsing 84

Figure 4.6: Java and XML data binding 88

Figure 4.7: The web services' publish-discover-bind model 91

Figure 4.8: Sun J2EE platform 94

Figure 4.9: Microsoft .NET platform 95

Figure 5.1: A lab-scale Java-based control system 98

Figure 5.2: The CE105 dual tank system 99

Figure 5.3: The servlet processing mechanism 103

Figure 5.4: The graphical user interface applet 105

Figure 6.1: Overview of the tank transfer system 107

 x

Figure 6.2: Use Case Diagram 109

Figure 6.3: Component/Deployment Diagram 111

Figure 6.4: Class Diagram 113

Figure 6.5: Sequence Diagram (Overall View of Monitoring Process) 117

Figure 6.6: Sequence Diagram (Monitoring Process on Dispatching Node) 118

Figure 6.7: Sequence Diagram (Monitoring Process on Shipping Node) 119

Figure 6.8: Sequence Diagram (Monitoring Process on Receiving Node) 120

Figure 6.9: Sequence Diagram (Overall view of Shipping Process) 122

Figure 6.10: Sequence Diagram (Overall View of Create Order Process) 124

Figure 6.11: Sequence Diagram (Create Order) 125

Figure 6.12: Sequence Diagram (Create Order – Continued) 126

Figure 6.13: Sequence Diagram (Create Order – Continued) 127

Figure 6.14: Sequence Diagram (Overall View of Start Shipping Process) 129

Figure 6.15: Sequence Diagram (Start Shipping) 130

Figure 6.16: Sequence Diagram (Start Shipping – Continued) 131

Figure 6.17: Sequence Diagram (Overall View of Stop Shipping Process) 133

Figure 6.18: Sequence Diagram (Stop Shipping) 134

Figure 6.19: Sequence Diagram (Stop Shipping – Continued) 135

Figure 6.20: Sequence Diagram (Overall View of Close Order Process) 137

Figure 6.21: Sequence Diagram (Close Order) 138

Figure 6.22: Sequence Diagram (Close Order – Continued) 139

Figure 6.23: Sequence Diagram (Close Order – Continued) 140

Figure 6.24: State Diagram 142

 xi

THESIS ABSTRACT

Name: Ramadhan Alaaddin Nouraddin Fan

Title: Investigation of Internet-Based SCADA Systems: Design and

Applications

Major Field: Systems Engineering

Date of Degree: June 2004

The Internet brings many new features to the process control and automation
field, which were previously difficult or costly to implement in traditional control
systems, such as remote accessibility to the plant, information sharing, and
software standardization. The Internet, however, has its limitations when
compared to a traditional control system in terms of functionality, performance,
security and reliability. Recent emerging web technologies are promising to
overcome many of these limitations, and are helping the Internet to evolve into a
highly graphical, interactive and collaborative environment.

In this thesis, we investigate the design and applications of Internet-based
Supervisory Control & Data Acquisition (SCADA) systems. SCADA systems are
typically distributed in nature and are more suitable for this investigation than
other types of control systems. First, we provide an overview of what is currently
being done to implement Internet-based SCADA systems and compare them to
the traditional SCADA systems. Then we discuss the latest web technologies and
analyze their uses in industrial automation. Finally, we evaluate how certain
web technologies, namely Java and XML, can improve Internet-based SCADA
systems. This is done by proposing a software design for a web-integrated
SCADA system using the standard UML design approach.

Master of Science Degree
King Fahd University of Petroleum & Minerals

Dhahran, Saudi Arabia
June 2004

 xii

 ملخص الرسالة

 ن فـــانـديـورالـن نـديـلاءالـرمضـان ع : الاســــــــــــــــم
 دراسـة في تصميم وتطبيقـات نظـم التحـكم الرقـابي واآتسـاب البيـانات : عنوان الرسـالة

 المعتمـدة على الانتـرنت
 هـنـدســة الـنـظـــم : التخــــــصــص
 هـ1425ربيع الثاني : تاريخ التخــرج

 التي يمكن استغلالها في مجال الأتمتة والتحكم الصناعي، رنت العديد من المزاياتوفر شبكة الانت
والتي آان من الصعب أو المكلف تطبيقها في السابق باستخدام نظم التحكم التقليدية، مثل إمكانية
الدخول إلى المعامل عن بعد، مشارآة أآثر من جهة في استخدام المعلومات، وتطبيق الأساليب

لكن استخدام الانترنت مصاحب بجملة معوقات تجعل منه أقل آفاءة وأداءًا . ية في البرمجةالمعيار
هذه المعوقات أصبح بالإمكان تخطيها مع بدء ظهور تقنيات . وأمناً واعتمادية من نظم التحكم التقليدية

ح أآثر بيانية جديدة على الشبكة العنكبوتية والتي من شأنها المساهمة في تطوير بيئة الانترنت لتصب
 .وتفاعلية وتعاونية

نقوم في هذه الرسالة بدراسة أساليب استخدام الانترنت في تصميم وتطبيق نظم التحكم الرقابي

هذا النوع من نظم التحكم يعد الأآثر ملائمة لهذه الدراسة . SCADAواآتساب البيانات المعروفة باسم
المبذولة حالياً لتطبيق نظم التحكم المعتمدة على نستعرض أولاً الجهود . الموزعةنظراً لطبيعته

ثم نناقش آخر التقنيات المستجدة على الشبكة . الانترنت ونقوم بمقارنتها بنظم التحكم التقليدية
وأخيراً نقيّم قدرة بعض هذه التقنيات، . العنكبوتية وندرس إمكانية استخدامها في الأتمتة الصناعية

نثبت ذلك بعمل . ، في تحسين نظم التحكم المعتمدة على الانترنتXML وبالأخص تقنيات الجافا والـ
تصميم مقترح لنظام تحكم رقابي واآتساب بيانات مدمج عن طريق الانترنت باستخدام لغة النمذجة

 .UMLالموحدة

 الـعـلـــومالماجستير فيدرجـة
 جـامـعــة الـمــلك فـهـــد للـبـتــرول والـمـعــادن

 ران، المملكة العربية السعوديةالظه
 هـ1425ربيع الثاني

CHAPTER 1

INTRODUCTION

The use of the Internet in process control and automation industry has been

driven by two main forces: (1) the commercial trends in computer and

information technology fields, and (2) the needs of the process and

manufacturing industries. Whenever a match occurs between these two driving

forces, companies try to capitalize on the available technology to find technically

and economically feasible solutions for industrial problems. This correlation

between computer technology and control applications has been historically

evident in the design of many traditional process control systems.

The Internet brings many new features to the process control and

automation field, which were previously difficult or costly to implement in

traditional control systems, such as remote accessibility to the plant,

information sharing, and software standardization. The Internet, however, has

its limitations when compared to a traditional control system in terms of

functionality, performance, security and reliability. Nevertheless, recent

emerging web technologies are promising to overcome many of these limitations,

and are helping the Internet to evolve into a highly graphical, interactive and

collaborative environment.

 1

 2

In this chapter, we provide a historical overview of how the process

automation field evolved, how computer control systems are becoming the norm

for monitoring and controlling a process plant, and how the Internet will play a

major role in this continuing evolution. This is followed by a literature review of

previous work in this field, a statement of the objective of this thesis work, and

finally a summary of the organization of the remaining chapters in this report.

1.1 History of Process Automation

In the 1960’s, most industrial process automation was done pneumatically. Air

pressure, typically in the range of 3-15 psi, was used for communication and

control. The process variable was measured and converted to an air pressure

signal by a pneumatic transmitter, the transmitter sends the air pressure signal

through a tube to a receiver, and the receiver serves as an indicator, controller,

recorder, or relay. Pneumatic actuators were used to control the final control

elements. Pneumatic relays were used for logic functions, such as high or low

select, as well as simple arithmetic functions, such as addition, multiplication,

square root, and totalization. All working parts within pneumatic instruments

were mechanical [1, 2].

Pneumatic control systems have been used for many years due to the fact

that their components are inexpensive, reliable, and intrinsically safe. This was

critical for applications that existed in explosive environments. Pneumatic

instrumentation was also more resistant to corrosive environments. However,

one of the main disadvantages of pneumatic signal transmission is the problem

of transmitting the signal over significant distances. A time lag is associated

 3

with the transmission of the pressure signal through the instrument tubing. As

the distance that the signal must travel increases, the speed of the response of

the pneumatic transmission systems increasingly becomes a problem for fast

loops such as flow.

With the introduction of the transistor, many pneumatic devices were

replaced by electronic counterparts. Electronic signals convert the process or

control variable to an analog electric signal, usually a voltage (1 to 5 volts) or a

current (4 to 20 mA). Electronic signal transmission has a virtually

instantaneous time response and hence nearly unlimited distances were

achievable by wire, radio linkage, or microwave signals. However, electronic

control systems had the disadvantage of becoming very complex for large

applications. Therefore, it was not recommended to use electronic instruments

except for simple control loops or logic functions.

The advent of the microprocessor in the late 1960's has revolutionized the

process control industry. Digital signals were used to approximate analog

signals over time. The electronic analog signal is sampled at a predetermined

frequency with the value of the last sample held until the next sample is taken.

Analog measurements are converted to digital signals through an analog/digital

(A/D) converter, and control outputs are converted back from digital to analog

(D/A) before being used by the field devices. Digital controllers have tremendous

control flexibility compared to its pneumatic or electronic counterparts. They

can be used for stand-alone single-loop control, or they can be linked together

on a common data highway to provide distributed control capabilities.

Although microprocessor-based control systems started in the late

 4

Enterprise
Level

Operations
Level

Plant Area
Closed Loop

Control

Enterprise
Level

Operations
Level

Plant Area
Closed Loop

Control

Figure 1.1: Distributed Control System (DCS)

 5

1960’s, they were used merely to supervise the classical pneumatic or electronic

systems. It was not until the mid 1970’s that the first Distributed Control

Systems (DCS) came into existence. A DCS system (Figure 1.1) distributes the

functions of a control system into many different microprocessors. The

microprocessors form small subsystems which are physically distributed

throughout the facility and linked together via a communication or data

highway. The operator interface is located in a central location such as a control

room. The operator interface includes color graphics with dynamic process data,

faceplate displays, trend data, and an alarm summary or annunciator displays.

For discrete processes, hardwired relays were used to perform the

sequential logic control functions. Electromechanical relays were wired in series

or parallel with field input signals to turn equipment on and off. Input devices

such as pushbuttons, switches, or contacts were used to allow current to flow

through the circuit or cause a break in the current flow, thereby switching an

instrument on or off. Instruments that were controlled by relay logic outputs

were coils, timers, lights, valves, horns, and control relays. The main

disadvantage of these hardwired relays is that expansion was not possible

without disabling the system, the control logic could not be changed without

adding or deleting relays or disabling the system, and it was difficult to

implement and troubleshoot a complex logic system.

Due to the difficulties of hardwired relay systems, a new type of

microprocessor-based control system, known as the Programmable Logic

Controller (PLC), appeared in the early 1970’s in the automotive industry. The

PLC systems (Figure 1.2) replaced the hardwired relay panels and provided the

 6

SIEMENS

ICSIMAT

SF
RUN
STOP

Q0.0
Q0.1
Q0.2
Q0.3
Q0.4
Q0.5

I0.0
I0.1
I0.2
I0.3
I0.4
I0.5
I0.6
I0.7

S7-200

CPU 212

PG 740

SIEMENS

7 8 9

4 5 6

1 2 3

0

.
D E F

A B C I N S
D E L

S H IFT H E L P

E SC

EN TE R

A CK

S IMATIC OP17

S HIFT

H ELPK1 K5 K6 K7 K8K2 K3 K4

K9 K10 K11 K12 K13 K14 K15 K16

SIEM

SIMAT

SF
RUN
STOP

ENS

IC

Q0.0
Q0.1
Q0.2
Q0.3
Q0.4
Q0.5

I0.0
I0.1
I0.2
I0.3
I0.4
I0.5
I0.6
I0.7

S7-200

CPU 212SIEM

SIMAT

SF
RUN
STOP

ENS

IC

Q0.0
Q0.1
Q0.2
Q0.3
Q0.4
Q0.5

I0.0
I0.1
I0.2
I0.3
I0.4
I0.5
I0.6
I0.7

S7-200

CPU 212

PG 740

SIEMENS

PG 740

SIEMENS

7 8 9

4 5 6

1 2 3

0

.
D E F

A B C I N S
D E L

S H IFT H E L P

E SC

EN TE R

A CK

S IMATIC OP17

S HIFT

H ELPK1 K5 K6 K7 K8K2 K3 K4

K9 K10 K11 K12 K13 K14 K15 K16

7 8 9

4 5 6

1 2 3

0

.
D E F

A B C I N S
D E L

S H IFT H E L P

E SC

EN TE R

A CK

S IMATIC OP17

S HIFT

H ELPK1 K5 K6 K7 K8K2 K3 K4

K9 K10 K11 K12 K13 K14 K15 K16

FM

SV

FM

SV

Human-Machine
Interface (HMI)

PLC Controller

Input/Output

Figure 1.2: Programmable Logic Controller (PLC) System

 7

flexibility of changing the logic program whenever the application at hand

changed. PLCs also demonstrated a high degree of reliability at a fairly low cost.

That is why they became more and more popular in the process control

industry, and they have grown in the market to perform virtually any control

application ranging from simple on-off control to relatively complex control

applications.

For other types of applications which require communication with various

remote sites, the Supervisory Control and Data Acquisition (SCADA) system was

introduced, also in the late 1960’s. The SCADA system (Figure 1.3) gathers

information from remote terminal units (RTUs) that are usually scattered across

remote geographical locations, such as across a pipeline or multiple power

stations. The SCADA talks to the RTUs through dedicated communications

circuits, and monitors the transmission of information in real time. If a leak on a

pipeline occurs for example, the RTUs transfer the information back to the

central SCADA system, and the necessary analysis and control actions are

taken within seconds.

Starting in the 1980's, advances in the field of information technology (IT)

and the development of personal computers (PCs) and communication networks

such as local area networks (LANs) and wide area networks (WANs) have opened

up yet more possibilities for process automation. The use of standard computers

and communication networks in the industrial environment enabled the use of

ordinary, off-the-shelf products to do the job of custom-built DCS, PLC or

SCADA system. PC-based control systems offer users the flexibility and

scalability that proprietary vendors could not meet in the past. The distinction

 8

Remote Locations

Multi-Vendor Environment

Open Loop Control

Enterprise
Level

Operations
Level

Public or Private
Network

Local
Control Local

Control

Local
Control

Remote Locations

Multi-Vendor Environment

Open Loop Control

Enterprise
Level

Operations
Level

Public or Private
Network

Local
Control Local

Control

Local
Control

Figure 1.3: Supervisory Control and Data Acquisition (SCADA) System

 9

between these systems is becoming more and more blurry as they begin to adopt

each others’ functionality and add similar features to satisfy the end user

demands and earn additional market share.

1.2 Typical Applications of Computer Control

Today, almost all new instrumentation systems are based upon microprocessor

technology, ranging from the small single loop digital controllers to the

sophisticated and powerful multi-processor distributed control systems.

Computers are typically interfaced to the standard instrumentations to provide

more mathematical power for advanced control applications and optimization

routines which are not available in the base level instrumentation. Computers

also provide more sophisticated operator interface and display capabilities which

can be used to monitor process variables, process calculated variables, send

setpoints or control commands, and generate reports and historical data trends.

Because computer control systems are less reliable than the redundant

fail-safe instrumentation systems, they are not directly connected to the

process. They are interfaced with instrumentation systems to provide a fall-back

operating position. If the main computer processing fails, the instrumentation

systems would resume their work and the plant can still operate without the

computer. Typically, the computer control system can either be a centralized

processing system, in which only one processor performs all the tasks, or it can

be a distributed networked system, with each individual node on the network

responsible for a specific application, thus providing more robust control

features [1, 2].

 10

1.2.1 Process Monitoring

The purpose of computer-based process monitoring is to gather and view

plant and facility information. Process monitoring is used for data acquisition

and presentation, not for process control. The monitoring system can calculate

items such as reactor yields and economic variables and can display process

variables such as reactor temperatures, tank levels, and process flow rates. This

information can be displayed to the operator and presented in an easy-to-use

form. For example, color graphics can be used to present process alarms and

data to operators in a form that can be easily and quickly understood. However,

monitoring systems are not limited to use by the operator. The same information

can be analyzed, reformatted and presented to engineers and management. This

information reflects the present condition of the facility and aids in optimum

planning and scheduling.

The traditional process monitoring application is designed for use by the

operator. Process alarms and the status of the plant are displayed. Graphics,

tables, and plots of plant variables are used to help the operator understand

large amounts of data. Various mathematical operations can also be performed

to aid the operator. For example, a noisy process signal can be passed through a

digital filter. Another common application is the use of a program to estimate a

process variable that cannot be measured; an example of this is the on-line

estimation of the octane of a gasoline stream from a reforming unit.

Process monitoring systems can be thought of as information managers.

Modern process monitoring systems are no longer limited to operator interfaces;

they have the ability to distribute real-time information to engineers and

 11

managers. These systems are able to interface with existing DCSs, PLCs, and

other sources to accomplish this goal. Management requires up-to-date

information for accurate planning and scheduling decisions. Engineering needs

both current information on facility activities and historical data for engineering

studies. Ideally, a monitoring system will allow all functions access to the facility

database and will present the data in a useful format. Management should also

be able to pass information back to operations in order to implement their goals.

As technology advances, the differences between a DCS and a process

monitoring system become less distinct. However, distributed control systems

are primarily designed as process control systems. These systems, including

their communications network, are usually fully redundant. The graphics in

these systems are very powerful, but they are directed toward operators and

process control. The same is true of data management with a DCS; engineering

studies can be performed and plant reports can be generated, but these tasks

can be more easily accomplished by process monitoring systems. Finally, DCSs

are generally expensive. In contrast, process monitoring systems are directed

more toward information management. These systems are not as critical to plant

operations and hence are not fully redundant. They are relatively inexpensive.

1.2.2 Continuous Process Control

A continuous process is one in which process material is continually

flowing through the process equipment. Continuous process control involves the

continuous measurement of a process variable via an analog signal and the

adjustment of a final control element, such as a control valve to keep the

 12

process measurement at a desired value. Process values are maintained close to

their targets or setpoints despite changes in the process or process upsets.

Disturbances in the process caused by changes in, for example, feed

composition and rate, fuel gas composition, or pressure are kept to a minimum.

Computer control systems for continuous processes use either direct or

supervisory control. With direct control, the control algorithm calculation (such

as PID) is done within the computer, and the computer then sends the valve

position signal directly to the control valve through the controller. In supervisory

control, the setpoint is calculated in the computer and then sent to the

controller. The controller then performs the control algorithm calculation and

determines the proper valve position. Many of the original computer control

systems used direct control because the early instrumentation was not designed

for supervisory control. However, due to the slow response of computer control

systems compared to instrumentation systems, the need for supervisory control

arose.

Usually, server-level computers provide the mathematical power for some

of the advanced control functions and optimization routines. PCs or

workstations are used for monitoring and operator interface, or for relatively

simple control applications. A common practice is to use PCs interfaced with

single loop controllers to perform supervisory control functions. PCs are

generally not reliable enough for standalone direct control or for large complex

processes.

The DCS controllers are typically responsible for a large number of

control loops and have a large input/output (I/O) count. Because an individual

 13

controller is responsible for a large portion of the facility, backup systems have

been developed to prevent catastrophic events upon DCS hardware failure.

Many of the functions within the system are redundant and have automatic

backup upon failure. All control functions and most input and output (I/O)

processing is capable of being made either redundant or fault tolerant. Almost

all continuous control applications of significant size are using distributed

control systems. Those applications requiring special or dedicated systems can

be interfaced to the DCS, allowing the operator a single window to the process.

1.2.3 Discrete Process Control

Discrete or sequential control is often referred to as on/off control. It is a

series of discrete control actions performed in a specific order or sequence.

These actions can be the opening or closing of valves or the starting or stopping

of devices. The control actions can be initiated by an operator or a process

condition or as a result of the passage of a given period of time. Sequential

control applications include pipelines, water treatment, utilities, effluent

processing, and packaging.

Discrete control computers are used above and beyond the standard data

acquisition and control system such as the PLC. The type of computer system

used for discrete control systems are typically the Supervisory Control and Data

Acquisition (SCADA) systems. SCADA systems are computer systems that allow

the control and monitoring of a process in remote areas from a centralized

location. From this centralized location an operator can view the entire process

through graphic and trend displays and initiate commands and setpoint

 14

changes to the field. SCADA systems are mainly dedicated to monitoring and

discrete control applications, but they can also perform some simple continuous

control functions.

The distance between the centralized location and the individual process

can be quite large, covering many miles. Communication is therefore a key

ingredient of a SCADA system. Because SCADA systems are capable of passing

data over large distances, they fulfill the application needs of the pipeline and

producing platform operations. Particular applications include leak detection,

batch tracking, well tests, tank monitoring, inventory reports, and meter

proving.

1.3 Use of Internet in Process Automation

One of the most obvious advantages of the Internet is the remote accessibility of

plant systems and the sharing of this information among various people in the

organization. Another advantage is the distributed open-system architecture

that the Internet provides and hence allowing heterogeneous systems to

communicate with each other. A third advantage is the use of the standard web

browser, which provides a uniform human-machine interface (HMI), hence

minimizing maintenance and training costs. All these advantages led many

control system vendors to offer web-enabled versions of their traditional control

systems, or in some cases, provide complete web-based solutions for certain

applications.

On the other hand, limitations of the Internet arise from the fact that

Internet applications have been historically based on textual web pages and

 15

transactional databases; whereas control systems require interactive graphical

displays with real-time dynamic data. The functionality and performance

constraints, in addition to concerns inherent to the Internet such as security

and reliability, limit the widespread use of web-based control systems.

Most of the implementations so far utilize the Internet (or intranet) as a

medium for communication and plant management information only. Few have

tried to control a process remotely, or implement what can be called an Internet-

based control system. A typical web enabled plant monitoring application

(Figure 1.4) may be limited to converting DCS displays into web pages then

publish them through a web server. The user accesses the web server to view

the displays remotely using a normal web browser from any general-purpose PC.

The user may have additional features such as trending, reporting and

interfacing with other desktop tools.

The Internet can be interpreted in two ways: it can be viewed as a

communication medium that is composed of inter-connected networks (actually

this is where the name came from); or it can mean the Web, where you have web

servers providing the services and the browsers as the clients. In both cases,

TCP/IP is used as the networking protocol, and the physical connection and

data link are established through standard topologies like Ethernet, Token Ring

and ATM. Many of today’s process automation systems are designed to operate

on one of these standard network technologies. Therefore, many of these

systems can be easily connected to the Internet/Intranet provided that physical

connection can be made between the plant's LAN and the corporate WAN.

 16

Operation

Controllers

LAN/WAN

Web Server

Web Browsers
(Graphics, Trends, Reports)

Operation

Controllers

LAN/WAN

Web Server

Web Browsers
(Graphics, Trends, Reports)

Figure 1.4: Web enabling of a process control system

 17

This connectivity, however, only satisfies the lower four layers of the OSI

networking model. In order to establish communications on the upper layers,

applications must know how to talk to each other over the network. This has

been the major obstacle in process system integration so far, and the normal

practice to overcome this problem has been to write custom drivers and develop

code to link between the various systems. The same practice was also used to

link between the various devices within a plant system. This is all beginning to

change with the use of object-oriented software.

The de facto communication standards are playing a major role in

process automation. Ethernet and TCP/IP are becoming the network standard

because of their cost-effectiveness, cross-industry pervasiveness, and natural

compatibility with web-based user interfaces. Also, object-oriented software are

promising easy integration between various systems without the need for

custom drivers or code. It is now possible to define devices, people, and forms

and how they should act with each other in the context of larger manufacturing

and business processes.

New developments in e-commerce are providing more alternatives for

process automation through the web. The web services concept offer new tools

for enterprise integration. Microsoft's .NET framework and Sun Microsystems'

Java2 Enterprise Edition (J2EE) are both based on XML (Extensible Markup

Language) which allows applications to communicate and share data over the

Internet, regardless of the operating system or programming language.

In addition, advances in database technology also play a major role in

real-time data communication. Vast quantities of real-time information can now

 18

be defined and captured efficiently. They can also be easily distributed

(mirrored) to all the various points on the network where it is needed for

analysis, processing or interaction. Web-based real-time data streaming from

field units can be visualized in real-time in customized user interfaces. For

applications that do not require constant real-time data streaming, data can be

viewed on demand.

1.4 Literature Review

The concept of monitoring and controlling a process via the Internet and using a

standard web browser is not a new idea. It has been experimented with in

university laboratories, as well as commercially offered by process automation

vendors.

1.4.1 Academic Experiments

Most of the laboratory experiments were driven by the need for

establishing "virtual" control labs that can be used for distance e-learning. One

of these virtual labs was developed by Dr. Toker and Dr. Al-Sunni of KFUPM

System Engineering Department [3]. This project is explained in more detail in

Chapter 5 of this thesis report. Other examples found in the literature are

mentioned here.

One of these examples is the work done by Sanchez et al. at the

Universidad Nacional de Educacion a Distancia in Spain [4]. The system

consists of a simulation engine developed in MATLAB, and a control application

developed in Java. The Java application is used as a stand-alone control system,

 19

while an equivalent Java applet (which is a small program embedded within a

web page) is used for web-based remote control. In both cases, the system

maintains a clear separation between the math and simulation engine (MATLAB)

and the graphical experimentation interface (Java). This way, the math engine

can be replaced with a different one or with a real plant.

Another virtual lab was developed by Ramakrishnan et al. at the National

University of Singapore [5]. In this system, a physical experimentation

apparatus (dual tank system) is used for process modeling. The lab instruments

are interfaced to personal computers that are connected to the Internet. The

control application is developed using National Instrument's LabView software,

Java programming language, HTML (Hyper Text Markup Language), and other

scripting languages like JavaScript and VB script. The implementation also uses

video conferencing to provide fast and point-to-point visual feedback to the

remote user.

The use of Java and HTML in developing web applications is common

since they are the main programming languages for the Internet. Java was

introduced by Sun Microsystems in 1995 and is mainly used for developing

application programs that are distributed and portable. Java programs can be

written and compiled on one computer and loaded and run on another

regardless of the hardware or operating system of these computers. This

"platform-independence" has led to Java being often called “portable code”. One

common way to implement Java in web applications is through Java applets

embedded in web pages.

HTML was introduced in the 80’s as a means for linking documents over

 20

a wide area network. Since then, HTML has evolved to become the main

language for developing web pages. However, HTML is limited to processing

simple (mainly text-based) applications. It was never intended to describe

complex documents or carry the weight of the Internet as it does today. The

HTML's shortcomings are compensated for by embedding Java applets or other

scripted code into the HTML documents. In addition, a new language called XML

(Extensible Markup Language) has been introduced by the World Wide Web

Consortium (W3C) [6] to describe the content of the web page rather than just

the format (as is typically done by HTML). XML is derived from a philosophy that

data should be delivered without binding to a particular script language.

Therefore, XML provides “portable data.”

1.4.2 Industrial Applications

The Java programming language is also being implemented in many

industrial process automation systems. This includes both low-level plant floor

control as well as high-level enterprise integration [7]. An example of plant floor

control has been demonstrated by Khavar of Cyberonics [8], where a simple

Java-based control system is used for machine positioning, batch processing,

manufacturing execution and remote I/O operations. The system uses a PLC

running Java software objects, and the HMI software developed using Java

language.

Morgenthal [9] describes how XML works with Java to provide "portable

data and portable code". This combined portability has many implications for

the process automation industry. For example, process data can be exchanged

 21

and shared between heterogeneous systems within a company; process data can

be manipulated and presented in specific personalized formats to different

users; process applications can be integrated and fully automated for enhanced

operational efficiency; process applications can be deployed on any platform and

integrated easily within the existing infrastructure, hence involving minimum

increase in development and implementation cost.

The W3C organization also specifies technologies for Web Services, which

is a new phenomenon aimed at restructuring the World Wide Web into a

collaborative environment to better serve E-commerce. The web services

environment allow applications to integrate with each other using XML. Two

major web service platforms are available: Sun Microsystems’ J2EE (Java 2

Enterprise Edition) which is based on the Java Beans technology, and

Microsoft’s .NET platform which is based on the ActiveX/COM technology.

Vawter and Roman [10] provide a comprehensive comparison between J2EE and

.NET.

Most of these E-commerce technologies are finding their way into the

manufacturing and process industries. In an article published by ISA

(Instrumentation, Systems and Automation Society), Pinceti [11] states that

technology usually moves from information systems into industrial automation

within three to five years. Pinceti discusses how a new paradigm is being

introduced with the use of PC-based control systems. This new paradigm splits

into several levels, starting from the base automation devices (instrumentation

and actuators in the field), to local control units (PLC's, Intelligent I/O's, PC-

based units), to area control systems (networked PC's, operator HMI's), and

 22

finally to the communication and information systems (corporate operational,

financial, and decision-making systems).

The techniques used for communication between these automation levels

include the IEC 61158 Fieldbus standard (used for the lower levels) and the

IEEE 802.3 Ethernet standard and TCP/IP protocols (used for the higher levels).

The information exchange is done via various communication protocols such as

OPC (OLE for Process Control) which employs Microsoft's COM (Component

Object Model), and CORBA (Common Object Request Broker Architecture) which

provides an alternative for non-Microsoft environments. Both protocols are

specific to process control and are thus limited when it comes to general-

purpose system integration. This is why there is an increasing trend to use

standard Internet communication protocols (such as HTML and XML).

In another ISA article, Bono [12] discusses the reasons behind adopting

E-commerce technologies in manufacturing industries. The main reason for this

is the embracing of XML as a simple method to integrate between different

systems, from different vendors, which is typical of process systems existing

within a company. Additional reasons include lower prices, more flexibility,

easier data access, new applications and automated maintenance. Bono also

lists the challenges to XML ubiquity, such as the need for standardization,

embedded systems support, discovery mechanisms and maintenance tools.

The benefits of using the Internet in industrial automation have been

highlighted by various automation vendors. This is usually promoted in the

sense of process remote monitoring, information sharing, and enterprise

integration, more than being a means for process control and operation.

 23

Nevertheless, some vendors do offer complete Internet-based SCADA solutions,

like vMonitor. Their products consist of web-enabled field communication

devices and Java-based software. The remote control is based on control

algorithms provided or specified by the client.

Gunst and Stein of Intellution [13] list the benefits of using Internet in

manufacturing and predict a wide spread of this phenomenon based on a

Forrester Research report issued in 1997 which forecasted that Internet

computing will be used for solving industrial problems, all desktops will have

browsers, web content will be dynamic and system integration methods will be

based on standard protocols and components rather than custom code.

Kennedy and Eisele [14, 15] describe how the industrial desktop PC's evolved

over time to become complete web-based solutions. The term "industrial

desktop" has been coined by Kennedy of OSIsoft [16] to describe how computers

can be used to manage complex manufacturing facilities in the process

industries.

A new trend is also being followed by some automation vendors (mainly in

the US) and that is to provide Internet-based "services" for process automation

using an Application Service Provider (ASP) model. This model includes a web-

hosting service centrally located and managed by the ASP, and remotely-located

customer systems which are integrated with the ASP central system. Heersink

and Wright of Industrial Evolution [17, 18] describe their ASP solution for an oil

refining company, where live process data are collected from the operating

plants and hosted on the Internet or intranet for remote web access. Diehl and

Moyes of Matrikon [19] describe their SCADANet solution for a midstream oil

 24

and gas company.

The advertised benefits of using the Internet in industrial automation do

not come without their associated risks. As Bailey of Ci Technologies [20] warns,

there are several considerations that need to be taken when using an Internet-

based SCADA system. This includes, for example, security concerns which are

typically overcome through firewalls and password protection. For real-time

applications, a single level of security is usually not sufficient. Several systems

implement what can be called point-by-point security, where each user is given

access to specific data only.

Also, functionality restrictions come from the fact that web browsers are

limited to HTML or XML functionality, providing limited support for pop up

windows, and dynamic allocation of data links or memory. To get a suitable

functionality that is close to a SCADA's, the browsers need a significant number

of plug-ins to be loaded on the client, which has impacts on performance and

maintenance. Performance is also critical in process control systems especially

with the large number of graphics used. Even with large-bandwidth systems, the

client must be responsible for most of the graphics handling and database

update.

The performance of the network environment in which the SCADA system

is running plays a major role in the performance of the overall system. In an

analysis done by a company called DCB (Data Comm for Business) [21], they

conclude that the Internet, as it operates today, is not suitable for SCADA

applications since it has variable delays and can suffer packet loss that can be

as high as 10% or more during severe congestion. They believe that the Internet

 25

may be acceptable for the retrieval of data on an occasional basis but not for

real time data collection and control requirements. They recommend using high-

speed networks and more reliable communication protocols (e.g. frame relay,

Ethernet, IP networks) to ensure better performance of the SCADA systems.

1.5 Objective of the Thesis

The objective of this thesis work is to investigate the design and applications of

Internet-based process control systems. Figure 1.5 shows the overall research

plan. Part 1 analyzes the advantages and disadvantages of Internet-based

SCADA systems in comparison to traditional SCADA systems. SCADA systems

are typically distributed, remote, and multi-vendor in nature and are thus more

suitable for this investigation than other types of control systems. Part 2

discusses the latest web technologies that have emerged on the Internet and

analyzes their uses in the e-business world, as well as its implications for the

process automation world. This is then followed by our research hypothesis in

part 3, which is to evaluate how certain internet technologies, namely Java and

XML, can improve the design of current Internet-based SCADA systems.

The hypothesis is tested by looking at two projects. The first was

conducted separately from this thesis work and it uses a lab-scale Java-based

control system to control a typical process control application (such as a dual

tank system). The second is a design project conducted as part of this thesis

work and it extends the preceding work to show, in standard unified modeling

language (UML) notation, how separate control systems can be integrated with

each other, using Java and XML, to achieve a wider distributed control function

 26

P
ar

t 1
: S

C
A

D
A

 S
ys

te
m

s
E

vo
lu

tio
n

P
ar

t 2
: E

m
er

gi
ng

 In
te

rn
et

 T
ec

hn
ol

og
ie

s

P
ar

t 3
: R

es
ea

rc
h

H
yp

ot
he

si
s

Overview of process
automation systems

Definition of SCADA
systems

Overview of internet-based
SCADA systems

Case studies from oil & gas
industry

Overview of emerging
internet technologies

Application of Java & XML
in the business world

Introduction of Java & XML
to the process automation

world
Analysis of advantages &
disadvantages of traditional

SCADA systems
Demonstration of dis
control / business

Will Java & XM
improve internet-b

SCADA system

Demonstration of w
control syste

Figure 1.5: Research
Analysis of advantages &
disadvantages of these

systems
tributed
system

L
ased
s?

eb-based
m

plan

 27

By combining the user's and developer's perspectives, the thesis will

generate an unbiased report that will explain what is currently being done in the

area of Internet-based process control, how it is done, and how it can be

improved upon in the future. This will provide some guidance for local process

industries (such as Saudi Aramco and SABIC which are widely distributed

within the Kingdom) to understand the design of web-based process control

systems, identify their advantages and disadvantages, and eventually select the

control solution that is most suitable for their needs.

1.6 Organization of the Report

The remainder of this report is organized as follows. Chapters 2 and 3 trace

back the evolution of SCADA systems, from the traditional ones to the Internet-

based, and analyze the advantages and disadvantages of each. Chapter 4 looks

at emerging Internet technologies and how they are applied to the business

world. Specifically, it focuses on two web technologies, Java and XML, and

discusses how combining both of them together can be advantageous. Chapters

5 and 6 test the research hypothesis by designing web-enabled and web-

integrated control systems, respectively. Finally, chapter 7 summarizes the

findings and results.

CHAPTER 2

TRADITIONAL SCADA SYSTEMS

In this chapter, we provide an overview of traditional SCADA systems, how they

are used, what type of processes could benefit from them, and what key

elements constitute a SCADA system. Then we discuss how these traditional

SCADA systems are evolving over time and starting to adopt the industry

standards for communications and integration. Finally, we provide some

insights into the implementation side of SCADA systems, what costs are usually

associated with a typical SCADA system project, and what are the disadvantages

and implementation concerns. These discussions will become apparent as we

move to the next chapter which explains the design and applications of Internet-

based SCADA systems.

2.1 Definition of SCADA

Supervisory Control and Data Acquisition (SCADA) is a term used to describe

the technology that enables a user to collect data from one or more distant

facilities and send limited control instructions to those facilities [22]. A SCADA

system is an industrial measurement and control system consisting of a central

host or master (usually called a master terminal unit or MTU), one or more field

data gathering and control units (usually called remote terminal units or RTUs),

 28

 29

and a collection of standard and/or custom software used to monitor and

control the remote field data elements.

SCADA systems make it unnecessary for an operator to be assigned to

stay at the remote facilities or frequently visit them when everything is operating

normally. The SCADA system will alert the operator if alarm conditions are

present and will allow him to take the proper actions. Traditional SCADA

systems exhibit predominantly open loop control characteristics and usually

utilize long distance communications, although some elements of closed loop

control and/or short distance communications may also be present.

Traditional SCADA systems are similar to DCS (Distributed Control

Systems) in that they are both used for process control and monitoring.

However, they differ in that with DCS systems, the field data gathering or

control units are usually located within a more confined area (e.g. factory,

refinery, power plant) and the communications are usually done via a reliable

and high speed local area network (LAN). The SCADA systems on the other hand

generally cover larger geographic areas (e.g. pipeline, power lines) and rely on a

variety of communications systems that are normally less reliable than a LAN.

DCS systems also employ significant amounts of closed loop control, while

SCADA systems use mostly open loop control due to the less reliable

communication.

A traditional SCADA system performs data acquisition functions by

scanning field inputs at the RTUs, communicating those field inputs to an MTU

through public or dedicated communication links, and then processing those

inputs at the MTU. The traditional SCADA system will also perform automatic

 30

control, or manual control initiated by the operator, by sending the command

signals to the RTUs via the same communication links.

The human-machine interface (HMI) for the operator is typically done

through graphical displays which show a representation of the plant or

equipment under control. Live data can be shown as dynamic graphical shapes

over a static background. As the data changes in the field, the foreground is

updated, either as digital states (valve open or closed) or analog values such as

numbers, bars or charts. Control elements are shown as buttons or set-point

values.

2.2 Applications of SCADA Systems

2.2.1 Applications Suitable for SCADA

SCADA technology is best applied to processes that are spread over large

geographical areas, are relatively simple to control and monitor, and require

frequent, regular, or immediate intervention. SCADA systems have been

successfully installed on many processes with a wide variety of applications,

ranging from simple on/off control to more complex and advanced control.

Although SCADA systems limit the amount of control that can be exercised

remotely, they still do allow control. This is one of the things that distinguish

SCADA from most telemetry systems. The complexity of remote control that is

possible with SCADA systems has grown as the technology has matured.

Examples of SCADA applications include oil and gas production facilities,

such as wells, gathering systems, fluid measurement equipment, and pumps,

which are usually spread over large areas. They require relatively simple

 31

controls such as turning motors on and off, need to gather meter information

regularly, and must respond quickly to conditions in the rest of the field. Also,

pipelines for oil, gas, chemicals, water, and wastewater have elements located at

varying distances from a central control point. They can be controlled by

opening and closing valves or starting and stopping pumps, and must be

capable of responding quickly to market conditions and to leaks of dangerous or

environmentally sensitive materials.

Other examples include electric transmission systems which may cover

large geographical areas within a city, region, or country. They can be controlled

by opening and closing switches, and must respond almost immediately to load

changes on the lines. Also, groups of small hydroelectric generating stations

that are turned on and off in response to customer demand are usually located

in remote areas. They can be controlled by opening and closing valves to the

turbine. They must be monitored continuously, and they need to respond

relatively quickly to demands on the electric power grid.

2.2.2 Applications Not Suitable for SCADA

There are applications which are simply not suitable for SCADA. This

may not have been clear during the early stages of SCADA introduction, but as

the technology matured, the hard school of experience proved that Murphy's

Law exists. Remote control systems can be counted on to perform flawlessly

until that moment when a critical command must be sent or an important piece

of data is working its way from one end of the system to the other end. In

general, two types of signals should not be designed to depend on SCADA: safety

 32

systems and product measurement systems.

Safety systems are designed such that failure in some part of the system

will not cause injury to a person or cause damage to the equipment or the

environment. They should be designed with minimum number of parts and

electrical contacts, and should not share components with normal controls. The

sensing, logic, and actuation features of the safety system at a local site should

all be self contained. Therefore it should not rely on the SCADA system to send

its signals. The SCADA system can be used, however, to enhance the safety of

geographically diverse applications such as pipeline leak detection. The pipeline

inflow and outflow could be measured, and if the difference between the two is

too large, the SCADA system could close the block valves along the line.

Product measurements systems may involve billing and reporting of

royalties, tariffs, and taxes. They may be governed by regulatory bodies which

require that measurements be reported to one or more government agencies. An

example of this is the measurement of oil from a well which require that a

royalty be paid. The accounting and auditing procedure may require paper

records to be maintained. This is not going to be supplanted by another method

just because SCADA systems are capable of electronically moving some of those

data elements.

2.2.3 Industry Demand for SCADA

The ARC Advisory Group [23, 24] has conducted several market analysis

studies and technology forecasts for the application of SCADA systems in the

industry. Two of these studies are concerned with the outlook of SCADA

 33

(A)

(B)

Figure 2.1: SCADA market in millions of dollars for (A) oil & gas and water &
wastewater industries (B) electric power industry (Source: ARC)

 34

systems market, one for the oil & gas and water & wastewater industries, and

the other for the electric power industry.

Oil & Gas and Water & Wastewater Industries. According to the first

study [23], the market for SCADA systems in these industries will continue to

grow, but at a slower pace. The level of activity in the worldwide SCADA market

for these industries will be determined by a number of factors, including the

level of energy exploration and subsequent delivery requirements, the rate of

development of water infrastructure in developing regions, the results of ongoing

geopolitical and environmental issues, and the emergence of cost effective

technologies.

The majority of top SCADA suppliers offer a full suite of products and

services, including RTUs and associated controllers. In addition to systems

hardware, a full service offer also includes software applications, a complete line

of communications technologies, and systems integration. These suppliers are

also moving toward increased use of intelligent field devices, smart RTUs, and

increased use of third party network infrastructure.

Electric Power Industry. According to the second study [24], the SCADA

market in this industry will also continue to grow and is dominated by global

suppliers. The emergence of large, global convergent energy and utility

companies has enhanced the position of larger suppliers to match the end users'

needs on a global basis. Alliances have become an important strategic

consideration for all industry players, both large and small.

Suppliers are offering more advanced application software, business

management tools, and the use of third party network infrastructures. SCADA is

 35

moving towards knowledge management and is serving a more diverse range of

client groups. This is becoming an important decision factor for users requiring

enterprise and business integration. The functionality requirement is being

expanded to include issues that were never considered before, such as energy

trading.

2.3 Components of SCADA Systems

A traditional SCADA system consists of four main components: field

instrumentation, remote terminal units (RTUs), master terminal unit (MTU), and

communications. Figure 2.2 shows a typical SCADA system architecture.

2.3.1 Field Instrumentation

Field instrumentation refers to the sensors and actuators that are directly

interfaced to the plant or equipment being controlled and monitored by the

SCADA system. They are usually not considered part of the SCADA system

itself but are an integral part of the overall control scheme. These field

instruments convert physical parameters (fluid flow, velocity, level, etc.) to

electrical signals (voltage or current) readable by the RTU equipment. Signals

can either be analog (continuous range) or digital (discrete values).

Some of the industry standard analog instrument outputs of these

sensors are 0 to 5 volts, 0 to 10 volts, 4 to 20 mA and 0 to 20 mA. The voltage

outputs are used when the sensors are installed near the RTU. The current

outputs are used when the sensors are located far from the RTU. Digital outputs

are used to differentiate the discrete status of the equipment. Usually 1 is used

 36

Figure 2.2: A typical SCADA system architecture

 37

to mean ON and 0 for OFF status, or it could be 1 for FULL and 0 for EMPTY,

and so on.

Actuators are used to turn on or turn off certain equipment (such as

pumps) or open and close devices (such as valves). The digital and analog

instrument inputs are used for control. For example, digital inputs can be used

to turn on and off modules on equipment, while analog inputs are used to

control the speed of a motor or the position of a motorized valve.

2.3.2 Remote Terminal Unit (RTU)

The Remote Terminal Unit (RTU) is a controller that is interfaced to the

field instrumentation which is connected to the equipment being monitored and

controlled. RTUs were initially developed as electronic black boxes whose

flexibility of function was dependent on adding or removing hardware

components. Customer demands led to increasing flexibility with programs

written and burned into EPROM's. Recent technological advancements enabled

even more flexible solutions by using computer-based RTUs. The so-called smart

RTUs can perform the functions of PID controllers, fluid meter totalizers, and

programmable logic controllers (PLC's).

RTUs are usually available in two types, namely, the single board and the

modular unit. The single board provides a fixed number of input/output (I/O)

interfaces. It is cheaper but does not offer easy expandability to a more

sophisticated system. The modular type is an expandable remote station and

more expensive than the single board unit. Usually a backplane is used to

connect the modules. Any I/O or communication modules needed for future

 38

expansion may be easily plugged in on the backplane.

PLCs are also being used with SCADA systems instead of RTUs due to

their flexibility and programmability. However, the RTUs are usually designed to

have very good radio interfacing since they are installed in difficult locations

where communications are not readily available. Earlier PLCs did not have serial

communication ports for interfacing to radio. But nowadays, PLCs have

extensive communication features and a wide support for popular radio units

being used for SCADA system.

2.3.3 Master Terminal Unit (MTU)

The Master Terminal Unit (MTU) is the master station or host computer

which acts as the centralized controller for the SCADA system. The MTU of

modern SCADA systems is always based on a computer. It could be a single

computer configuration or it can be a network of computer workstations. It will

also have auxiliary devices such as printers, loggers, and backup memories. The

MTU is responsible for gathering field data from the RTUs and processing the

information to generate the necessary control actions. The MTU is typically

scheduled to request updates from the RTUs at fixed intervals.

The operator interface with the MTU is accomplished through the human-

machine interface (HMI) software. The HMI provides a graphical representation

of the process and its current status. The input value reading from each I/O

point is displayed within its corresponding mimic diagram. Setup parameters

such as trip values, limits, etc. are entered through the HMI and downloaded to

the corresponding remote units for updating their operating parameters. The

 39

HMI also has a separate window for alarm messages. The alarm window can

display the alarm tag name, description, value, trip point value, time, date and

other pertinent information.

Historical trend graphs can be viewed or printed at a later time.

Generation of management reports can also be scheduled on for a specific time

of day, on a periodic basis, upon operator request, or event initiated alarms.

Access to the program is permitted only to qualified operators. Each user is

given a password and a privilege level to access only particular areas of the

program. All actions taken by the users are logged on a file for later review.

In many applications, the MTU is required to send accounting or

management information to other computers or financial systems within the

company. The MTU may also receive information from other systems or

application programs which perform as higher level supervisory control. The

connections between the MTU and the other systems may be accomplished via

dedicated communication links or local area networks (LAN). The data exchange

is established via standard or customized data communication protocols and

interfaces.

2.3.4 Communications

Communications is the spine of SCADA technology. In order for the

central MTU to communicate with the RTUs that are located at the distant

locations or with the various computers and systems that are located within the

corporate network, a communication link must exist to transfer data from one

location to another. There are two common types of communication media:

 40

wireline communications (electrical cable or optical fiber cable) and wireless

communications (radio frequency). In either case, a modem or some other form

of LAN technology is utilized. In most cases, a combination of more than one

media is used.

Direct cable connections are usually not practical for large systems

covering wide geographical areas. Therefore, SCADA systems typically use

telephone lines which are either owned by the company or leased from the

telephone utility. Leased lines can be used for systems requiring continuous

online connection with the remote stations. Dial-up lines can be used on

systems requiring updates at regular intervals. In critical applications where

direct cable connections are required, optical fiber technology is becoming more

affordable and is providing higher data rates and increased security.

For remote sites that are usually not accessible by telephone lines, the

use of radio frequency (RF) communication offers an economical solution. Radio

modems are used to connect the remote RTUs to the central MTU. Online

operation can also be implemented using the radio system. For locations

wherein a direct radio link cannot be established, a radio repeater is used to

link these sites. In addition, satellite communications are becoming more

common as services become more affordable. This alternative is particularly

useful for remote sites which are located in rough landscapes or areas where

direct line-of-sight could not be achieved for radio communication.

The type of communication scheme will determine the reliability and

performance of the SCADA system. There are two modes of communication

available, namely the polling system and the exception reporting system.

 41

Polling Mode. In the polling (or master/slave) mode, the master is in total

control of the communications. The master makes a regular polling of data (i.e.

sends and receives data) to each slave in sequence. The slave responds to the

master only when it receivers a request. This is called the half-duplex method.

Each slave unit will have its own unique address to allow correct identification.

If a slave does not respond for a predetermined period of time, the master retries

to poll it for a number of times before continuing to poll the next slave unit.

The process of data gathering in polling mode is fairly simple, no collision

can occur on the network, and any link failure can easily be detected. However,

the disadvantages of polling systems include large waiting time with increased

number of slaves, communication between slaves have to pass through the

master with added complexity, and interrupt requests from a slave requiring

immediate action cannot be handled.

Although polling systems are very common with wireline networks,

polling gives poor performance over radio. For maximum speed with a polling

system, the full radio frequency has to be utilized to ensure that each individual

unit is polled as often as possible, and the radio frequencies may need to be

licensed. In practice, a compromise has to be made between how often the

system will poll and the amount of radio channel which is actually available.

Exception Reporting Mode. In the exception reporting mode, a unit

transmits a message only when it detects a significant change in the process or

when it exceeds a certain limit. The system is designed with error detection and

recovery mechanisms to handle data collisions. Before any unit transmits, it

must first check if any other unit is transmitting. If another unit is transmitting,

 42

some form of random delay time is required before it tries again. Excessive

collisions result to erratic system operation and possible system failure. To cope

with this, if after several attempts, the slave still fails to transmit a message to

the master, it waits until polled by the master.

The exception reporting system reduces unnecessary transfer of data as

experienced in polling systems, which is useful for wireless radio

communication. It also allows quick detection of urgent status information and

allows slave-to-slave communication. However, the disadvantage of this system

is that data collisions may cause delays in the communication and the master

may only detect a link failure after a period of time. The operator may not have

any indication of the failure unless he initiates some action (refresh screen) in

order to see the latest process values.

System Configuration. Typically, a combination of polling and exception

reporting systems are used for optimum performance. The polling is infrequent

and is intended to check the integrity of the communications and the integrity of

output values, while exception reporting is used for gathering the input

readings. There are two typical network configurations for the overall system: (1)

point-to-point system, and (2) point-to-multipoint system.

The point-to-point (or distributed) configuration involves data exchange

between two stations at an instance of time. One station acts as the master and

the other as the slave. An example is a setup of two RTUs: one for a reservoir or

tank and the other for a water pump at a different location. Whenever the tank

is nearly empty, the RTU at the tank will send an EMPTY command to the other

RTU. Upon receiving this command, the RTU at the water pump will start

 43

pumping water to the tank. When the tank is full, the tank’s RTU will send a

FULL command to the pump’s RTU to stop the motor.

The point-to-multipoint (or client/server) configuration is where one

device is designated as the master unit and the remaining ones as the slave

units. The master is usually the main host and is located at the control room,

while the slaves are the remote units at the sites. Each slave is assigned a

unique address or identification number. This configuration is suitable for small

stand-alone systems, but as the individual systems become interconnected, the

point-to-point system allows greater flexibility and reliability.

2.4 Evolution of SCADA Systems

The main function of a SCADA system is to collect data from various remote

sites and make it available in a central location for supervisory control and

remote monitoring. Communications play a major role in SCADA systems

development and advancement. Recent contributions in this area have been

focused on two major parts: communication with the field-level devices, and

communication with the high-level supervisory computers.

2.4.1 Field-Level Communications

This has been traditionally based on serial communication. But this is no

longer adequate as modern industrial networks are built on Fieldbus and

Ethernet networking technologies that leverage the more intelligent devices,

allowing improved access to real-time measurements and instrument

diagnostics. Also, as a SCADA system grows and operations cover larger areas,

 44

diverse systems may have to integrate into a single contiguous system. The use

of interoperable standards-based technologies becomes more important.

Standards make it possible to integrate equipment from different

suppliers and bring the data all the way into the business environment. Some of

the new standards being implemented in SCADA systems are Fieldbus

technology, industrial Ethernet, and data communication protocols such as OLE

for process control (OPC). Most of these new architectures are the result of close

cooperation between SCADA system vendors and different oil and gas

companies around the world, fusing their know-how with existing knowledge of

Fieldbus and industrial Ethernet

Fieldbus digital protocols allow field-level devices such as transmitters,

valve positioners, and remote I/O for discrete devices to network with each other

rather than the 4-20 mA analog signals. Eliminating 4–20 mA removes the

errors resulting from digital-to-analog-to-digital conversions in transmitters as

well as in old RTUs. Fieldbus linking devices and flow computers take the place

of remote terminal units (RTUs) from the past. Ethernet provides the media of

choice for wired automation backbones, replacing a whole range of mainly

proprietary protocols. Ethernet over radio, or wireless Ethernet, is also starting

to find its way into industrial automation after its successful implementation in

the business applications.

2.4.2 High-Level Communications

For integration with the higher-level supervisory computers, Ethernet and

the Internet Protocol (IP) suite are gaining popularity in the industry. At the host

 45

level in the central control room, Ethernet brings the data to an OPC server that

provides the data to workstations for operation, engineering, and maintenance.

The operations software may have a relational database that stores all data also

available to other applications. The maintenance station runs the online plant

asset management software. The database applications are usually made

compatible with the Web, so that information can be dispensed to the corporate

intranet or the Internet.

2.5 Cost of Implementing a SCADA System

The cost for implementing a SCADA system will vary depending on the size of

the system and the complexity of its operation. A simple irrigation system with

only one operator will not cost as much as a large electric transmission and

generation system. The economic and business factors that influence a project

evaluation will also vary depending on the specific process at hand. Typically

this will require some form of a cost/benefit analysis. These costs and benefits

have to be quantified before deciding what type of SCADA system to select. The

costs may vary from area to area, but in general, they can be classified into four

categories: capital costs, training costs, maintenance costs, and operating costs.

Capital costs normally include the engineering and installation labor, the

services of technical specialists, warehousing, and transportation, in addition to

the costs for the hardware and software. They are usually significant but easy to

quantify. Capital costs may also include, as part of a project cycle, the removal

of existing equipment to make room for new equipment, certain refurbishment

of existing equipment or buildings, and custom-designed computer software.

 46

Training costs are frequently neglected during the economic cycle. It is

true that training costs are not very high compared to capital cost, but they do

exist. There are costs for the time lost while operators are learning the new

system, there are costs for maintenance technicians to get trained on the new

equipment, and there are costs for acquiring the instructor and training

material.

Maintenance costs involve the preventive and corrective maintenance of

the MTU, the RTUs, the communication equipment, in addition to the

calibration and repair of field instrumentation. The wire terminations that join

all of these components into one system are a major source of maintenance cost.

Technical support costs may include routine software upgrades.

Operating costs involve the cost of manpower needed to operate the

system, which will depend on the size and complexity of the system as well as

its operating philosophy. The operating costs also include energy consumption

costs, consumable items costs (e.g. printer paper, backup media), and leased

line telecommunications costs.

2.6 Disadvantages/Implementation Concerns

The concerns that are associated with the implementation of a traditional

SCADA system can be summarized in the following:

Proprietary Vendor-Specific Solutions. Perhaps the biggest concern for

the end-user is getting locked into a proprietary vendor solution. This can only

be solved with the introduction of standards. Although there are efforts to

develop standards in the SCADA system industry, there is still a lack of

 47

consistent adherence to these standards. This means that true interoperability

between different equipment is virtually impossible to achieve without special

drivers and interfaces.

Non-Standard Application Layer. Although common networking

standards like Ethernet and TCP/IP are becoming the de facto standards in

industrial automation, the situation is not so simple. Figure 2.3 shows the

difference between typical industrial networks and the Internet protocols (using

the ISO/OSI reference model.) Each vendor of automation equipment that runs

over Ethernet and TCP/IP has implemented its own application layer protocol.

As a result, a standard application layer, common object model and universal

device profiles do not exist. Ethernet and TCP/IP only cover the lower layer

protocols. At the application layer, users are currently tied to proprietary

solutions and are not able to benefit from the best-in-class and best-in-value

options offered by an open market.

 48

 Industrial Networks Internet

IP

ICMP

RIP

TCP

DNS

SNMP

HTTP

SMTP

FTP

ASN.1

UDP

ARP

PPP, Ethernet, Token Ring

V.34, Fiber, UTP

Modbus

HSE IDA CIP

TCP

IP

Ethernet

Ethernet

Figure 2.3: Typical industrial networks compared to the Internet

CHAPTER 3

INTERNET-BASED SCADA SYSTEMS

In this chapter, we provide an overview of Internet technologies that could be

applied to SCADA systems, and how they are playing a major role in the

evolution of these systems. We present some case studies from the oil and gas

industry, and then we analyze the advantages and disadvantages of such

implementations. This analysis, along with the next chapter, will set the stage

for our research hypothesis which is to evaluate how Internet-based SCADA

systems can be improved upon.

3.1 Internet Technologies Applicable to SCADA

3.1.1 Networking Technologies

The Internet is merely a connection of regional wide area networks. In

order to analyze what networking technologies are used by the Internet and

could be applied to SCADA systems, we will use the International Organization

for Standardization's Open Systems Interconnect (ISO/OSI) reference model.

This networking model consists of seven layers as shown in Figure 3.1. Below is

a brief description of each layer.

Physical Layer. This is the lowest layer in the model. It defines the

physical characteristics of the connection media which are used for transmitting

 49

 50

Node A Node B

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Figure 3.1: ISO/OSI network model

 51

the electrical signals between different nodes on the network. The Internet

usually encompasses a variety of physical media, both wired and wireless

media. These can readily be utilized by a SCADA system for communication over

large geographical distances.

Data Link Layer. This layer defines the rules for framing, converting

electrical signals to data, error checking, physical addressing, and media access

control. Examples of protocols used by the Internet are Point-to-Point Protocol

(PPP), Ethernet, Token Ring, etc. Ethernet actually covers both physical and

data link layers, and is becoming widely used in industrial automation.

Industrial Ethernet can be utilized by a SCADA system for reliable and field

proven networking.

Network Layer. This layer defines the way messages are routed through a

complex network. The Internet Protocol (IP) is the standard method of network

routing on the Internet. This is also becoming a de facto standard in industrial

automation, and can be easily applied for SCADA systems communicating over

the Internet.

Transport Layer. This layer defines the connection methods between two

end nodes. The Internet Protocol (IP) Suite actually includes, in addition to the

IP protocol, the Transport Control Protocol (TCP), and the User Datagram

Protocol (UDP). TCP/IP is becoming widely used in industrial automation and

can be applied for Internet-based SCADA systems.

Session layer. This layer defines what messages are needed to complete a

session. This layer is a vague concept and is usually skipped or built into the

upper layers for industrial networks. It is sometimes used in Novel and

 52

Microsoft Windows networks.

Presentation Layer. This layer defines the data format conversion,

encryption, and security. This is also skipped or built into the upper layer for

most industrial networks. On the Internet, this layer is used by some conversion

protocols, such as the Domain Name Servers (DNS).

Application Layer. This layer defines the rules for network applications.

Internet applications that reside on this layer include the File Transfer Protocol

(FTP), Hyper Text Transfer Protocol (HTTP), Simple Mail Transfer Protocol

(SMTP), Simple Network Management Protocol (SNMP), Telnet, etc. An Internet-

based SCADA system could utilize some of these protocols, perhaps the most

important of which is HTTP which enables web browsers to access web servers.

3.1.2 Web Technologies

The Internet connects people together, people with machines, and

machines with machines, over a global network called the World Wide Web. In

this section, we provide an overview of basic web technologies. In the next

chapter we focus on two specific web technologies and explain how they could

benefit SCADA systems.

Web Servers. A web server is simply a computer designated to send out

data in response to a request. Basic web servers respond to requests over the

Internet for specific web pages (e.g. HTML text) and web objects (e.g. graphic

files like JPEGs). Specialized web servers can be used to do more focused

functions. For example, e-commerce servers provide safe and secure economic

transactions for doing business over the Internet; communication servers

 53

Figure 3.2: Web servers and web browsers

 54

provide ways for people to talk to each other via the Internet whether through

text (chat), e-mail, or voice (phone). SCADA systems could utilize this concept by

implementing the Master Terminal Unit (MTU) as a web server, or even each of

the Remote Terminal Units (RTUs) as a web server. This allows the SCADA

operator to access process information from the MTU and RTUs via standard

web technologies.

Web Clients (Browsers.) Servers send requested information to clients or

browser software. There are several browser software available, such as

Microsoft's Internet Explorer and Netscape's Navigator, but all essentially do the

same thing: request data from a server and display it on a page on the client

computer. Some browsers offer more diverse functions than others such as the

ability to display and interpret special technologies. New features appear every

day and browser manufacturers often release new versions of their browsers

(updates). SCADA systems could utilize the browser technology to implement a

unified human-machine interface (HMI).

Web clients can be divided into two main types based on their

functionality. The client that uses the standard web browser to access web

applications is often called a "thin client." The client that requires additional

software applications to be downloaded and installed on the client machine

before accessing a specific web application is called a "thick client." Thick clients

usually take longer time for the initial setup, but provide maximum functionality

to the user. On the other hand, thin clients only require minimum or no initial

setup, but on the expense of functionality and versatility. Table 1 below shows a

comparison between the functionality of a stand-alone distributed network

 55

TABLE 3.1: FUNCTIONAL COMPARISON BETWEEN WEB CLIENTS

 Stand-Alone

Distributed Client

Thick Web Client Thin Web
Client

Client Software

Vendor-specific
application

Vendor-specific
application + Web
browser

Web browser

Installation
and
Maintenance

Requires
installation of the
client software on
each client
machine

Requires
installation of the
client software
(either manually
or automatically
from the web)

Does not require
software
installation on
the client side

User Interface Full graphical
functionality +
popup windows
+ dynamic data

Standard browser
functionality
+ VB/Java
scripting

Standard
browser
functionality

Performance Generally fast Generally fast Slower than
thick clients

 56

application, and that of web clients.

Web Application Development. The Hyper Text Markup Language (HTML)

has been the main language for developing web pages and linking them over a

wide area network. However, in order to develop specialized web applications,

HTML is usually limited in terms of functionality. Hence, to compensate for this,

Java applets or other scripted code, like JavaScript and VBScript, are embedded

into the HTML documents to enhance their functionality. Also, a new markup

language called XML (Extensible Markup Language) has been introduced to

improve upon the limitations of HTML.

The World Wide Web Consortium (W3C) develops and maintains the

specifications for HTML, XML, and many other technologies, such as the

Scalable Vector Graphics (SVG) specification used for handling graphical user

interfaces. The primary purpose of W3C includes specifying and promoting

standards for technology and software that programmers use with the World

Wide Web. The W3C consists of many different companies, but the products

that they support do not tie to any specific company and are freely available for

any individual or company to use or implement.

On the other hand, the Java programming language has been introduced

by Sun Microsystems to enable programmers to develop web applications that

can be downloaded to distributed machines on the Internet. Java programs are

portable in that they can be written and compiled on one computer and loaded

and run on another regardless of the hardware or operating system of these

computers. Java can be used to develop distributed applications in a stand-

alone client/server fashion, or it can be used to develop Java servlets and

 57

applets. The Java servlet runs on the server side, while the Java applet is

embedded into the client web pages.

In the next chapter, we focus more on the Java and XML technologies

and discuss how they are used in the development of new generation of web

applications, namely in the web services. We will then investigate how SCADA

systems can benefit from these new web technologies.

Domain Names and URLs. Each page on the web server has a unique

Universal Resource Locator (URL) address. The URL consists of the domain

name, followed by the actual file (directory) structure on the server. An Internet-

based SCADA system could easily use this addressing scheme to access the

web-based MTU and RTUs. Alternatively, the network IP address could be used

in the URL instead of the domain name, which makes the addressing task more

familiar and analogous to the traditional SCADA system's addressing and

naming conventions.

The most common protocol used for accessing these URLs is the Hyper

Text Transfer Protocol (HTTP) which is an application layer protocol that defines

the way messages are exchanged between a client and web server. HTTP usually

establishes the connection between the client and web server using TCP port 80.

This port is often left open on most corporate firewalls to enable Internet access

to employees. An Internet-based SCADA system could use HTTP for remote

communications, enabling it to communicate with applications across firewalls.

This is an important differentiation between HTTP and other methods of

communication, such as API or RPC sockets, which are often blocked by the

firewalls.

 58

3.2 Definition of Internet-Based SCADA

The term Internet-based SCADA has been used loosely in the industry to

describe a SCADA system that applies one or more of the Internet technologies.

This may include communication technologies, software programming

technologies, and web browser technologies. The key goal of implementing

Internet-based SCADA is to utilize internationally accepted standards and

technologies to achieve the monitoring and control functions that a traditional

SCADA system provides but with a lower cost. This will usually result in better

interoperability between different system components, easier dissemination of

information to various applications and external systems, and unification of the

human-machine interface (HMI) through the standard web browser.

Interoperability, or the ability of system components to interact with each

other successfully when connected in a specified way, is achieved by using a set

of common protocols and standards. An internet-based SCADA system is

usually based on one of the common networking standards such as Ethernet,

Token Ring, and ATM (which correspond to layers 1 and 2 in the OSI network

model), in addition to the Internet protocols suite which includes (among others)

the Internet Protocol (IP), the Transport Control Protocol (TCP), and the User

Datagram Protocol (UDP) (OSI layers 3 and 4).

Dissemination of process information across the plant or organization is

also achieved by using a set of common applications and open interfaces. An

Internet-based SCADA system typically uses web technologies, where a web

server stores the information and a web browser reads or writes the information.

The data presentation is usually done using the Hyper Text Markup Language

 59

(HTML). However, HTML is limited in terms of functionality, and thus the

Extensible Markup Language (XML) was created to overcome the shortcomings

of HTML and to be used for sending data between the server and browser (or the

server and another server). XML is slowly finding its way into industrial

automation and is replacing many of the proprietary vendor protocols.

The Internet-based SCADA system may also include embedded smart

devices (such as drives, motors, servos, actuators, gauges, pumps, flow meters,

etc.) which have built-in embedded web servers that can transfer data from the

plant floor all the way up to the enterprise web browsers, thus allowing remote

control, diagnostics, asset management, and supply chain management. The

web browser also acts as a unified human-machine interface (HMI) which

combines the graphical operator interface, data acquisition, and alarming

functions, with the capability of real-time enterprise integration and external

data communication. The web browser may require additional plug-ins to

provide HMI functionality close to that of traditional SCADA systems.

3.3 Case Studies from Oil & Gas Industry

3.3.1 British Petroleum

British Petroleum (BP) [25] installed a wireless Internet-based SCADA

system to monitor and control its remote gas well sites at BP Canada Ltd. The

new SCADA system is similar to a traditional SCADA system in that the same

multivariable flow transmitters (field instrumentation) are used to communicate

with the local RTUs. The RTU receives process information from the transmitter

and performs gas flow calculations, stores hourly production data, controls

 60

Figure 3.3: BP's system implements each RTU as a web server

 61

input-output (I/O) points, and performs ladder logic. However, instead of acting

as a slave to an MTU host, each RTU assumes the role of a web server.

Each RTU has a unique web address which is accessible from any web

browser. The communication is established through the wireless network which

exists in almost all gas producing areas. The wireless web is usually a digital

component of the cellular telephone spectrum with the internet service provider

(ISP) typically being the cellular phone company. The coverage generally

overlaps the same territory where voice coverage exists.

For BP, this was a key to the project's success. Its well sites, although

in difficult-to-reach terrain, all had good wireless web coverage. BP's local ISP-

cellular phone service provider, Telus Mobility, Calgary, uses cellular digital

packet data technology to deliver the wireless internet service. The implemented

web-based solution provides many of the same features as a traditional SCADA

system including real-time view of data, alarm notification, data logging, and

remote configuration

The operator can monitor and control the well site from the field office,

home, or vehicle. Handheld PCs, palm-size organizers, or laptop computers can

all connect to the wireless web, allowing the operator more mobility and

productivity. E-mail is one way operators can be alerted to a problem such as

no-flow alarms. When the flow rate drops below the preconfigured low-flow

threshold, the RTU will generate an alarm e-mail that informs the operator of

the abnormal condition.

Data management may become a problem for operators with more than

one or two well sites equipped with a web-based RTU. One way to handle these

 62

data is by creating a small Visual Basic application that works with Microsoft

Outlook to manage the incoming daily e-mails and store the data in a more

usable format. The Visual Basic application then continually scans the inbox

looking for messages generated from one of the well site RTUs.

3.3.2 Shell

Shell [26] developed an end-to-end Internet-based SCADA system (called

eSCADA) on 12 offshore production platforms. Each platform has several vmBus

transmitters (supplied by vMonitor) that are interfaced to various electronic

transmitters, instruments, and thermo elements, which measure temperature,

pressure, density and other parameters. The various transmitters create a

wireless mesh on the remote platforms which transmits the data to a central

hub. The hub then sends the data to the main platform, at a distance ranging

from 3 to 18 km. Some units have two-way communications for remote control.

The system was first implemented during a field trial in the Urdaneta

West field, in the western part of Lake Maracaibo, Venezuela. The test involved

interfacing the wireless vmBus unit to three analog inputs (4-20 mA) from an

existing field transmitter measuring temperature, pressure, and density. The

data is sent from the offshore platform back to the main platform via wireless

communications and without an RTU. The vmBus unit operates at 900 MHz and

has four analog and four digital inputs. The vmBus transceiver is interfaced via

RS232 connection to a long range vmBus radio, which then transmits the data

to the main platform.

At the main platform, a web server hosting vMonitor's TotalAccess

 63

Figure 3.4: Shell's system implements the MTU as a web server

 64

software provides web-based, real-time monitoring HMI, smart alarms, reports,

and historian. The data is also interfaced with a Foxboro's Distributed Control

System (DCS) and OSIsoft's Plant Information (PI) system. Operators at the main

platform are able to monitor the pressure, temperature, and density readings

from the offshore platform. The TotalAcess software also obtains readings on a

laptop server on a boat en route to the main platform without any interference

or interruption.

3.3.3 ChevronTexaco

ChevronTexaco Refining Company [27] has developed a portal website on

the corporate intranet (called CommonView) to bring integrated information to

the desktop via the web to enable better decision making, information sharing

and best practice support. The portal web site is targeted at a specific audience

providing content aggregation and delivery of relevant information. Information

in the right hands at the right time is key to achieving operational excellence

and organizational capability.

The CommonView portal (implemented by IndX Software) uses Java and

XML to create a common data visualization tool for users across and within the

refineries. CommonView aggregates the information from multiple data sources

including process history data, maintenance management, procedures,

turnovers, safety and environmental data, reliability system, document

management, production accounting, handhelds, 3rd party applications and

services, etc.

The CommonView Portal has been implemented at most ChevronTexaco

 65

Relational
Database

Or
Enterprise
Application

Process
Historian
Or Other

Operational
Source

“Plugable” Connector Framework

Third Party
Web Server

Publish / Subscribe
Real-time data streaming

XHQ Java
Applet

Other XHQ
Solution Servers

XHQ
Open Server

Web Browser

Plant Utilization
Complaints

Labor
Utilities

Materials

Quality

XHQ Components
& Views

XHQ
Enterprise Server

XHQ
Solution Server

Real-time
Data Cache

Time–Series
Historian

Relational
Database

Or
Enterprise
Application

Process
Historian
Or Other

Operational
Source

“Plugable” Connector Framework

Relational
Database

Or
Enterprise
Application

Relational
Database

Or
Enterprise
Application

Relational
Database

Or
Enterprise
Application

Process
Historian
Or Other

Operational
Source

Process
Historian
Or Other

Operational
Source

Process
Historian
Or Other

Operational
Source

Process
Historian
Or Other

Operational
Source

“Plugable” Connector Framework

Third Party
Web Server
Third Party
Web Server

Publish / Subscribe
Real-time data streaming

XHQ Java
Applet

XHQ Java
Applet

XHQ Java
Applet

Other XHQ
Solution Servers

XHQ
Open Server

XHQ
Open Server

XHQ
Open Server

Web Browser

Plant Utilization
Complaints

Labor
Utilities

Materials

Quality

XHQ Components
& Views

Plant Utilization
Complaints

Labor
Utilities

Materials

Quality
Plant Utilization

Complaints

Labor
Utilities

Materials

Quality

XHQ Components
& Views

XHQ
Enterprise Server

XHQ
Enterprise Server

XHQ
Solution Server

Real-time
Data Cache
Real-time

Data Cache
Time–Series

Historian
Time–Series

Historian

Figure 3.5: ChevronTexaco's web portal uses Java and XML

 66

refineries including El Segundo, Richmond, El Paso, Hawaii, and Pembroke

Refineries. The primary users are operators, engineers and operations

management. Secondary users are maintenance, environmental and refining

management. Cross-refining users are refining management, marketing, and

logistics.

3.3.4 Saudi Aramco

Saudi Aramco [28] has been evaluating several web portal solutions that

can consolidate data from various process systems and organize them into a

web-based solution for supporting decision making and process management.

The Intranet-based systems are usually targeted for management information

and decision support mainly, with no control being performed on the remote

sites.

The system handles process data from different sources including process

control systems (DCS, PLC, SCADA), process history data (Plant Information - PI

Systems), enterprise resource planning system (SAP), maintenance

management, procedures, turnovers, document management, production

accounting, third party applications and services, etc. Presentation on the web

includes a graphical user interface and integrated office applications

functionality.

 67

Saudi Aramco
WAN

 Intranet
Web Portal

Desktop
Applications

SAP R/3

Refineries Terminals Pipelines

PI

DCS

PI

PLC

PI

SCADA

Figure 3.6: Saudi Aramco's integrated systems

 68

3.4 Advantages of Internet-Based SCADA

The main advantages of Internet-based SCADA systems compared to the

traditional systems can be summarized in the following:

Open Standards. The main advantage of implementing an Internet-based

SCADA system is that it is a standards-based system which leverages the

existing computer and communications technologies to achieve optimum system

functionality with minimum cost. An Internet-based SCADA system utilizes one

of the existing application layer protocols to provide the openness required for a

multi-vendor environment, rather than getting locked into one of the proprietary

network solutions.

Interoperability. The fact that an Internet-based SCADA system is based

on standards shall increase interoperability between the various system

components regardless of what vendor is supplying the individual components.

Interoperability benefits shall cover not only the operation side, but also the

maintenance functions and instruments diagnostics that can be obtained by the

system.

Simple and Familiar. Internet-based SCADA systems are generally easy to

learn and use because the browser navigation tools are familiar to anyone who

has surfed the Internet. This translates to less training requirements and faster

learning curves.

Expandability. By using standard web server/web browser technology, an

Internet-based SCADA system can extend to other parts of the organization by

using the intranet and web-based portals, enabling corporate executives and

other business decision makers to aggregate and analyze data from multiple

 69

plants worldwide, regardless of time zones. They can also quickly produce

needed production reports, downtime tracking reports, batch reports, WIP

reports, quality assurance reports, and so on.

Reduced Project Costs. The cost for implementing an Internet-based

SCADA system will generally be lower than a traditional system. This is due to

the fact that the Internet-based SCADA system uses standard hardware and

software, requires lower training costs for operators and maintenance

technicians, requires lower preventive and corrective maintenance costs, and

possibly involves lower operating costs as the system architecture and operating

philosophy is simpler.

For example, in the first case study that we presented (the BP

implementation) [25], it was reported that the cost of implementing the new

web-based SCADA system is lower than a traditional system, mainly because

there is no need for a dedicated host computer or dedicated communications

network. Figure 3.7 shows how the cost-per-wellsite remains constant

regardless of how many wellsites are automated.

3.5 Disadvantages/Implementation Concerns

Although the concept seems appealing to many organizations, some important

issues are still deterring them from full implementations. These issues need to

be considered carefully as they have an impact on the system communications,

openness, security, functionality, and performance.

Non-Deterministic Communications. Determinism is the ability to predict

when information will be delivered. All networks provide some degree of

 70

Figure 3.7: Cost comparison (from BP case study)

 71

determinism. If a network only has two nodes — and the transfer of data

between the nodes is restricted to avoid collisions — the network has absolute

determinism. However, in realistic situations, the number of nodes on an

Internet- or intranet-based system continually changes. In order to guarantee

determinism, a network must provide scheduled bandwidth (or time slots) that

is reserved for time-critical data transfer.

Security Concerns. There are still some concerns related to the risk of

hackers or other intrusions affecting the performance and functionality of the

process systems, either intentionally or by mistake. The normal practice is to

protect these systems through network firewalls and password protection, which

will reduce the risk of unwanted access, but cannot guarantee 100% protection.

Also for real-time SCADA applications, a single level of security may not be

sufficient. Several systems implement what can be called a point-by-point

security. Each user is given access on a per-tag basis. This way, critical tags or

field outputs can be given ‘no access’ for users.

Limited Browser Functionality. Current restrictions in terms of

functionality come from the fact that web browsers are limited to HTML

functionality, providing limited support for pop up windows, and dynamic

allocation of data links or memory. To get suitable functionality close to a

SCADA's, the browsers need a significant number of plug-ins to be loaded on

the client, which has impacts on performance and maintenance. There is an

assumption that no maintenance is involved on the client end. In most cases

this is not true, as plug-ins need to be downloaded on the client. The amount of

plug-ins may vary from system to system based on the requirements.

 72

HMI Performance. Performance is critical in SCADA systems especially

with the large number of human machine interface (HMI) graphics. Even with

large bandwidth systems, the client must be responsible for most of the graphics

handling and database update. Few vendors build their graphics using formats

that retain the integrity of objects. The majority of attempts used to be by

converting the real-time graphics into JPEG or GIF pictures, which loses the

object elements. The W3C committee has selected the Scalable Vector Graphics

(SVG) format as its standard which improves graphics handling. In addition,

there are mechanisms on the server side that improve the performance of

displays, e.g. by refreshing them. The W3C standard to do this is called Simply

Object Access Protocol (SOAP). SOAP objects are based on XML and are used to

access properties and execute methods across the web. This will be discussed

further in the next chapter.

CHAPTER 4

JAVA AND XML

In this chapter, we discuss two specific web technologies, namely Java and

XML. We explain why these two technologies were chosen for our research

hypothesis, what each of them represents, and what benefits could we get from

combining them together. We will then present some of their applications in the

e-business world. This will be followed by discussion of their possible

applications in the process automation world.

4.1 Why Java and XML?

Java is the most common programming language for the Internet [29]. The

developers at Sun Microsystems intended it to be a platform-independent

programming language so that it could run on a variety of machines under

different operating systems. This was done at a time when the Internet was

emerging and gaining popularity. Java allowed people working on different

machines under different operating systems to download content and

applications from the Internet, and run them locally on their machines. In other

words, Java provided "portable code."

The Extensible Markup Language (XML) is a method for structuring and

describing information [6]. It is a subset from the Standard Generalized Markup

 73

 74

Language (SGML), which is a specification laid down by the World Wide Web

Consortium (W3C). SGML is a generalized language for structuring information.

However, it is too complex to be used for most applications. XML is more geared

toward creating one type of content. It is an efficient and effective way of storing

and sharing information, making it possible for a wide range of applications to

easily share data in a controlled and consistent manner. Therefore, XML

provides "portable data."

Since Java programs can be created on one platform and executed on

another, and since XML information can also be formatted on one platform and

transmitted to another, combining both Java and XML together lead to dual

portability of code and data. Wherever Java programs can run, they can also

access XML information. This enables Java and XML information to interoperate

efficiently and effectively on different platforms. [30, 31, 32, 33]

4.2 Overview of Java

4.2.1 Java Platform

The portability of Java is accomplished by using a Java Virtual Machine

(JVM), shown in Figure 4.1. When Java source code is compiled, the result is

not a standard executable, but a bytecode which can be interpreted by the JVM.

The JVM converts the bytecode back into the appropriate machine instructions.

Different JVMs are available for different operating systems and they all adhere

to a strictly defined specification. The bytecode generated on any machine

running any operating system can be interpreted by a JVM on any other

machine.

 75

Figure 4.1: The Java Platform

 76

4.2.2 Java Program Structure

The Java language organizes its programs in a hierarchical fashion,

making them easier to read and understand. The fundamental unit of Java

software is the class. A class is a description of a type of object, and includes a

collection of data and the code that operates on the data. A typical Java program

consists of hundreds of classes, some written specifically for that program, and

many others selected from the extensive Java class libraries. Typically, the

classes are grouped into packages. The categorization of classes into a package

is done by their function.

All Java code appears inside of classes. Furthermore, all executable

statements appear inside of methods, which reside in classes. No global

variables or functions may appear outside of any class, as happens in C++. It is

also not possible to write a single line of Java code the way a single line is

written in Perl or JavaScript. Java's rigorous structural rules become very useful

when developing large distributed applications.

4.2.3 Java Characteristics

Portable Code. The platform-independent nature of Java makes it

possible for application code to be transmitted from one machine to another over

the Internet regardless of the hardware platform or operating system used on

those machines.

Simple and Familiar. Java is based on the familiar C and C++

programming languages and borrows much of basic syntax from those

languages. The developers at Sun Microsystems wanted to make Java a simple

 77

language by removing some of the complex elements of C and C++ and adding

other important features missing from C and C++. The removal of programming

elements was aimed partly at minimizing redundancy and overlapping features

in C and C++.

Object-Oriented. Java was designed from the ground up as a fully object-

oriented programming language. The object-oriented paradigm has become the

model of choice for modern programming languages in that it supports the

needs of client/server and distributed software. Objects have portability and

persistence. They can be created in one location and sent over a network

connection to another location to be used or stored for future use.

Robust. The Java compiler performs an extensive check for syntax-related

errors and warnings, so problems can be identified before the program is

deployed. Once the program is deployed, a sophisticated exception handling

capability is built into the language to ensure that exceptions that would cause

program termination can be dealt with.

Secure. The Java compiler and runtime have built-in features to prevent

application programmers from writing malicious code as Java does not support

publicly accessible pointers. Also, the Java class loader implements additional

security procedures to prevent a remote class from spoofing (pretending to be) a

local class. Additional security mechanisms are provided by the bytecode verifier

and by the interfaces contained in the Java networking package.

Multithreaded. A Java program can start multiple threads of execution,

each performing its own sequence of operations at the same time. The Java

language provides the tools for threads to acquire and release locks in a manner

 78

that minimizes deadlock conditions. Java also provides programming

mechanisms to synchronize access to methods and develop functionality in a

thread-safe manner.

Versatile and Expandable. The Java language is versatile in that it covers

a wide range of programming disciplines, such as network programming,

graphical user interface (GUI) development, and creating different applications

using a single programming language. There is no need for integrating between

different languages using Common Gateway Interface (CGI) scripts or other

mechanisms. Also, the Java language is expandable in that new class libraries

are constantly being made available for programmers to download and

incorporate into their applications.

4.3 Overview of XML

A markup language uses tags embedded directly into a text file to describe the

various parts of the text. It adds labels to bits of text, and based on the label,

the outputs device can decide how best to process the content. A markup

language does not worry about how the content will be formatted; instead, it is

concerned with describing the content in an accurate and consistent manner.

The Hypertext Markup Language (HTML) is probably the most widely

known markup language. HTML evolved to contain tags that are used solely for

formatting the display of information. Because of this, it is considered to be

limited when it comes to storing many different types of information or

describing the structure of information. This is why another markup language is

needed. XML was developed in an effort to focus more on the content of

 79

information rather than on the formatting and displaying for that information.

Therefore, XML separates structure from display, allowing the application to

decide on how best to present the data.

4.3.1 The XML Document

An XML document is the file that contains the XML data. It can be broken

down into two basic parts: the header, which gives the XML application the

information it needs about how to handle the document; and the content, which

is the XML data itself. Figure 4.2 shows a sample XML document.

Well-Formed Documents. The XML data is organized into elements and

attributes. The root element is the highest-level element in the XML document,

and must be the first opening tag and the last closing tag within the document.

All other elements are enclosed within the root element. Attributes are the

parameters that follow an element's opening declaration, and are usually used

for single-valued data. If the XML document follows all the rules of correct XML

syntax, it is said to be well-formed.

Valid Documents. Because XML is extensible and can represent data in

many ways, constraining a document provides meaning to those various

formats. If the XML document follows the constraints set upon it, it is said to be

valid. There are two main standards for constraining XML, which are explained

in the following section.

4.3.2 XML Constraints

XML documents are not very usable without an accompanying constraint.

 80

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE device SYSTEM "C:\Documents and Settings\
Ramadan\My Documents\XMLspy projects\device1.dtd">
<device>transmitter
 <id>
 <tag>TT-005</tag>
 <variable>temperature</variable>
 <manufacturer>XYZ</manufacturer>
 <model>ABC</model>
 </id>
 <measure>
 <unit>C</unit>
 <value>31.0</value>
 <quality>good</quality>
 </measure>
 <service>
 <settingdate>05.12.04</settingdate>
 <operator>Ramadan</operator>
 <precision>0.45</precision>
 </service>
</device>

Figure 4.2: Sample XML document

 81

Without document constraints, it is impossible to tell what the data in a

document means. There are two current standards for XML constraints:

Document-Type Definitions (DTDs) and XML Schema.

Document-Type Definitions (DTDs.) The DTD, or sometimes called the

vocabulary, is a file that defines how the data is structured in the XML

document by specifying the elements and attributes allowed in the XML

document, the nesting and occurrences of each element, and any external

entities. This DTD file is linked with the actual XML document by placing a tag

into the XML document. The opening characters of this tag are <!DOCYPE

followed by the name of the root element. Figure 4.3 shows a sample DTD.

XML Schema. The XML Schema is a newer standard seeking to improve

the DTDs by adding more typing and constructs. Advantages of XML Schemas

include strong data typing, modular design, namespaces support, efficient data

exchange, easier to learn, and fewer errors. While DTDs can be adequate for

simple XML documents, schemas provide more control over the content and

structure of complex XML documents. Figure 4.4 shows a sample schema.

4.3.3 XML Parsing

XML documents are processed by special applications called parsers

(Figure 4.5). The parser reads the document and generates output based on the

document's content and the markup used to describe that content. The parser

checks to make sure the document is well-formed. Parsers that have the ability

to compare the document to its DTD or schema to determine whether the

document is valid are called validating parsers. Moreover, the parser can also

 82

?>xml version="1.0" encoding="UTF-8 "<?
>! ELEMENT device (#PCDATA | id | measure | service *(<
>! ELEMENT id (tag, variable, manufacturer, model (<
>! ELEMENT manufacturer (#PCDATA (<
>! ELEMENT measure (unit, value, quality (<
>! ELEMENT model (#PCDATA (<
>! ELEMENT operator (#PCDATA (<
>! ELEMENT precision (#PCDATA (<
>! ELEMENT quality (#PCDATA (<
>! ELEMENT service (settingdate, operator, precision (<
>! ELEMENT settingdate (#PCDATA (<
>! ELEMENT tag (#PCDATA (<
>! ELEMENT unit (#PCDATA (<
>! ELEMENT value (#PCDATA (<
>! ELEMENT variable (#PCDATA (<

Figure 4.3: Sample DTD file

 83

?>xml version="1.0" encoding="UTF-8 "<?
>xs:schema elementFormDefault="qualified"
xmlns:xs="http://www.w3.org/2001/XMLSchema "<
 >xs:element name="device "<
 >xs:complexType mixed="true "<
 >xs:choice minOccurs="0" maxOccurs="unbounded "<
 >xs:element ref="identification /"<
 >xs:element ref="measure /"<
 >xs:element ref="service /"<
 >/ xs:choice<
 >/ xs:complexType<
 >/ xs:element<
 >xs:element name="identification "<
 >xs:complexType<
 >xs:sequence<
 >xs:element ref="tag /"<
 >xs:element ref="variable /"<
 >xs:element ref="manufacturer /"<
 >xs:element ref="model /"<
 >/ xs:sequence<
 >/ xs:complexType<
 >/ xs:element<
 >xs:element name="manufacturer" type="xs:string /"<
 >xs:element name="measure "<
 >xs:complexType<
 >xs:sequence<
 >xs:element ref="unit /"<
 >xs:element ref="value /"<
 >xs:element ref="quality /"<
 >/ xs:sequence<
 >/ xs:complexType<
 >/ xs:element<
 >xs:element name="model" type="xs:string /"<
 >xs:element name="operator" type="xs:string /"<
 >xs:element name="precision" type="xs:decimal /"<
 >xs:element name="quality" type="xs:string /"<
 >xs:element name="service "<
 >xs:complexType<
 >xs:sequence<
 >xs:element ref="settingdate /"<
 >xs:element ref="operator /"<
 >xs:element ref="precision /"<
 >/ xs:sequence<
 >/ xs:complexType<
 >/ xs:element<
 >xs:element name="settingdate" type="xs:string /"<
 >xs:element name="tag" type="xs:string /"<
 >xs:element name="unit" type="xs:string /"<
 >xs:element name="value" type="xs:decimal /"<
 >xs:element name="variable" type="xs:string /"<
>/ xs:schema<

Figure 4.4: Sample XML Schema

 84

 file.html
 file.sql
 ….

Figure 4.5: XML Parsing

 85

process a style sheet document which defines the appearance of the XML

document within a browser. Because XML is an Internet and web technology,

the majority of parsers are written as Java applets.

4.3.4 XML Characteristics

Portable Data. Because XML is simply text, it can be moved between

various machines regardless of their hardware platform or operating system.

XML files must conform to a specification defined by the World Wide Web

Consortium (W3C). Therefore, the sending and receiving applications must both

adhere to the XML standard. This allows moving data between different

platforms, just like Java allows moving code around different platforms.

Interoperability. In comparison to HTML, which is a tightly-defined

standard aimed specifically at web presentation, XML is a generalized standard

which focuses on describing the structure of the documents. The programmers

have the flexibility to define the content of the document using their own

elements and attributes. This allows for interoperability. Each industry can

agree upon a certain set of constraints for XML, and then exchange data in

those formats, allowing them to apply their business knowledge to the data

being exchanged to make it meaningful.

Open Standard. XML does not require any special expertise to develop.

Unlike proprietary solutions which define binary data formats that must be

decoded in certain ways, and involve communication with other companies,

extensive documentation, and coding efforts; XML is a proven technology that

already has the tools , APIs, and parsers that handle all the work. Millions of

 86

developers are working, fixing, and extending it every day. XML becomes a

reliable, unimportant part of your application, allowing you to focus on the more

important issues: the complex business logic and presentation that involves

months of thought and hard work.

4.4 Java and XML Combined

4.4.1 Methods to Combine Java and XML

Low-Level APIs. The most basic way of accessing XML information from

within a Java program is though a low-level application programming interface

(API) [34]. Using these APIs, the textual content of the XML document can be

directly accessed. This requires a strong XML knowledge from the developer's

part. Since these low-level APIs deal with the document structure and XML rules

more than with the actual data, they are commonly used in infrastructure tasks

or when setting up communication in messaging.

Different approaches have been used to implement these low-level APIs.

For example, the Simple API for XML (SAX) works with streamed data (reads

information from an XML input source), the Document Object Model (DOM)

works with modeled data (keeps a complete in-memory model of an XML

document), and the Java API for XML Parsing (JAXP) works with abstracted data

(abstracts previous types of APIs and makes them vendor-neutral.)

High-Level APIs. Instead of parsing and traversing the XML documents

directly, the high-level APIs hide most of the details of XML structure and rules,

and allow Java classes to work with the business logic implied within the

document rather than the data. This is easier and more useful when solving

 87

specific business problems, and has become quite popular with the developers

of Java- and XML-based applications.

Different approaches have been used to implement these high-level APIs

[34]. For example, the mapped data approach maps data from an XML

document to Java classes, while the messaged data approach uses XML as the

interchange medium for data. Examples of the latter approach include the

Simple Object Access Protocol (SOAP) and XML Remote Procedure Call (XML-

RPC.)

The high-level API approach is generally known as the data binding

approach. This usually consists of four parts: binding schema (specifying how

Java classes are generated from XML constraints), class generation (creating the

Java source files from XML constraints), unmarshalling (converting XML

documents to Java classes), marshaling (converting Java classes to XML

documents.) This process is depicted in Figure 4.6.

4.4.2 Characteristics of Combined Java and XML

Dual Portability. Combining the code portability of Java with the data

portability of XML allows the creation of powerful distributed applications.

Open Standards. Because W3C manages the XML specification and Sun

Microsystems controls the Java programming language specification, and

because millions of developers make changes to the standards and

specifications of Java and XML only after through testing and investigation,

both Java and XML have well-defined specifications. This leads to longer lifetime

for any Java applications and any information stored with XML. Changes to the

 88

Figure 4.6: Java and XML data binding

 89

Java and XML specifications are also more infrequent than newer technology

specifications.

Extensible. Both Java and XML have built-in extensibility features. As a

truly object-oriented programming language, portions of Java code can be

improved, modified, or even rewritten without altering any other parts of the

application. Similarly, XML information can be rearranged, sorted, or modified

in whatever manner suits the applications which access the data. XML

documents can utilize an unlimited number of markup tags. The document's

author controls the nature of these tags. This further ensures the longest

possible lifetime for the applications and the data created.

Internet-Compatible. As one of the most popular programming languages

for creating network applications, Java allows building both large and small

networks, especially the ones planned to be connected to the Internet. Similarly,

XML information is fast becoming one of the most popular methods of storing

data on the Internet, especially on the World Wide Web. Moreover, because XML

is derived from SGML, the same source from where HTML was derived, many

Java developers familiar with HTML can easily make the transition to Java- and

XML-based information.

Interoperability. Since XML is vendor neutral, meaning that no one

company controls the specification, developers of new applications and

technologies are more comfortable with the concept of using XML to structure

their data. XML data in itself is very easy to process. An application developed in

Java can access XML documents as easily as it can access any other file. Both

Java and XML use Unicode character encoding, a system that makes it easy to

 90

exchange data and information between XML and Java code.

Reusability. Both Java applications and XML documents can be created

in a modular fashion. By following a modular design, the code modules can be

made available for reuse by other applications. This allows developers to quickly

create flexible, reliable, and more efficient applications using Java and XML.

4.5 Applications of Java and XML in e-Business

4.5.1 Web Services

The term web service is commonly used to describe a service-oriented

system architecture that is based on open and interoperable XML standards. It

is defined as an application that exists in a distributed environment such as the

Internet. It accepts a request, performs its action based on the request, and

returns a response. Both the request and response usually take the form of

XML, and are delivered over a wire protocol such as HTTP. [35, 36, 37, 38]

Web services can be applied in several different ways. They generally fall

into three categories: (1) allowing programmatic access to applications over the

Internet, (2) business-to-business (B2B) integration between different

organizations, and (3) application-to-application (A2A) integration within the

same organization.

This usually involves three main steps: (1) developing the web service and

publishing its features, (2) discovering and learning about the available web

services, and (3) accessing the web services and binding to it from within the

client applications. This publish-discover-bind model is depicted in Figure 4.7.

 91

l h

Web Service

1. Publis

Registry

r

Figure 4.7: The web services' publish-d
3. Bind/Cal

Client
2. Discove
iscover-bind model

 92

The core technologies that underline these three main steps are WSDL, UDDI,

and SOAP/HTTP.

Web Services Description Language (WSDL). This is the mechanism that

allows the provider of a web service to specify the technical details of exactly

what services are offered. WSDL is used to group related operations into

interfaces and then provide some way to describe each of those operations. The

WSDL itself is defined using XML.

Universal Description, Discovery, and Integration (UDDI). This is the

global registry of web services. It allows providers of web services to advertise

their offerings in a standard way on the Internet. It also allows developers of

client applications to search the available web services and learn what interfaces

they provide in order to be able to build those client applications.

Simple Object Access Protocol (SOAP). Once an interface has been

defined, clients must use some protocol to invoke the operations on that

interface. SOAP is the most common choice. It provides a way to identify which

operation to invoke, to convey that operation's inputs as XML data, and to

return any output also as XML data. SOAP forms an envelope around the XML

data, and then carries it over HTTP.

4.5.2 Web Services Standards

The novel idea of web services was created by a group of companies

including Microsoft, IBM, Sun, Oracle, BEA, and many others. They have all

endorsed the core web services technologies of SOAP, WSDL, and UDDI. Most of

these technologies have been submitted to the W3C and have become official

 93

standards of the web. The W3C standards can be referred to at

http://www.w3.org.

4.5.3 Web Services Platforms

On the commercial side, two mainstream software development

environments have dominated the web services platforms. The Java 2 Enterprise

Edition (J2EE) is the platform provided by Sun Microsystems (Figure 4.8), while

.NET is the platform provided by Microsoft (Figure 4.9).

These two competing platforms have several similarities and differences.

In terms of similarities, both environments are trying to support the same

classes of applications. The J2EE platform is based on the Java Virtual Machine

(JVM), while the .NET platform is based on the Common Language Runtime

(CLR). The large standard library that Java provides includes Java Server Pages

(JSP) for web scripting, JDBC for database access, Swing for building graphical

user interfaces, Enterprise Java Beans (EJBs) for building scalable server

applications, and other classes. These are analogous to the .NET platform's

ASP.NET, ADO.NET, Windows Forms, and Enterprise Services, respectively.

In terms of differences, the Java environment uses one programming

language (Java) which can run on diverse operating systems, while the .NET

platform provides a variety of programming languages (Visual Basic.NET, C++,

C#) but focuses on the Windows operating system. The Java environment

provides portability (which is good) but with less integration with the operating

system, while .NET is not portable but is tightly integrated to Windows (which is

good also).

 94

Figure 4.8: Sun J2EE platform

 95

Figure 4.9: Microsoft .NET platform

 96

4.6 Applications of Java and XML in Process
Automation

The effect of XML and web services technologies on the process automation field

has been shown in some applications [39, 40, 41]. They can generally be

summarized into the following:

4.6.1 Web Enabling

The term web enabling is used here to refer to the process of applying a

web interface to a control process. Java and HTML have been the main

technologies to develop web enabled process automation systems. In Chapter 5,

we demonstrate these concepts by describing the design of a web enabled

control system that was developed as part of a lab-scale control project.

4.6.2 Web Integration

The term web integration is used here to refer to the process of

integrating between different distributed subsystems using standard web

technologies. Java and XML can play a major role in this area. In chapter 6, we

demonstrate these concepts by describing the design of a web integrated SCADA

system.

CHAPTER 5

DESIGN OF WEB-ENABLED CONTROL SYSTEM

In this chapter, we provide an overview of a web-enabling project which was

conducted by the Systems Engineering Department at KFUPM [1]. The objective

of this project was to design and develop a Java-based control system that will

enable the use of laboratory equipments from remote locations. Figure 5.1

summarizes the project main goal.

The system architecture consists of a server computer, called the

LabStation, and several remote client computers, called the RemoteUser PCs.

The LabStation server is connected to the lab equipment using data acquisition

card, digital signal processing board, and other add-on controller hardware. The

Java Native Interface (JNI) technology is used for accessing the I/O ports, and

Java servlets are used to provide functions required by the remote user. The

RemoteUser PC provides access to the LabStation server through Java applets

running through the standard web browser interface.

5.1 Dual Tank Process

The process under control is the CE105 dual tank system provided by

TecQuipment, shown in Figure 5.2. This apparatus is used for the study and

practical investigation of basic and advanced control engineering principles,

 97

 98

Figure 5.1: A lab-scale Java-based control system

 99

Figure 5.2: The CE105 dual tank system

 100

including static and dynamic systems behavior using either analog or digital

techniques. The CE105 coupled tanks show the fluid transport and liquid level

control problems as they would occur in process control industries. It may also

be used for designing and implementing three-term PID controllers.

The basic control problem is to regulate the liquid level in one of the

tanks by varying the speed of the circulating pump. The CE105 comprises two

separate tanks, interconnected by a flow channel, both fitted with drain valves

to a common reservoir situated below. A variable area valve in this channel is

used to vary the flow characteristics between the tanks. Pressure transducers

provide 0-10V output signals to indicate actual water level in each tank. A

variable speed pump is set to fill the left-hand tank, either under manual or

automatic control, and the second tank can be filled from the first tank, via the

variable area valve. The pump flow rate is indicated by a flow meter and impulse

transducer. The water level in each tank is visible through the front panel

windows which are marked with calibration scale.

5.2 System Components

The LabStation server is a Windows-based personal computer. Since the control

application was developed in Java, the operating system could have been

replaced with Unix or any other platform as long as it supports Java. The main

add-on components to this server are explained below.

5.2.1 Data Acquisition (DAQ) Card

The PC-30F/G board from Eagle Technologies was used to provide analog

 101

and digital I/O interface with the CE105 dual tank system. This is an ISA-bus

multi-function board, programmable gain, simultaneous sample and hold, 4

analog outputs, 16 single ended analog inputs or 8 differential analog

inputs, and flexible digital I/O capabilities (24 lines in three ports, each port can

be configured as input or output.) The board also includes a 16-bit

counter/timer used to generate or measure frequency and count events.

5.2.2 Digital Signal Processing (DSP) Card

The PC32 board from Innovative Integration was used to provide digital

signal processing capabilities on a single half-length ISA bus card. The PC32

offers a very high-performance computing engine with determinant timing for

fast data acquisition and control to complement the personal computer. Using

the PC32, the server is freed up from time-critical events and can operate under

Windows and other operating systems where real-time performance is not very

easy to achieve.

5.2.3 Video Capture Card

In this project, an industrial digital camera was used to provide visual

feedback to the remote user. The video capture board used is from Prolink and

is based on Brooktree/Conexant Bt878 video decoder chip. The Bt878 chip has

two high speed A/D converters capable of doing 40 X 106 A/D conversions per

second.

 102

5.3 Java Development

5.3.1 Java Drivers

Although this project used special hardware components such as the

data acquisition card and digital signal processing card, achieving hardware

independence was very important. To do this, an abstraction layer was needed

to establish communication between the I/O cards and the control application.

This was possible using the Java Native Interface (JNI). However, it was

assumed that a minimum set of features will always be available on any DAQ

and DSP cards. This usually can be found as C libraries on the card which can

be accessed by the JNI layer.

The minimum functions required for the DAQ card include initialize/

reset, get total number of inputs/outputs, get minimum and maximum of

input/output channels, read input channels, write to output channels, and

streaming data collection. The minimum functions for the DSP card include

initialize/reset, upload a compiled program, read input channels, and write to

output channels. The Java drivers development includes both generating Java

files with native method declarations, and C/C++ files with native method

implementations. The complete implementation details are included in the

project report [1] and are not part of this thesis work.

5.3.2 Java Servlets

The interaction between the remote users and the LabStation server is

handled through the Java servlet technology (Figure 5.3). The servlets respond

 103

Figure 5.3: The servlet processing mechanism

 104

to requests sent from applets running on the RemoteUser PC, process the

required actions to the I/O drivers (initialize/reset, input, output, upload

compiled programs, etc.) and respond accordingly through the web server to the

remote user applets.

The LabStation servlets and classes that were developed for this project

include an experiment control servlet, a remote procedure call servlet, a DSP

program uploader servlet, a system event logger class and a resource access

serialization class.

5.3.3 Java Applets

The main graphical user interface (GUI) applet for this project is called

TeleLabJApplet (Figure 5.4). It is based on the JFC (Java Foundation

Classes)/Swing components which include a rich set of features such as

pluggable look and feel, robust event-handling, graphics and imaging tools,

window layout managers, and data transfer classes. The TeleLabJApplet

includes buttons that will invoke LabStation servlets to start an experiment,

change controller values, login/logout, etc. The invoked servlet returns some

HTML output, or certain I/O errors due to network problems.

Moreover, additional Java classes and beans were developed for the

LiveCam video portion of the user interface. These include an image painting

bean, a thread manager bean, a visual interface bean, a class for copying

downloaded images into memory, and a class for showing the image in a

dedicated frame.

 105

Figure 5.4: The graphical user interface applet

CHAPTER 6

DESIGN OF WEB INTEGRATED SCADA SYSTEM

In this chapter, we will discuss the design of the project conducted as part of

this thesis work. While the first project discussed in Chapter 5 showed the use

of Java in controlling a single lab apparatus, this second project extends and

builds upon these concepts by demonstrating how Java and XML can be used

together to control a distributed SCADA application.

The objective of this project is to control a hypothetical industrial process,

namely the liquid transfer between two tanks. This situation can be found in

many industrial applications, such as transferring products from tank to tank

within a single plant, or from tank to tank between different plants across a

pipeline. Figure 6.1 shows the project main goal.

Since this project is aimed at designing the high-level system

architecture, the unified modeling language (UML) notation [42, 43, 44] was

used to describe the design model. The UML approach provides a standard

method for software development and allows the user to visualize the system

design in simple and easy to understand graphical diagrams.

6.1 Tank Transfer Process

The process under control is a simple pipeline tank transfer system with

 106

 107

 Dispatching Center

Web Server

HTML/XML HTML/XML

Figure 6.1: Overview of the tank transfer system

Web Server

XML

Web Server

Shipping Plant Receiving Plant

 108

shipping and receiving facilities at both ends of the pipeline. The process

consists of a shipping plant, a receiving plant, and a dispatching center. The

shipping plant has the product tank and a shipping pump. The receiving plant

has a receiving tank and a surge tank.

The dispatching center supervises the whole shipment process, and is

responsible mainly for the business order handling. The shipping and receiving

plants perform the actual field operations, and are responsible for both business

and control functions. The following sections describe the UML diagrams that

were developed to document the design of the overall SCADA system.

Basically, each of the three locations will be implemented as a web server.

The dispatching node can be thought of as the master terminal unit (MTU)

which is supervising the whole shipping operation, while the shipping and

receiving nodes can be thought of as the remote terminal units (RTUs) which are

interfaced to the field instrumentation.

6.2 Use Case Diagram

The use case diagram (Figure 6.2) shows the various functions required from the

system. The dispatcher at the dispatching center can create a shipment order,

monitor the shipment process, and close the order when it is completed. The

operator at the shipping plant will receive the shipment order, initiate the

shipping sequence, monitor the shipment process, and stop the shipping

process once the ordered volume is completed. The operator at the receiving

plant can prepare the facility to receive the shipment, monitor the shipment

process, and stop the receiving activity one the ordered volume is completed.

 109

Figure 6.2: Use Case Diagram

 110

6.3 Component/Deployment Diagram

The component/deployment diagram (Figure 6.3) shows the hardware and

software components of the system. The diagram also shows what messages are

sent between the different nodes on the network. Since the objective of this

design project is to demonstrate the key concepts of applying Java and XML in

SCADA systems and not to do actual implementation, the system components

have been left as generic as possible. And since Java and XML are both

portable, the developer could choose whatever hardware platform is desired.

Each of the three nodes has both business and control functionalities.

These are designed as business and control web services, which will allow easy

access via XML.

6.3.1 Document-Oriented Web Services

The business web services are designed as document-oriented web

services, i.e. they exchange data in the form of XML documents sent over

regular HTTP. An HTTP servlet handles incoming documents and passes them to

the business web service.

6.3.2 RPC-Oriented Web Services

The control web services are designed as RPC-oriented web services, i.e.

they invoke methods on each other remotely using SOAP/HTTP messages. An

interface to the control web service handles the incoming SOAP messages for

remote method invocation, while local proxies of the other remote web services

are used to send outgoing SOAP messages.

 111

Figure 6.3: Component/Deployment Diagram

 112

6.4 Class Diagram

The class diagram (Figure 6.4) shows the static model of the system. It shows

what object classes are used and their relation to each other. This consists of

the process entities, the Java drivers, the Java servlets, and the Java Applets.

6.4.1 Process Entities

There are three classes that represent physical process objects; namely

the Tank, Pump, and Order classes.

Tank Class. The tank object class represents a simplified model of a tank.

Each tank has an inlet valve and an outlet valve, which can be opened or closed.

It also has level and volume indications, which can be checked by the control

program at any time. The control program keeps scanning the process inputs

and outputs (I/O) to monitor the status of the tank.

A separate class, called LevelToVolume, has been created to represent the

calculation module for converting tank level to volume. This is because the tank

field instrumentation often provides level sensing capability only. To get the

volume of liquid inside a tank, a strapping table is used to convert the height of

the liquid to a corresponding volume. This strapping table is established at the

time of tank construction and is based on actual measurements of the tank.

Pump Class. The pump object class represents a simplified model of a

pump. The pump can be started or stopped. The status of the pump, running or

stopped, can be checked by the control program at any time. The control

program keeps scanning the process inputs and outputs (I/O) to monitor the

status of the pump.

 113

Figure 6.4: Class Diagram

 114

Order Class. The order object class represents a model of the business

order. For each transfer shipment, an order is created by the dispatcher. This

order consists of an order id number, the ordered volume that needs to be

transferred, the current volume shipped so far, and the order status indication.

The order is downloaded from the dispatching system to each of the shipping

and receiving plants, and the order status is updated as the shipment process

progresses.

6.4.2 Java Drivers

In order for the tank and pump objects to interact with the physical

process equipment and field instrumentation, a driver class must be created to

handle the I/O interface. In this project, we created a single generic object class,

called DrvierIO, to represent the I/O interface. This could represent the DAQ or

DSP cards that were used in the first project, or it could represent a more

sophisticated I/O modules typically found with SCADA and PLC systems. The

DrvierIO simply allows the Java application to read inputs or write outputs to

the field.

6.4.3 Java Servlets

The Java applications that need to interact with the other remote

applications are modeled as web services, namely the BusinessWebService and

ControlWebService; while the Java applications that run locally on the machine

and do not require interaction with external applications are modeled as normal

Java applications, namely the AlarmManager.

 115

BusinessWebService. This web service allows the user to create an order,

initiate the shipping process, and stop the shipping process. This is a

document-oriented web service, which exchanges the order data in the form of

XML document. It works together with the OrderServlet to send and receive the

XML documents, and handles the unmarshalling and marshaling to and from a

Java object.

ControlWebService. This web service allows the user to start and stop

shipping, start and stop receiving, and interact with the tank and pump objects.

This is an RPC-oriented web service, which allows remote invocation of methods.

It has both a proxy and interface. The ProxyControlWS is used by the

application sending the SOAP messages, allowing it to invoke methods on the

remote web service as if it is done locally. The InterfaceControlWS is used by the

application receiving the SOAP messages, allowing it to process the incoming

requests and respond to them accordingly.

AlarmManager. This is a generic object class that is used to represent a

subsystem handling any alarm conditions that occur from the process. The

AlarmManager and the ControlWebService both monitor the process entities

continuously to detect any change in value or condition.

6.4.4 Java Applets

The human-machine interface (HMI) in this project is modeled as a single

generic object class, called Browser. This allows the user to interact with the

SCADA system through the standard web browser.

 116

6.5 Sequence Diagrams

The sequence diagrams show the dynamic model of the system. They show how

the runtime objects act out a use case by sending messages to each other. They

are used in this project to model two main processes: the monitoring process

(Figures 6.5 – 6.8) and the shipping process (Figures 6.9 – 6.23.)

6.5.1 Monitoring Process

This process starts as soon as the user starts up the SCADA system.

Figures 6.5 shows the overall monitoring process, while Figures 6.6, 6.7, and

6.8 show the individual sequence diagrams for the dispatching, shipping, and

receiving nodes, respectively.

On the shipping and receiving nodes, the ControlWebService starts by

creating the runtime objects of tanks and pump. Once the objects are created,

they are updated continuously by scanning the I/O's. Both the

ControlWebService and AlarmManager keep monitoring the status of the

objects, and then update the Browser object accordingly.

On the dispatching node, the dispatchingControlWebService interacts

with the remote shippingControlWebService and receivingControlWebService to

update and synchronize the information.

 117

Figure 6.5: Sequence Diagram (Overall View of Monitoring Process)

 118

Figure 6.6: Sequence Diagram (Monitoring Process on Dispatching Node)

 119

Figure 6.7: Sequence Diagram (Monitoring Process on Shipping Node)

 120

Figure 6.8: Sequence Diagram (Monitoring Process on Receiving Node)

 121

6.5.2 Shipping Process

This process is divided into four sub-processes: create order, start

shipping, stop shipping, and close order. Figure 6.9 shows the overall shipping

process. Figures 6.10 – 6.13 show the order creation process. Figures 6.14 –

6.16 show the start shipping process. Figures 6.17 – 6.19 show the stop

shipping process. Figure 6.20 – 6.23 show the order closure process.

The first three processes (create order, start shipping, stop shipping)

require some sort of human intervention. This is just an assumption in this

project to ensure the safety of critical operations such as starting and stopping a

pump. The last process (close order) occurs automatically once the ordered

volume is delivered completely to the receiving plant.

 122

Figure 6.9: Sequence Diagram (Overall View of Shipping Process)

 123

Create Order Process. To summarize the sequence of order creation

process, the following steps are implemented:

1. The dispatcher creates a new shipment order from the browser.

2. The dispatchingBusinessWebService creates the order object.

3. The dispatchingBusinessWebService marshals the order object into an

XML document and downloads it to the shipping plant.

4. The shippingBusinessWebService receives the XML document through

the orderServlet and unmarshals it into an order object.

5. The shippingBusinessWebService sends a copy of the XML document

to the receiving plant.

6. The receivingBusinessWebService receives the XML document through

the orderServlet and unmarshals it into an order object.

7. Receiving plant sends back acknowledgment to shipping plant.

8. Shipping plant sends back acknowledgment to dispatching center.

9. The dispatchingBusinessWebService updates the order status.

 124

Figure 6.10: Sequence Diagram (Overall View of Create Order Process)

 125

Figure 6.11: Sequence Diagram (Create Order)

 126

Figure 6.12: Sequence Diagram (Create Order – Continued)

 127

Figure 6.13: Sequence Diagram (Create Order – Continued)

 128

Start Shipping Process. To summarize the sequence of start shipping

process, the following steps are implemented:

10. The shipping operator initiates the shipping process from the HMI

browser. This causes the shippingControlWebService to automatically

send a start shipping request to the receiving plant.

11. The receiving operator sees the start shipping request on the HMI

browser and accordingly opens the receiving tank inlet valve. This

causes the receivingControlWebService to automatically send back an

acknowledgement message to the shipping plant.

12. The shippingControlWebService opens the shipping tank outlet valve

and starts the pump.

 129

Figure 6.14: Sequence Diagram (Overall View of Start Shipping Process)

 130

Figure 6.15: Sequence Diagram (Start Shipping)

 131

Figure 6.16: Sequence Diagram (Start Shipping – Continued)

 132

Stop Shipping Process. To summarize the sequence of stop shipping

process, the following steps are implemented:

13. When the ordered volume approaches its completion, the receiving

ControlWebService sends a stop shipping request to the shipping

plant.

14. The shipping operator sees the stop shipping request on the HMI

browser and accordingly closes the shipping tank outlet valve and

stops the pump. This causes the shippingControlWebService to

automatically send an acknowledgment to the receiving plant.

15. If the ordered volume is reached and the shipping operation is not

stopped yet, the receivingControlWebService switches the receiving to

the surge tank so that the volume in the receiving tank is not

overfilled.

16. If the shipping operation stopped, the receivingControlWebService

makes sure the surge tank inlet is closed.

 133

Figure 6.17: Sequence Diagram (Overall View of Stop Shipping Process)

 134

Figure 6.18: Sequence Diagram (Stop Shipping)

 135

Figure 6.19: Sequence Diagram (Stop Shipping – Continued)

 136

Close Order Process. To summarize the sequence of order closure

process, the following steps are implemented:

17. If the ordered volume is completely delivered at the receiving plant, the

receivingBusinesWebService updates the order as completed,

marshals the order into an XML document, and sends it back to the

shipping plant.

18. The shippingBusinessWebService receives the XML document,

updates the order as completed, and sends the XML document to the

dispatching center.

19. The dispatchingBusinessWebService receives the XML document, and

updates the order as closed.

 137

Figure 6.20: Sequence Diagram (Overall View of Close Order Process)

 138

Figure 6.21: Sequence Diagram (Close Order)

 139

Figure 6.22: Sequence Diagram (Close Order – Continued)

 140

Figure 6.23: Sequence Diagram (Close Order – Continued)

 141

6.6 State Diagram

The state diagram (Figure 6.24) shows the different states of the system and

how the transitions between them take place. In this project, we assume that

each of the three nodes (dispatching, shipping, and receiving) will have four

states based on the shipment order status.

6.6.1 Order States

Order states at the dispatching node:

1. Created

2. DownloadedShipping

3. DownloadedReceiving

4. Closed

Order states at the shipping node:

1. Downloaded

2. Shipping

3. Stopped

4. Completed

Order states at the receiving node:

1. Downloaded

2. Receiving

3. Stopped

4. Completed

 142

Figure 6.24: State Diagram. (Numbers between brackets indicate the order

status at the dispatching, shipping, and receiving nodes, respectively.)

 143

6.6.2 System States

The combined system states that result from these different states will be

4 * 4 * 4 = 64 states. However, under the project design, only 13 states are

possible. They are described as follows:

(0,0,0) Order does not exist yet.

(1,0,0) Order created by dispatching center.

(1,1,0) Order downloaded at shipping plant, but no acknowledgement.

(2,1,0) Acknowledgement received at dispatching center.

(2,1,1) Order downloaded at receiving plant, but no acknowledgement.

(3,1,1) Acknowledgement received at dispatching center.

(3,2,1) Order started shipping.

(3,2,2) Order started receiving.

(3,3,2) Order stopped shipping (either alarm or volume completed.)

(3,3,3) Order stopped receiving (either alarm or volume completed.)

(3,3,4) Order completed at receiving plant.

(3,4,4) Order completed at shipping plant.

(4,4,4) Order closed by dispatching center.

Note that at state (3,3,2), if the shipping stopped due to an alarm, and the

alarm was cleared, the operation may resume shipping again, which means

going back to state (3,2,2). Similarly, at state (3,3,3), if the receiving stopped due

to an alarm (either from shipping or receiving), and the alarm was cleared, the

operation may resume receiving again (if receiving alarm was cleared) which

means going back to state (3,3,2); or the operation may resume shipping again

(if shipping alarm was cleared) which means going back to state (3,2,2).

CHAPTER 7

FINDINGS AND RESULTS

In this chapter, we summarize the findings of our investigation study and show

the results of testing the research hypothesis. We then make some conclusions

about the use of Internet-based SCADA system, and present some suggestions

for future work.

7.1 Research Findings

From the two design projects presented in Chapters 5 and 6, we learned several

things about the use of Java and XML in Internet-based SCADA systems. These

key concepts then allowed us to draw conclusions about Internet-based SCADA

systems and how to improve their design to meet the required applications. The

following sections summarize what we could achieve by using each technology.

7.1.1 Java Uses

Platform Independence. Achieving portability is the key purpose of using

the Java environment. It allows end users to select whatever hardware platform

and operating system they desire. It also allows developers to market their

products onto whatever hardware platform or operating system their clients use.

Sun Microsystems provides three versions of the Java platform. The Java 2

 144

 145

Standard Edition (J2SE) is intended for desktop users, the Java 2 Enterprise

Edition (J2EE) is for enterprise applications, and Java 2 Mobile Edition (J2ME)

is for wireless device applications. The J2EE platform is the most suitable

environment for Internet-based SCADA system as it supports development and

deployment of web services.

Application Development. The Java programming language can be used

to develop the server-side Java servlets and web services that are required for

implementing the business and control logic, as well as to handle the data

communication with other nodes over the network. Java is versatile language

that covers a wide range of applications using a single programming language.

Also, the Java language is expandable in that new class libraries are constantly

being made available for programmers to download and incorporate into their

applications.

HMI Development. The Java programming language can also be used to

develop the client-side Java applets and web pages that are required for the

human-machine interface (HMI). Java provides a full suite of graphical user

interface (GUI) development tools, which can be used very efficiently to develop

SCADA mimic displays, trends, and generate reports.

Distributed Processing. The Java environment allows developers to create

and deploy distributed applications over wide area networks. The Java

servlet/applet technology provides a way to distribute the data processing load

between the server and client so that the application performance is optimized.

This concept could benefit SCADA systems design such that system

performance is always maintained.

 146

7.1.2 XML Uses

Data Storage. The XML document provides a common medium to store

process data, business information, and related system configuration, all in one

standard format. This was shown in our design in Chapter 6 by storing the

shipment order information in an XML document. The XML parser will check

the validity of the data in this document by comparing it with the constraints

defined in a DTD or schema file. This provides a mechanism to check the quality

of data.

Data Interchange. Storing the information in an XML document makes it

easy to share this stored information with any other machine on the network, as

long as it knows the constraints set upon the information. And because XML is

simply text, it can be moved between various machines regardless of their

hardware platform or operating system.

Distributed Processing. The web services approach to XML

implementation provides the ability to create versatile distributed applications

that can communicate over wide area networks. And because the SOAP remote

procedure call messages are carried over the standard HTTP message, they can

pass through most firewalls without being blocked. To ensure the security of

such messages, standard encryption mechanisms can be implemented during

the message transmission phase to protect it against unwanted hacking.

HMI Personalization. This is a feature of XML that we did not include in

our investigation, but it has been widely implemented in Internet applications. It

is concerned with the activity of developing different user interfaces for different

classes of users. For example, a manager display may provide summarized

 147

process data as opposed to detailed process data used by the operator.

Similarly, an engineering display may include historical process analytic data as

opposed to current process data used by the operator. Customizing the display

for each user has been a tedious job with previous technologies (e.g. HTML).

With XML, the data is separated from the display and is stored in a structured

format. The graphical display acts as a container that searches for the required

information and presents only relevant data to the user.

7.2 Hypothesis Test Results

Our research hypothesis was to evaluate whether Java and XML can improve

the design of current Internet-based SCADA system, and from the result we

showed in the previous section, the answer is indeed "Yes." The results are

summarized in Table 7.1. It is basically a comparison between the three types of

SCADA systems discussed in this report, namely the traditional SCADA systems

(Chapter 2), the current Internet-based SCADA systems (Chapter 3), and the

proposed Internet-based SCADA system (Chapter 6).

The comparison is based on a set of qualitative criteria which were

identified as part of this thesis work. These criteria are by no means exclusive

and additional criteria could be included. The ones shown in Table 7.1 are

merely intended to represent the major concern areas from the end user point of

view. Below is a brief discussion of each.

Technology Standards. The main objective of implementing an Internet-

based SCADA system is to leverage the existing technology standards and apply

them for process automation. Traditional SCADA system are characterized by

TA
B

LE
 7

.1
: C

O
M

PA
R

IS
O

N
 B

E
TW

E
E

N
 T

R
A

D
IT

IO
N

A
L

A
N

D
 I

N
TE

R
N

E
T-

B
A

S
E

D
 S

C
A

D
A

 S
YS

TE
M

S

Tr

ad
it

io
n

al
 S

C
A

D
A

 S
ys

te
m

C

u
rr

en
t

In
te

rn
et

-B
as

ed

S
C

A
D

A
 S

ys
te

m

Pr
op

os
ed

 I
n

te
rn

et
-B

as
ed

S

C
A

D
A

 S
ys

te
m

 Te

ch
n

ol
og

y
S

ta
n

da
rd

s

 M
os

tl
y

pr
op

ri
et

ar
y

 O
pe

n
 s

ta
n

da
rd

s
 O

pe
n

 s
ta

n
da

rd
s

N
et

w
or

ki
n

g
an

d
C

om
m

u
n

ic
at

io
n

s

TC
P/

IP
 o

r
ot

h
er

 p
ro

to
co

ls

ov
er

 p
u

bl
ic

 (p
h

on
e

lin
es

,
ra

di
o)

 o
r

pr
iv

at
e

(c
om

pa
n

y-
ow

n
ed

) n
et

w
or

k

TC
P/

IP
 o

ve
r

pu
bl

ic
 (I

n
te

rn
et

)
or

 p
ri

va
te

 (i
n

tr
an

et
) n

et
w

or
k

TC
P/

IP
 o

ve
r

pu
bl

ic
 (I

n
te

rn
et

)
or

 p
ri

va
te

 (i
n

tr
an

et
) n

et
w

or
k

D
at

a
In

te
rc

h
an

ge

Pr
op

ri
et

ar
y

ve
n

do
r-

sp
ec

ifi
c

in
te

rf
ac

es
 o

r
op

en
 p

ro
to

co
ls

(e

.g
. M

od
bu

s,
 O

PC
)

O
pe

n
 w

eb
 p

ro
to

co
ls

 (e
.g

.
H

TM
L,

 H
TT

P)

O
pe

n
 w

eb
 p

ro
to

co
ls

 (X
M

L,

S
O

A
P/

H
TT

P)

N
et

w
or

k
Pe

rf
or

m
an

ce

D
et

er
m

in
is

ti
c,

 v
en

do
r-

op
ti

m
iz

ed
 fo

r
re

al
-t

im
e

ap
pl

ic
at

io
n

s

N
on

-d
et

er
m

in
is

ti
c,

 n
ot

su

it
ab

le
 fo

r
re

al
-t

im
e

ap
pl

ic
at

io
n

s,
 in

ef
fic

ie
n

t
da

ta

h
an

dl
in

g
(H

TM
L)

N
on

-d
et

er
m

in
is

ti
c,

 c
an

 b
e

op
ti

m
iz

ed
 fo

r
da

ta
 s

tr
ea

m
in

g,

ef
fic

ie
n

t
da

ta
 h

an
dl

in
g

(X
M

L)

A
pp

lic
at

io
n

D

ev
el

op
m

en
t

C
, C

++
, e

tc
.

Ja

va
, V

is
u

al
 B

as
ic

, e
tc

.
Ja

va

A
pp

lic
at

io
n

R

u
n

ti
m

e

Pr
op

ri
et

ar
y

en
vi

ro
n

m
en

t,

pl
at

fo
rm

-d
ep

en
de

n
t

O
pe

n
 e

n
vi

ro
n

m
en

t,

pl
at

fo
rm

-
de

pe
n

de
n

t
or

in

de
pe

n
de

n
t

O
pe

n
 e

n
vi

ro
n

m
en

t,

pl
at

fo
rm

-i
n

de
pe

n
de

n
t

148

 TA
B

LE
 7

.1
: C

O
M

PA
R

IS
O

N
 B

E
TW

E
E

N
 T

R
A

D
IT

IO
N

A
L

A
N

D
 I

N
TE

R
N

E
T-

B
A

S
E

D
 S

C
A

D
A

 S
YS

TE
M

S
 (

C
O

N
TI

N
U

E
D

)

Tr
ad

it
io

n
al

 S
C

A
D

A
 S

ys
te

m

C
u

rr
en

t
In

te
rn

et
-B

as
ed

S

C
A

D
A

 S
ys

te
m

Pr

op
os

ed
 I

n
te

rn
et

-B
as

ed

S
C

A
D

A
 S

ys
te

m

 H
M

I
D

ev
el

op
m

en
t

 Pr
op

ri
et

ar
y

so
ft

w
ar

e

 O
pe

n
 w

eb
 t

ec
h

n
ol

og
ie

s
(e

.g
.

H
TM

L,
 J

av
a,

 A
ct

iv
eX

)

 O
pe

n
 w

eb
 t

ec
h

n
ol

og
ie

s
(e

.g
.

H
TM

L,
 X

S
L,

 J
av

a)

H
M

I
Pe

rs
on

al
iz

at
io

n

V
ar

y
ba

se
d

on
 v

en
do

r
de

ve
lo

pm
en

t
to

ol
s

Lo
w

, r
eq

u
ir

es
 m

aj
or

de

ve
lo

pm
en

t
ef

fo
rt

H

ig
h

, d
at

a
is

 s
ep

ar
at

ed
 fr

om

di
sp

la
y

fo
rm

at

H
M

I
Pe

rf
or

m
an

ce

H
ig

h
, v

en
do

r-
op

ti
m

iz
ed

 fo
r

re
al

-t
im

e
ap

pl
ic

at
io

n
s

Lo
w

, n
ot

 s
u

it
ab

le
 fo

r
re

al
-

ti
m

e,
 r

eq
u

ir
es

 a
dd

it
io

n
al

pl

u
g-

in
s,

 g
ra

ph
ic

s
fil

es
 (J

PE
G

,
G

IF
)

H
ig

h
, c

an
 b

e
op

ti
m

iz
ed

 fo
r

da
ta

 s
tr

ea
m

in
g,

 X
M

L-
ba

se
d

gr
ap

h
ic

s
(S

V
G

)

S
ec

u
ri

ty

B
u

ilt
-i

n

S

ta
n

da
rd

 w
eb

se
cu

ri
ty

m
et

h
od

s
(S

S
L,

 V
PN

, e
tc

.)
S

ta
n

da
rd

 w
eb

 s
ec

u
ri

ty

m
et

h
od

s
(S

S
L,

 V
PN

, e
tc

.)

R
el

ia
bi

lit
y

H

ig
h

, m
ay

 v
ar

y
de

pe
n

di
n

g
on

ve

n
do

r
te

ch
n

ol
og

y

Lo
w

, i
n

ef
fic

ie
n

t
h

an
dl

in
g

of

da
ta

H

ig
h

, e
ffi

ci
en

t
h

an
dl

in
g

of

da
ta

, X
M

L
da

ta
 v

al
id

at
io

n

149

 150

proprietary, vendor-specific technologies. The Internet uses internationally

accepted open standards.

Networking and Communications. The Internet is mainly using the

TCP/IP networking suite. This is already being implemented in many SCADA

systems, however proprietary communication protocols still exist specially in

older RTUs. Using a standard TCP/IP facilitates integration efforts with

enterprise level system.

Data Interchange. Although there seems to be an industry trend towards

using Ethernet and TCP/IP for the lower layer network protocols, the industry is

still plagued with inconsistent standards for the application layer protocols.

Custom interfaces are usually developed to link between the different protocols.

With Internet-based SCADA systems, the upper layer protocols are based on

common standards maintained by the W3C.

Network Performance. This is an area where the Internet-based SCADA

system is not as capable as a traditional SCADA system. Internet

communications are typically non-deterministic as the network route that the

message takes is unknown. However by introducing XML, we believe that

separating the data from the typical HTML format and transmitting it

independently will increase overall network performance considerably.

Application Development. This area is important during the initial project

design phases, as well as the subsequent support and maintenance phases.

Object-oriented languages are now the standard for application development

since they were designed to improve the ease of development and consistency of

software applications.

 151

Application Runtime. Implementing a pure Java application has the

advantage of platform-independence. However, this has the cost of slower

performance compared to other languages due to the abstraction process which

happens at the virtual machine layer. Nevertheless, with faster hardware

platforms nowadays, the difference in performance is becoming negligible for

most practical applications.

HMI Development. The SCADA's human-machine interface is as

important as its control function. Traditional SCADA systems often provide their

dedicated HMI development packages. With Internet-based SCADA systems,

open web technologies are used.

HMI Personalization. The proposed SCADA system design which uses

XML will be easier to develop HMI in than current Internet-based SCADA

systems which use HTML only. This is because of the separation of data from

display.

HMI Performance. The proposed SCADA system design will also have

considerable performance improvement over current Internet-based SCADA

systems which use HTML only. This is because of the efficient data handling

performed by XML.

Security. Internet-based SCADA systems are generally less secure than

traditional SCADA systems due to their openness and remote connectivity.

Traditional SCADA systems may employ security schemes built into the system

at design stage, whereas the Internet-based SCADA systems utilize the standard

web security methods such as encryption and tunneling. With proper

implementation, the security of internet-based SCADA system can be managed.

 152

Reliability. Internet-based SCADA systems are also less reliable than

traditional SCADA system due to the non-deterministic nature of network

performance on the Internet. However by introducing XML, we believe that

separating the data from the typical HTML format and transmitting it

independently will increase the data communication reliability.

7.3 Conclusions

Having presented our research hypothesis and the positive results we obtained,

we can make some general conclusions about the design and application of

Internet-based SCADA systems. These are summarized in the following four

points:

• Internet-based SCADA systems can improve interoperability and can be

more cost effective

• However, Internet-based SCADA systems are still less reliable and secure

than traditional SCADA systems

• Java and XML can improve internet-based SCADA systems’ performance,

functionality, reliability and security

• Java and XML require careful modeling of the process and its constraints

7.4 Future Work

The work presented in this thesis is merely to investigate the concepts of

internet-based SCADA systems, discuss their design issues and

recommendations, and evaluate what applications can benefit from such

 153

systems. The thesis demonstrated these concepts by discussing a lab-scale test

system which was conducted in a separate project at the Systems Engineering

labs at KFUPM, in addition to a design proposal for large-scale SCADA systems,

based on the Java and XML technologies.

Further research following this thesis work shall contain actual

implementation testing of the proposed design, investigation of the scalability of

such systems, their performance in real environments, security concerns and

considerations, field implementation issues, local regulations and policies, and

so on. The scope of this thesis work cannot cover all these issues due to the

limited amount of time and resources. In addition, internet technologies are

evolving rapidly and the strategy of how to implement them in the process

automation world requires the group effort of academia and industry.

 154

REFERENCES

[1] Engineering Standards, Saudi Aramco, 2003.

[2] Engineering Manuals, ChevronTexaco, 2002.

[3] O. Toker and F. Al-Sunni, “Java Based Distributed Control System Over

the Internet”, KACST AR20-74 Final Report, King Fahd University of
Petroleum & Minerals, Aug. 2003.

[4] J. Sanchez et al., “Virtual and Remote Control Labs Using Java: A

Qualitative Approach”, IEEE Control Systems Magazine, Apr. 2002.

[5] V. Ramakrishnan et al., “Development of a Web-Based Control Experiment

for a Coupled Tank Apparatus”, Proceedings of the American Control
Conference, Jun. 2000.

[6] Extensible Markup Language, http://www.w3c.org/xml. 2004.

[7] J. Fulcher, “Hit the Floor Running: Java Technology-based Controls

Promote Shop-floor Efficiency, Offer Enterprise Architecture”, Open
Manufacturing Journal, Fall 1998.

[8] S. Hill, Jr., “Java Computing Offers manufacturers Greater Control:

Development of Java Technology Devices Heralds a New Paradigm”, Open
Manufacturing Journal, Summer 1998.

[9] J. Morgenthal, “Portable Data/Portable Code: XML & Java Technologies”,

White paper prepared by NC.Focus for Sun Microsystems, Inc., May 2000.

[10] C. Vawter and E. Roman, “J2EE vs. Microsoft .NET: A Comparison of

Building XML-based Web Services”, White paper prepared by the
Middleware Company for Sun Microsystems, Inc., Jun. 2001.

[11] P. Pinceti, “How Will XML Impact Industrial Automation?” ISA InTech, Jun.

2002.

[12] J. Bono, “XML Reaches Factory Floor's Automation Islands”, ISA Industrial

Computing, Aug. 2000.

[13] C. Gunst and J. Stein, “The Internet: Fast, Cost Effective Methods to

Improve Communications on Your Plant Floor”, Intellution, Inc., 1997.

[14] J. Kennedy, “Internet/Intranet and Object Technology for the Process

Industries”, OSI Software, Inc., 1997.

 155

[15] R. Eisele, “Transforming Internet Technology into Manufacturing Solutions
in the Chemical Industry: An Update on the Industrial Desktop”, OSI
Software Seminar, 2001.

[16] J. Patrick Kennedy, “Industrial Desktop - What, Why, How?” Chemical

Engineering Magazine, Jan. 1996.

[17] R. Heersink and S. Wright, “WWW.WhereIsTheValue.Com?” Hydrocarbon

Processing, May 2000.

[18] R. Heersink and S. Wright, “Secure Management of Manufacturing

Operations Through the Power of the Web”, National Petrochemical &
Refiners Association Computing Conference, Nov. 2000.

[19] S. Diehl and R. Moyes, “Fueling the Midstream Enterprise with Internet

Enabled SCADA”, Matrikon, Inc., Dec. 2000.

[20] R. Bailey, “Internet-based SCADA: Evaluate Your Options Carefully”,

Instrumentation & Control Systems, Jul. 2000.

[21] “Supervisory Control and Data Acquisition (SCADA): The Challenge of

Increased Computer Power, Higher Speeds and Modern Networks”, Data
Comm for Business, Inc., Oct. 1999.

[22] S. Boyer, “SCADA: An Introduction Including What Not to SCADA”, ISA

Encyclopedia of Measurement and Control, vol. EMC 37.01, 2001.

[23] “SCADA Systems Worldwide Outlook”, ARC Advisory Group, 2000.

[24] “SCADA Systems for Electric Power Worldwide Outlook”, ARC Advisory

Group, 2001.

[25] R. Cottingham, “Wireless Web Accesses Wellsite SCADA”, Oil & Gas

Journal, 10 Dec. 2001.

[26] G. Veitch et al., “Field Trial Tests Web-Based Wireless eSCADA”, Oil & Gas

Journal, 16 Sep. 2002.

[27] H. Kusch, “Use of Portal Technology for Business Impact: CommonView

Refining Operations Portal”, Indx User Group Meeting, 2002.

[28] R. Fan, “Process Systems Integration Over the Internet/Intranet”, KFUPM

Workshop on Information and Computer Science, Mar. 2002.

[29] Java Language, http://java.sun.com. 2004

[30] J. Bosak, “XML, Java, and the Future of the Web”, Sun Microsystems, Inc.,

Mar. 1997.

 156

[31] P. Whitehead et al., Java and XML, Wiley Publishing, New York, NY, 2002.

[32] N. Chase, XML and Java from Scratch, Que Publishing, Indianapolis, IN,

2001.

[33] B. McLaughlin, Java and XML, O’Reilly & Associates, Sebastopol, CA, 2001.

[34] B. McLaughlin, Java and XML Data Binding, O’Reilly & Associates,

Sebastopol, CA, 2002.

[35] R. Wolter, “XML Web Services Basics”, Microsoft, Dec. 2001.

[36] A. Walsh, J2EE 1.4 Essentials, Wiley Publishing, New York, NY, 2003.

[37] D. Chappell, Understanding .NET, Addison Wesley, Indianapolis, IN, 2002.

[38] S. Weygandt and D. Hardin, “.NET Industrial Automation”, ISA Conference,

2002.

[39] D. Harrold, “XML Delivers”, Manufacturing, Oct. 2003.

[40] M. Brooks, “The Affects of E-business on Refining and Petrochemical Plant

Operations”, National Petrochemical & Refiners Association Computer
Conference, Nov. 2000.

[41] Y. Jung, “A Real-time Plant Database Based on XML and its Application to

a Computer Based Procedure”, ISA Conference, 2001.

[42] Unified Modeling Language, http://www.uml.org. 2004.

[43] A. Holub, “UML Quick Reference”, http://www.holub.com, 2004.

[44] D. Braun et al., Unified Modeling Language (UML) Tutorial, Kennesaw State

University, 2001.

 157

VITA

• Ramadhan Alaaddin Nouraddin Fan.

• P.O. Box 5235 Dhahran 31311 Saudi Arabia.

Email: ramadan.fan@aramco.com

• Born in Jeddah, Saudi Arabia in September 29, 1974.

• Received Bachelor of Science (B.Sc.) degree in Systems Engineering from

King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, Saudi

Arabia in July 1997.

• Joined Saudi Arabian Oil Company (Saudi Aramco), Dhahran, Saudi Arabia

in August 1997.

• Worked for ChevronTexaco Corporation, San Ramon, California, USA from

January till June 2003.

• Received Master of Science (M.Sc.) degree in Systems Engineering from King

Fahd University of Petroleum & Minerals (KFUPM), Dhahran, Saudi Arabia in

June 2004.

