3,921 research outputs found

    Group-blind detection with very large antenna arrays in the presence of pilot contamination

    Get PDF
    Massive MIMO is, in general, severely affected by pilot contamination. As opposed to traditional detectors, we propose a group-blind detector that takes into account the presence of pilot contamination. While sticking to the traditional structure of the training phase, where orthogonal pilot sequences are reused, we use the excess antennas at each base station to partially remove interference during the uplink data transmission phase. We analytically derive the asymptotic SINR achievable with group-blind detection, and confirm our findings by simulations. We show, in particular, that in an interference-limited scenario with one dominant interfering cell, the SINR can be doubled compared to non-group-blind detection.Comment: 5 pages, 4 figure

    Achieving Low-Complexity Maximum-Likelihood Detection for the 3D MIMO Code

    Get PDF
    The 3D MIMO code is a robust and efficient space-time block code (STBC) for the distributed MIMO broadcasting but suffers from high maximum-likelihood (ML) decoding complexity. In this paper, we first analyze some properties of the 3D MIMO code to show that the 3D MIMO code is fast-decodable. It is proved that the ML decoding performance can be achieved with a complexity of O(M^{4.5}) instead of O(M^8) in quasi static channel with M-ary square QAM modulations. Consequently, we propose a simplified ML decoder exploiting the unique properties of 3D MIMO code. Simulation results show that the proposed simplified ML decoder can achieve much lower processing time latency compared to the classical sphere decoder with Schnorr-Euchner enumeration

    Sparse Reconstruction-based Detection of Spatial Dimension Holes in Cognitive Radio Networks

    Full text link
    In this paper, we investigate a spectrum sensing algorithm for detecting spatial dimension holes in Multiple Inputs Multiple Outputs (MIMO) transmissions for OFDM systems using Compressive Sensing (CS) tools. This extends the energy detector to allow for detecting transmission opportunities even if the band is already energy filled. We show that the task described above is not performed efficiently by regular MIMO decoders (such as MMSE decoder) due to possible sparsity in the transmit signal. Since CS reconstruction tools take into account the sparsity order of the signal, they are more efficient in detecting the activity of the users. Building on successful activity detection by the CS detector, we show that the use of a CS-aided MMSE decoders yields better performance rather than using either CS-based or MMSE decoders separately. Simulations are conducted to verify the gains from using CS detector for Primary user activity detection and the performance gain in using CS-aided MMSE decoders for decoding the PU information for future relaying.Comment: accepted for PIMRC 201

    Joint data detection and channel estimation for OFDM systems

    Get PDF
    We develop new blind and semi-blind data detectors and channel estimators for orthogonal frequency-division multiplexing (OFDM) systems. Our data detectors require minimizing a complex, integer quadratic form in the data vector. The semi-blind detector uses both channel correlation and noise variance. The quadratic for the blind detector suffers from rank deficiency; for this, we give a low-complexity solution. Avoiding a computationally prohibitive exhaustive search, we solve our data detectors using sphere decoding (SD) and V-BLAST and provide simple adaptations of the SD algorithm. We consider how the blind detector performs under mismatch, generalize the basic data detectors to nonunitary constellations, and extend them to systems with pilots and virtual carriers. Simulations show that our data detectors perform well

    Robust massive MIMO Equilization for mmWave systems with low resolution ADCs

    Full text link
    Leveraging the available millimeter wave spectrum will be important for 5G. In this work, we investigate the performance of digital beamforming with low resolution ADCs based on link level simulations including channel estimation, MIMO equalization and channel decoding. We consider the recently agreed 3GPP NR type 1 OFDM reference signals. The comparison shows sequential DCD outperforms MMSE-based MIMO equalization both in terms of detection performance and complexity. We also show that the DCD based algorithm is more robust to channel estimation errors. In contrast to the common believe we also show that the complexity of MMSE equalization for a massive MIMO system is not dominated by the matrix inversion but by the computation of the Gram matrix.Comment: submitted to WCNC 2018 Workshop

    Scaling up MIMO: Opportunities and Challenges with Very Large Arrays

    Full text link
    This paper surveys recent advances in the area of very large MIMO systems. With very large MIMO, we think of systems that use antenna arrays with an order of magnitude more elements than in systems being built today, say a hundred antennas or more. Very large MIMO entails an unprecedented number of antennas simultaneously serving a much smaller number of terminals. The disparity in number emerges as a desirable operating condition and a practical one as well. The number of terminals that can be simultaneously served is limited, not by the number of antennas, but rather by our inability to acquire channel-state information for an unlimited number of terminals. Larger numbers of terminals can always be accommodated by combining very large MIMO technology with conventional time- and frequency-division multiplexing via OFDM. Very large MIMO arrays is a new research field both in communication theory, propagation, and electronics and represents a paradigm shift in the way of thinking both with regards to theory, systems and implementation. The ultimate vision of very large MIMO systems is that the antenna array would consist of small active antenna units, plugged into an (optical) fieldbus.Comment: Accepted for publication in the IEEE Signal Processing Magazine, October 201
    • …
    corecore