2,292 research outputs found

    A Blockchain Application Prototype for the Internet of Things

    Get PDF
    The emergence of the Internet of things (IoT), associated with the explosion in the number of connected objects, and the growth in user needs, makes the Internet network very complex. IoT objects are diverse and heterogeneous, which requires establishing interoperability and efficient identity management on the one hand. On the other hand, centralized architectures such as cloud-based ones can have overhead and high latency, with a potential risk of failure. Facing these challenges, Blockchain technology, with its decentralized architecture based on a distributed peer-to-peer network, offers a new infrastructure that allows IoT objects to interact reliably and securely. In this paper, a new approach is proposed with a three-layer architecture: layer of sensing and collection of data made up of the IoT network, layer of processing and saving of data exchanges at the Blockchain level, and access and visualization layer via a web interface. The prototype implemented in this study allows all transactions (data exchanges) generated by IoT devices to be recorded and stored on a dedicated Blockchain, assuring the security of IoT objects\u27 communications. This prototype also enables access to and visualization of all data and information, thus enhancing the IoT network\u27s transparency

    DSCOT: An NFT-Based Blockchain Architecture for the Authentication of IoT-Enabled Smart Devices in Smart Cities

    Full text link
    Smart city architecture brings all the underlying architectures, i.e., Internet of Things (IoT), Cyber-Physical Systems (CPSs), Internet of Cyber-Physical Things (IoCPT), and Internet of Everything (IoE), together to work as a system under its umbrella. The goal of smart city architecture is to come up with a solution that may integrate all the real-time response applications. However, the cyber-physical space poses threats that can jeopardize the working of a smart city where all the data belonging to people, systems, and processes will be at risk. Various architectures based on centralized and distributed mechanisms support smart cities; however, the security concerns regarding traceability, scalability, security services, platform assistance, and resource management persist. In this paper, private blockchain-based architecture Decentralized Smart City of Things (DSCoT) is proposed. It actively utilizes fog computing for all the users and smart devices connected to a fog node in a particular management system in a smart city, i.e., a smart house or hospital, etc. Non-fungible tokens (NFTs) have been utilized for representation to define smart device attributes. NFTs in the proposed DSCoT architecture provide devices and user authentication (IoT) functionality. DSCoT has been designed to provide a smart city solution that ensures robust security features such as Confidentiality, Integrity, Availability (CIA), and authorization by defining new attributes and functions for Owner, User, Fog, and IoT devices authentication. The evaluation of the proposed functions and components in terms of Gas consumption and time complexity has shown promising results. Comparatively, the Gas consumption for minting DSCoT NFT showed approximately 27%, and a DSCoT approve() was approximately 11% more efficient than the PUF-based NFT solution.Comment: 18 pages, 15 figures, 5 tables, journa

    Systematic review of the literature, research on blockchain technology as support to the trust model proposed applied to smart places

    Get PDF
    The smart places are vulnerable with corrupted or compromised data, with the false integration of new devices, and devices with firmware versions inconsistent. These risks worsen with the increasing volume and diversity of data, devices, infrastructures and users connected to the Web. The systematic review of the literature were selected 190 documents, which reveals the growing interest on the theme of blockchain technology with the publication of 14 documents in 2014 to about 100 already in 2017. The articles focused on the areas bitcoin (about 40%), IoT (about 30%), financial (about 15%), cryptocurrencies, electronic government (about 12%), smart contracts, smart cities, business (with about 10% each) and health (about 5%). This perspective confirms the generic model study data supported in blockchain technology for smart places, especially when applied to smart cities and the specific field of the mobility ecosystem, with the use of the new concepts of the application of blockchain in IoT, smart contracts and e-governance.info:eu-repo/semantics/publishedVersio

    Decentralized Personal Data Marketplaces: How Participation in a DAO Can Support the Production of Citizen-Generated Data

    Get PDF
    Big Tech companies operating in a data-driven economy offer services that rely on their users’ personal data and usually store this personal information in “data silos” that prevent transparency about their use and opportunities for data sharing for public interest. In this paper, we present a solution that promotes the development of decentralized personal data marketplaces, exploiting the use of Distributed Ledger Technologies (DLTs), Decentralized File Storages (DFS) and smart contracts for storing personal data and managing access control in a decentralized way. Moreover, we focus on the issue of a lack of efficient decentralized mechanisms in DLTs and DFSs for querying a certain type of data. For this reason, we propose the use of a hypercube-structured Distributed Hash Table (DHT) on top of DLTs, organized for efficient processing of multiple keyword-based queries on the ledger data. We test our approach with the implementation of a use case regarding the creation of citizen-generated data based on direct participation and the involvement of a Decentralized Autonomous Organization (DAO). The performance evaluation demonstrates the viability of our approach for decentralized data searches, distributed authorization mechanisms and smart contract exploitation

    Digital Greenbacks: A Sequenced ‘Treasury Direct’ and ‘Fed Wallet’ Plan for the Democratic Digital Dollar

    Get PDF
    I propose means of immediately converting the Department of Treasury’s existing Treasury Direct system of freely available transaction accounts into a publicly administered digital savings and payments platform. A platform of this type is an essential public utility in any commercial society such as our own. It is additionally growth-promoting inasmuch as growth-tracking Gross Domestic Product (GDP) is a measure of transaction volume, while transaction volume is a function of more efficient and inclusive transacting. As Congress seeks means of streamlining the payments infrastructure in a time of pandemic-induced crisis, the Treasury route recommends itself as the fastest way to digitize payments for 95% of our citizens and business enterprises. I also map means of migrating the Treasury architecture to the Federal Reserve System (Fed) over time once the crisis is past—as the “Greenback” paper dollar itself did in the late 19th and early 20th centuries—and include my draft Treasury Dollar Act as an Appendix

    Modelling of the Internet Computer Protocol Architecture: the Next Generation Blockchain

    Get PDF
    The Internet Computer Protocol is described as a third-generation blockchain system that aims to provide secure and scalable distributed systems through blockchains and smart contracts. In this position paper, this innovative architecture is introduced and then discussed in view of its modeling and simulation aspects. In fact, a properly defined digital twin of the Internet Computer Protocol could help its design, development, and evaluation in terms of performance and resilience to specific security attacks. To this extent, we propose a multi-level simulation model that follows an agent-based paradigm. The main issues of the modeling and simulation, and the main expected outcomes, are described and discussed

    Complex queries over decentralised systems for geodata retrieval

    Get PDF
    none4sìDecentralised systems have been proved to be quite effective to allow for trusted and accountable data sharing, without the need to resort to a centralised party that collects all the information. While complete decentralisation provides important advantages in terms of data sovereignty, absence of bottlenecks and reliability, it also adds some issues concerned with efficient data lookup and the possibility to implement complex queries without reintroducing centralised components. In this paper, we describe a system that copes with these issues, thanks to a multi-layer lookup scheme based on Distributed Hash Tables that allows for multiple keyword-based searches. The service of peer nodes participating in this discovery service is controlled and rewarded for their contribution. Moreover, the governance of this process is completely automated through the use of smart contracts, thus building a Decentralised Autonomous Organization (DAO). Finally, we present a use case where road hazards are collected in order to test the goodness of our system for geodata retrieval. Then, we show results from a performance evaluation that confirm the viability of the proposal. © 2022 The Authors. IET Networks published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. openZichichi, Mirko; Serena, Luca; Ferretti, Stefano; D'Angelo, GabrieleZichichi, Mirko; Serena, Luca; Ferretti, Stefano; D'Angelo, Gabriel

    Performance analysis of blockchain-based smart grid with Ethereum and Hyperledger implementations

    Get PDF
    Abstract. Smart grids lay the foundation for future communities. Smart homes, smart buildings, smart streets, and smart offices are built when intelligent devices piles on intelligent devices. To reach the maximum capacity, they all must be supported by an intelligent power supply. For optimal and real-time electricity consumption, monitoring and trading, blockchain possess number of potential benefits in its application to electricity infrastructure. A comprehensive system architecture of blockchain-based smart grid is proposed and peer-to-peer (P2P) energy trading is implemented between Distribution System Operators (DSO), Local energy providers and Consumers. This thesis presents a virtual smart grid equipped with smart contracts capable of virtual activities like market payment function and the comparison and the performance of the blockchain-based smart grid by using Ethereum and Hyperledger Fabric-based implementations. The challenges faced during the implementation of blockchain protocols are discussed and evaluation in the light of finding sustainable solutions to develop secure and reliable smart grid operations, is the major objective of the thesis
    corecore