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Abstract

The 3D MIMO code is a robust and efficient space-time block code (STBC) for the distributed MIMO

broadcasting but suffers from high maximum-likelihood (ML) decoding complexity. In this paper, we first analyze

some properties of the 3D MIMO code to show that the 3D MIMO code is fast-decodable. It is proved that the

ML decoding performance can be achieved with a complexity of O(M4.5) instead of O(M8) in quasi static channel

with M -ary square QAM modulations. Consequently, we propose a simplified ML decoder exploiting the unique

properties of 3D MIMO code. Simulation results show that the proposed simplified ML decoder can achieve much

lower processing time latency compared to the classical sphere decoder with Schnorr-Euchner enumeration.

Keywords

MIMO, space-time codes, maximum likelihood decoding, computational complexity.

1 Introduction

Multiple-input multiple-output (MIMO) is a promising technique that can bring significant improvements

to the wireless communication systems. In combination with space-time block code (STBC), it provides

higher spectrum efficiency with better communication reliability [1]. In the last decades, MIMO has been

widely employed in the latest wireless communication standards such as IEEE 802.11n, 3GPP Long Term
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Evolution (LTE), WiMAX and Digital Video Broadcasting–Next Generation Handheld (DVB-NGH) etc. It

is also seen as the key technology for the future digital TV terrestrial broadcasting standards [2].

A so-called space-time-space (3D) MIMO code [3] was proposed for the future TV broadcasting systems in

which the services are delivered by the MIMO transmission in a single frequency network (SFN). Specifically,

it is proposed for a distributed MIMO broadcasting scenario where TV programs are transmitted by two

geographically separated transmission sites, each site equipping two transmit antennas. On the other hand,

each receiver has two receive antennas, forming a 4× 2 MIMO transmission. The 3D MIMO code has been

shown to be robust and efficient in the distributed MIMO broadcasting scenarios where there exists strong

received signal power imbalances [4]. Hence, it is a promising candidate for the MIMO profile of future

broadcasting standards. However, the 3D MIMO code suffers from a high computational complexity when

the maximum-likelihood (ML) decoding is adopted. The decoding complexity is as high as O(M8) when

M -QAM constellation is used. Up to now, no study on the decoding complexity reduction for the 3D MIMO

code has been carried out in the literature.

Recently a lot of efforts have been made in the STBC design to obtain both high code rate and low

decoding complexity [5–11]. The decoding complexity reduction is commonly achieved by exploiting the or-

thogonality embedded in the STBC codeword. When there exists group-wise orthogonality in the codeword,

the joint detection of many information symbols is converted into independent, group-wise detections [6,10],

yielding low decoding complexity. For other cases such as DjABBA code [12], Biglieri-Hong-Viterbo (BHV)

code [7], Srinath-Rajan code [8] and Ismail-Fiorina-Sari (IFS) code [11] in which the orthogonality only exists

in a part of information symbols, some symbols can be detected in a group-wise manner once we condition

them with respect to other symbols. The ML solutions can be obtained with a lower complexity compared

with the ML detector. In other words, their decoding complexity is less than O(Mκ) where κ is the number

of information symbols in a codeword. Such kind of STBCs are referred to as fast decodable STBCs [7].

However, most of fast-decodable STBCs are not optimized for distributed MIMO broadcasting scenarios and

they are not robust under the received signal power imbalance conditions [4].

A partial interference cancellation (PIC) group decoding scheme has been presented aiming at reducing

the decoding complexity of the STBCs containing group-wise orthogonalities in the codewords [13, 14]. A

number of STBCs that are optimized for this decoding scheme have also been proposed [14,15]. This scheme

actually uses a linear equalization to convert the joint detection of a large number of symbols to several

groups of ML decodings for few symbols. However, the overall performance of this decoding scheme cannot

achieve the ML optimality.
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Some alternatives with reduced decoding complexity have been presented for the distributed MIMO

broadcasting. Polonen et al. described a STBC with less decoding complexity based on orthogonal basis [16].

However, such a code does not achieve full-diversity or full-rate for 4× 2 MIMO transmissions and therefore

performs worse than 3D MIMO code. A “punctured version” of 3D MIMO code that is full-rate for 4 × 2

MIMO transmissions with low decoding complexity has also been proposed [17]. However, it does not achieve

full-diversity and is hence less robust in harsh channel conditions.

In this paper, we propose a reduced-complexity ML decoder for the 3D MIMO code which exploits the

embedded orthogonality in the codeword. The main contributions are:

• We propose to modify the original 3D MIMO codeword through some permutations of information

symbols which leads to an ML decoding algorithm with reduced complexity without affecting all

desirable properties of the 3D MIMO code.

• We prove that the 3D MIMO code is fast decodable. Moreover, we show that the worst case decoding

complexity is O(M4.5) forM -ary square QAM modulations which is the least among all square full-rate

STBCs for 4× 2 MIMO transmission.

• Based on the unique properties of the new form of 3D MIMO codeword, we propose a novel imple-

mentation of the simplified decoder that achieves a lower average complexity in terms of time latency

without losing the ML optimality. The proposed implementation is also applicable for other fast

decodable STBCs.

The remainder of the paper is organized as follows. Some fundamentals of the MIMO detection are

presented in Section 2. In Section 3, the 3D MIMO code is first recalled. Consequently, a modification of the

codeword is proposed to facilitate the decoding process. Three important properties of the new codeword

are also revealed. With this knowledge, in Section 4, the ML decoder with a worst case decoding complexity

of O(M4.5) is derived. Then in Section 5, a new implementation of the reduced-complexity ML decoder is

described. Section 6 presents the symbol error and complexity performance of the new decoder. Conclusions

are drawn in Section 7.

Notations: Vectors and matrices are written in boldface letters. Superscript XT represents transposition

of matrix X. xR and xI denote the real and imaginary parts of a complex number x, respectively. The

operator (̌·) performs the complex-real conversion from C to R2×2:

x̌ ,

[
xR −xI

xI xR

]
. (1)
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When (̌·) operator is applied to a matrix X ∈ Cm×n, the operation in (1) is performed for all elements xj,k’s

in the matrix, i.e. the (j, k)th 2× 2 submatrix of X̌ is x̌j,k. For a complex vector x = [x1, x2, . . . , xn]
T ∈ Cn,

the operator (̃·) separates the real and imaginary parts of the given vector, i.e. x̃ , [xR
1 , x

I
1, . . . , x

R
n , x

I
n]

T . For

a matrix X = [x1,x2, . . . ,xn] where xj is the jth column of X, the operator vec(X) stacks the columns of X

to form one column vector, i.e. vec(X) , [xT
1 ,x

T
2 , . . . ,x

T
n ]

T . ṽec(X) denotes vectorizing matrix X followed

by the real/imaginary part separation. The inner product of two real-valued vectors x and y is denoted by

〈x,y〉 = xTy. The n× n identity matrix is denoted by In. The operator ⊗ denotes the Kronecker product.

Finally, i represents
√
−1.

2 System Model
2.1 MIMO system model

We consider a MIMO transmission with Nt transmit and Nr receive antennas over flat-fading channel. The

received signal Y ∈ CNr×T is:

Y = HX+W, (2)

where X ∈ CNt×T is the STBC codeword matrix which is transmitted over T channel uses; W ∈ CNr×T is

a complex-valued additive white Gaussian noise (AWGN) component; H ∈ CNr×Nt is the channel matrix

whose (j, k)th element hj,k denotes the channel coefficient of the link between the kth transmit antenna and

the jth receive antenna. The channel is assumed to be quasi-static. That is, the channel coefficients keep

constant over the duration of one STBC codeword, but change from one codeword to another. Moreover,

hj,k’s are assumed to be independent from each other.

For linear STBCs, the codeword matrix X can be obtained through a linear operation [7]:

ṽec(X) = Gs̃, (3)

where s = [s1, s2, . . . , sκ]
T is the vector containing κ independent information symbols. The code rate of

STBC is κ/T information symbols per channel use. The generator matrix G ∈ R2NtT×2κ is obtained:

G , [ ˜vec(A1), ˜vec(B1), . . . , ˜vec(Bκ)], (4)

where Aj ∈ CNt×T and Bj ∈ CNt×T are the complex weight matrices representing the contribution of the

real and imaginary parts of the jth information symbol sj in the final codeword matrix.

Separating the real and imaginary parts of the transmitted and received signals, and stacking the columns

of the codeword, the received MIMO signal (2) can be expressed in an equivalent real-valued form:

ỹ = Heq s̃+ w̃, (5)
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where ỹ = ṽec(Y), w̃ = ˜vec(W) and Heq ∈ R2NrT×2κis the equivalent channel matrix and is obtained by:

Heq = (IT ⊗ Ȟ)G. (6)

Note that the real-valued expression of the signal can be obtained from the complex-valued form via a linear

transform. Hence, we will jointly use both real- and complex-valued forms in the sequel.

2.2 ML decoding of MIMO signals

Once the channel Heq is known by the receiver1, the information symbols can be retrieved from the received

signal ỹ in (5). The maximum-likelihood (ML) solution of the transmitted signal is the combination of

information symbols s̃ = [s1, s2, . . . , sκ] that minimizes the Euclidian distance between the channel distorted

information signal Heq s̃ and received signal ỹ, namely:

ŝML = arg min
s∈Θκ

‖ỹ−Heq s̃‖2, (7)

where Θ is the set of the constellation symbols. (7) indicates that the ML solution is found by jointly

determining κ independent information symbols. In other words, when the modulation of these symbols is

M -QAM, the ML decoding should exhaustively check all Mκ combinations. The search complexity grows

dramatically with higher modulation order or larger number of information symbols in one codeword. Hence,

the ML decoding is computationally demanding.

2.3 Fast ML decoding of MIMO signals

More efficient STBC decoding is achieved with the help of orthogonal-triangular (QR) decomposition [7,18].

The QR decomposition of the equivalent channel matrix Heq yields Heq = QR, where Q ∈ R2NrT×2κ is

a unitary matrix, and R ∈ R2κ×2κ is an upper triangular matrix. The definitions of the “classical Gram-

Schmidt algorithm” based QR decomposition can be found in the Appendices. Note that other numerically

stable QR decomposition algorithms can also be used without affecting the properties of the 3D MIMO code

as well as the resulting low-complexity decoding methods. Instead of solving (7), the ML solution can be

alternatively found by:

ŝML = arg min
s∈Θκ∩S

‖z̃−Rs̃‖2, (8)

where z̃ = QT ỹ ∈ R2κ is a linear transformation of received signal; S is a hypersphere centered on the

received signal. Only the codewords inside the hypersphere are checked during the search in order to reduce

1We assume that the receiver has perfect knowledge of the channel in our work. In practice, the channel coefficients should
be estimated using some channel estimation techniques.
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the search complexity. The size of the hypersphere is represented by its radius. The decoding process is

turned into a bounded search over a κ-level tree with complex-valued nodes. Hence, the worst case decoding

complexity is O(Mκ).

Moreover, according to the property of QR decomposition, some information symbols can be decoded

independently from the others if some elements of R are equal to zero. It suggests that the joint search in

a high dimension is converted into a bunch of parallel, independent searches in low dimensions. This results

in a significant reduction of the worst-case decoding complexity [7, 8, 19].

3 3D MIMO Code

The 3D MIMO code [3] possesses a better robustness against receive signal power imbalances in the dis-

tributed MIMO broadcasting scenarios but suffers from high decoding complexity [4]. In this section, we

propose a new 3D MIMO codeword that enables low sphere decoding complexity via exchanging the positions

of information symbols in the original 3D MIMO codeword. The basic idea behind this modification comes

from the facts that the orthogonality embedded in the information symbols essentially enables independent

detections and the sphere decoding complexity is mainly determined by the orthogonality among the first

several symbols. Hence, exploiting the underlying orthogonality in the codeword and carefully choosing the

sequence of information symbols can bring benefits in terms of decoding complexity.

3.1 A new proposal of the 3D MIMO codeword

The initially proposed codeword matrix of the 3D MIMO code is explicitly written as:

X3D =

[
XGolden,1 −X∗

Golden,2

XGolden,2 X∗
Golden,1

]
=

1√
5




α(s1 + θs2) α(s3 + θs4) −α∗(s∗5 + θs∗6) −α∗(s∗7 + θs∗8)
iᾱ(s3 + θ̄s4) ᾱ(s1 + θ̄s2) iᾱ∗(s∗7 + θ̄s∗8) −ᾱ∗(s∗5 + θ̄s∗6)
α(s5 + θs6) α(s7 + θs8) α∗(s∗1 + θs∗2) α∗(s∗3 + θs∗4)
iᾱ(s7 + θ̄s8) ᾱ(s5 + θ̄s6) −iᾱ∗(s∗3 + θ̄s∗4) ᾱ∗(s∗1 + θ̄s∗2)


 ,

(9)

where θ = 1+
√
5

2 , θ̄ = 1 − θ, α = 1 + i(1 − θ) and ᾱ = 1 + i(1 − θ̄). It is constructed in a hierarchical

manner: eight information symbols (κ = 8) are first encoded to two Golden codewords [20], i.e. XGolden,1

and XGolden,2, which are consequently arranged in an Alamouti manner [21] over four channel uses (T = 4)2.

This results in a code rate of 2 which is full-rate for the 4×2 MIMO transmission. Previous study shows that

the 3D MIMO code achieves efficient and robust performance. However, since eight information symbols are

stacked in one codeword, the ML decoding complexity is up to O(M8).

2Note that this construction is different from that of the quasi-orthogonal code [5] and the EAST code [9].
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It was shown that it is possible to achieve lower sphere decoding complexity through permuting the

sequence of information symbols [22]. We propose to slightly modify the codeword by exchanging the

positions of information symbols (s3, s4) and (s5, s6), yielding a new form of codeword:

X3D,new =
1√
5




α(s1 + θs2) α(s5 + θs6) −α∗(s∗3 + θs∗4) −α∗(s∗7 + θs∗8)
iᾱ(s5 + θ̄s6) ᾱ(s1 + θ̄s2) iᾱ∗(s∗7 + θ̄s∗8) −ᾱ∗(s∗3 + θ̄s∗4)
α(s3 + θs4) α(s7 + θs8) α∗(s∗1 + θs∗2) α∗(s∗5 + θs∗6)
iᾱ(s7 + θ̄s8) ᾱ(s3 + θ̄s4) −iᾱ∗(s∗5 + θ̄s∗6) ᾱ∗(s∗1 + θ̄s∗2)


 . (10)

Since we only change the sequence of the information symbols in the codeword (the third and fourth infor-

mation symbols become the fifth and sixth, and vice versa) and the information symbols are independent

from each other, the new codeword preserves all the good attributes of the original 3D MIMO code in dis-

tributed MIMO scenarios illustrated in [4]. More importantly, this modification is based on the embedded

orthogonalities in the 3D MIMO codeword and yields an interesting codeword structure which will be ex-

ploited to achieve lower decoding complexity. The advantages brought by the new codeword structure will

be highlighted in the following sections.

3.2 Key properties of the proposed 3D MIMO codeword

Due to the underlying Alamouti and Golden structures, the 3D MIMO code has some unique properties

which lead to simplified decoding algorithms.

For the modified 3D MIMO code (10) over a 4 × 2 MIMO channel, the R matrix in (8) is a 16 × 16

real-valued matrix. Rewrite R in a block-wise form:

R =




R11 R12 R13 R14

0 R22 R23 R24

0 0 R33 R34

0 0 0 R44


 , (11)

where Rjk’s are 4 × 4 submatrices containing 〈qm,hn〉’s with m = 4(j − 1) + 1, . . . , 4j and n = 4(k − 1) +

1, . . . , 4k.

Based on the new codeword in (10) and taking into account (6), (3) and (4), we can obtain a few

interesting properties of R that can be made use of to achieve a low decoding complexity.

Theorem 1. R11 is an upper triangular matrix with 〈q1,h2〉 = 〈q1,h4〉 = 〈q2,h3〉 = 〈q3,h4〉 = 0.

Theorem 2. R12 is a null matrix when the channel is quasi-static, i.e. 〈qj ,hk〉 = 0, ∀j = 1, 2, 3, 4 and

k = 5, 6, 7, 8.

Corollary 1. R22 is an upper triangular matrix with a similar structure as R11, i.e. 〈q5,h6〉 = 〈q5,h8〉 =

〈q6,h7〉 = 〈q7,h8〉 = 0.
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R22 R23 R24

Zero-valued

element

Nonzero-valued

element

R11 R12 R13 R14

R33 R34

R44

Figure 1: Illustration of the R matrix of the new 3D MIMO codeword (10) in quasi-static channel.

The proofs of Theorem 1, Theorem 2 and Corollary 1 are presented in Appendices. The above properties

are visualized in Figure 1.

Remark 1: Theorem 1 and Corollary 1 actually suggest the independency between real and imaginary

parts of the information symbols. For instance, 〈q1,h2〉 = 〈q1,h4〉 = 〈q3,h4〉 = 0 means that the real parts

of the first and second received symbols, namely z̃(1) and z̃(3), do not contain any contribution from sI1

and sI2. Similarly, 〈q2,h3〉 = 0 means that their imaginary parts, namely z̃(2) and z̃(4), do not contain

any contribution from sR1 and sR2 , either. As we will show later, this real/imaginary independency leads to

independent and parallel detections for real part and imaginary part, respectively.

The real/imaginary part independency comes from the underlying Golden and Alamouti structures. It

has been revealed that the complex-valued R matrix of the Golden code has a real upper left submatrix [19],

which coincides with the structure as presented in Theorem 1. It shows the real/imaginary part independency

of the Golden code in its 2×2 codeword matrix. The Alamouti-like arrangement of the two Golden codewords,

on the other hand, helps creating this independency in the 4× 4 codeword matrix of the 3D MIMO code.

Remark 2: Theorem 2 indicates that the information symbols s1 and s2 are uncorrelated with s3 and

s4 in the received symbols. It means that these two symbol groups can be determined independently. We

only have to jointly determine six information symbols to obtain the ML solutions. In other words, the

ML decoding complexity is expected to be O(M6) instead of O(M8). Therefore, the 3D MIMO code is fast

decodable. Details on the simplified ML decoding will be discussed in Section 4.

It should be noted that Theorem 2 is partially enabled by the embedded Alamouti structure in the

codeword. The channel coefficients should be constant within the duration of one codeword to validate the

orthogonalities in Alamouti structure. Hence Theorem 2 is only valid in the quasi-static channels3.

3The fast decodability of other STBCs such as BHV, Srinath-Rajan, IFS, also requires quasi-static channel assumption.
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R22 R23 R24

R11 R12 R13 R14

R33 R34

R44

Zero-valued

element

Nonzero-valued

element

Figure 2: Illustration of the R matrix of the original 3D MIMO codeword given in (9) in quasi-static channel.

3.3 Comparison with the original 3D MIMO codeword

Figure 1 illustrates the R matrix of the new 3D MIMO codeword. Compared with the original one as shown

in Figure 2, the new structure is actually more favorable for the MIMO decoding. In the new codeword,

the contributions of information symbol groups (s1, s2) and (s3, s4) are totally uncorrelated in the received

signal, which means that the ML detection of eight information symbols can be achieved by two independent

and less complex detections of six information symbols. Moreover, the structure of R11 and R22 enables the

independent detections of real and imaginary parts of (s1, s2) and (s3, s4), which leads to further complexity

reduction. Yet, this real/imaginary parts separation is not straightforward in the original codeword.

It should be emphasized that the new codeword only changes the sequence of the information symbols in

the codeword to facilitate the decoding process. It does not affect all the good properties of the 3D MIMO

code.

4 Proposed ML Decoder with Low Complexity

In this section, a low-complexity ML decoding algorithm exploiting the unique properties highlighted in

previous section is proposed for the 3D MIMO code. Generally speaking, the complexity reduction is

achieved in two steps. Based on Theorem 2 the joint detection of eight information symbols is converted into

two partially independent detections of six information symbols. This step reduces the worst-case decoding

complexity from O(M8) to O(M6). Consequently, using Theorem 1 and Corollary 1, the detections of

complex information symbols are converted into independent detections of real and imaginary parts, which

further reduces the worst-case complexity to O(M4.5).
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4.1 Group-wise parallel detections

We divide the information symbols and received symbols into four groups, i.e. a = ˜[s1, s2]T , b = ˜[s3, s4]T ,

c = ˜[s5, s6]T , d = ˜[s7, s8]T , z12 = ˜[z1, z2]T , z34 = ˜[z3, z4]T , z56 = ˜[z5, z6]T and z78 = ˜[z7, z8]T . Taking into

account the structure of R and Theorem 2, the decoding metric in (8) can be rewritten as:

‖z̃−Rs̃‖2 = ‖z12 −R11a−R13c−R14d‖2 (12)

+ ‖z34 −R22b−R23c−R24d‖2 (13)

+ ‖z56 −R33c−R34d‖2 + ‖z78 −R44d‖2.

From (12) and (13), it can be seen that the contributions from the information symbol groups a and b

are uncorrelated in the received symbol. For instance, z12 does not contain any information from b, and

z34 is irrelevant to a, either. This enables us to use group-wise conditional detections to retrieve the ML

solutions [23].

In particular, the ML solution ŝML = [â, b̂, ĉ, d̂]T is achieved in two search steps, namely a joint “outer”

search for [ĉ, d̂]:

[ĉ, d̂]=arg min
[c,d]∈Θ4

(
‖v12 −R11a

(∗)(c,d)‖2 + ‖v34 −R22b
(∗)(c,d)‖2 + ‖z56 −R33c−R34d‖2 + ‖z78 −R44d‖2

)
,

(14)

and two independent “inner” searches for â and b̂, respectively:

â = a(∗)(ĉ, d̂), b̂ = b(∗)(ĉ, d̂) (15)

where

a(∗)(c,d) = arg min
a∈Θ2

‖v12 −R11a‖2, (16)

b(∗)(c,d) = arg min
b∈Θ2

‖v34 −R22b‖2, (17)

with v12 = z12−R13c−R14d, v34 = z34−R23c−R24d. The outer search is carried out over the combinations

of [c,d]. For a given [c,d], the search of a and the search of b are performed in parallel. The concatenation

of outer and inner searches (either a or b) results in a joint search of six information symbols. Therefore, the

worst-case decoding complexity is reduced from O(M8) to O(M6). We note that this complexity reduction

does not rely on the constellation that is adopted by the information symbols. In other words, the 3D MIMO

code requires a worst decoding complexity of O(M6) for arbitrary modulation.
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4.2 Independent detections of real and imaginary parts

If square shape QAM modulations are considered, the decoding complexity can be further improved. The

squareM -QAM symbol can be separated into two independent
√
M -PAM symbols on the real and imaginary

axes, respectively. Using Theorem 1 and Corollary 1, the real and imaginary parts can be decoded separately.

Take the detection of a as an example. Denote its real and imaginary parts as aR = [sR1 , s
R
2 ]

T and aI =

[sI1, s
I
2]

T , respectively. Given [c,d] and using Theorem 1, the detection of a in (16) is rewritten as [19]:

âR = arg min
aR∈Ψ2

‖vR
12 −RR

11a
R‖2, âI = arg min

aI∈Ψ2

‖vI
12 −RI

11a
I‖2, (18)

where Ψ is the set of
√
M -PAM constellation symbols; vR

12 = [vR1 , v
R
2 ]

T , vI
12 = [vI1 , v

I
2 ]

T ; RR
11 and RI

11 are

tailored upper-triangular matrices associated with real and imaginary parts, respectively:

RR
11 =

[
R11(1, 1) R11(1, 3)

0 R11(3, 3)

]
, RI

11 =

[
R11(2, 2) R11(2, 4)

0 R11(4, 4)

]
. (19)

(18) means that the detections of real and imaginary parts are similar and can be performed separately.

Take the real part as an example. We apply again the conditional detection here. For a given sR2 , the metric

for the real part detection becomes:

‖vR
12 −RR

11a
R‖2=

(
wR

1 −R11(1, 1)s
R
1

)2
+ (wR

2 )
2, (20)

where wR
1 = vR1 −R11(1, 3)s

R
2 and wR

2 = vR2 −R11(3, 3)s
R
2 . For a given sR2 , the best sR1 that minimizes the

decoding metric can alternatively be found by minimizing a quadratic function of sR1 given on the right hand

side of (20). The best solution of sR1 is easily found by:

sR1 = Q
(vR1 −R11(1, 3)s

R
2

R11(1, 1)

)
, (21)

where Q(·) is the slicing operation providing the PAM symbol that is closest to the given value. The best

combination of [ŝR1 , ŝ
R
2 ]

T given [c,d] is obtained after testing (21) with all (
√
M) possible values of sR2 :

ŝR2 = arg min
sR
2
∈Ψ

(
|vR1 −R11(1, 1)s

R
1 −R11(1, 3)s

R
2 |2 + |vR2 −R11(3, 3)s

R
2 |2

)
. (22)

Consequently, ŝR1 is obtained by using the solution ŝR2 in (21). Similar process can be applied to solve the

imaginary parts. The best solution of [ŝI1, ŝ
I
2]

T given [c,d] can be found by:

ŝI2 = arg min
sI
2
∈Ψ

(
|vI1 −R11(2, 2)s

I
1 −R11(2, 4)s

I
2|2 + |vI2 −R11(4, 4)s

I
2|2

)
, (23)

where

sI1 = Q
(vI1 −R11(2, 4)s

I
2

R11(2, 2)

)
. (24)
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Table 1: Comparison of ML decoding complexities of full-rate STBCs for 4× 2 MIMO transmission

STBC
ML decoding complexity

any QAM square QAM

new 3D MIMO O(M6) O(M4.5)

DjABBA [12] O(M7) O(M6)

Perfect code (2-layer) [24] O(M6) O(M5.5)

BHV [7] O(M6) O(M4.5)

EAST [9] O(M5) O(M4.5)

Srinath-Rajan [8] O(M5) O(M4.5)

IFS [11] O(M5) O(M4.5)

ŝI1 is computed by applying the solution ŝR2 in (24).

Using the same technique, the best solutions of b in (17) can also be converted into independent detections

of bR and bI . Substituting R11, v1, v2, s1 and s2 in (21), (22), (23) and (24) by R22, v3, v4, s3 and

s4, respectively, it yields the detections for s3 and s4. In general, for a given [c,d], the search of two

complex symbols [a,b] is turned into four independent searches of
√
M PAM symbols. The resulting overall

complexity to decode a whole codeword is O(M4.5).

In summary, the 3D MIMO code requires a worst decoding complexity of O(M6) for any modulation

scheme and O(M4.5) for squareM -QAMmodulations. Recall that the 3D MIMO code achieves a coding rate

of 2 which is full-rate for 4 × 2 MIMO transmissions. The comparisons with other state-of-the-art full-rate

STBCs are presented in Table 1. It can be seen that the 3D MIMO code is among the simplest full-rate

STBCs when the square QAM modulations are considered.

5 Proposed Implementation of the Simplified ML Decoder

In the previous sections, we have illustrated the fast decodability of the 3D MIMO code in theory. With this

knowledge, we propose an implementation of the simplified ML decoder that can be used in practice. Using

the two-stage tree-search structure and leveraging the symmetry structure in the codeword, the proposed

implementation requires a low average complexity in practice. Moreover, various performance-complexity

trade-offs can be easily achieved by replacing the sphere decoder by other suboptimal tree search algorithms

such as K-best algorithm [25], fixed-complexity sphere decoder [26] etc.

12
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Figure 3: Illustration of the two-stage sphere decoding.

5.1 Two-stage decoding structure

Recall that the fast decodability is achieved by concatenating the joint search of four complex symbols

and several detections in parallel. Figure 3 presents the general structure of the proposed simplified ML

decoder. Detailed pseudo code is presented in Algorithms 1, 2, 3 and 4 so that the proposed decoder can be

implemented without major effort.

5.1.1 4-level tree search phase

The joint detection of [c,d] is realized by a complex sphere decoder with Schnorr-Euchner enumeration, which

is visualized by the search over a 4-level tree as shown in Figure 3. The nodes of the same level represent all

the solutions of a complex information symbol. Each path from the root to a leaf node represents a possible

combination of [c,d].

The details of the tree search is explicitly presented in Algorithm 2. The search starts from the root

node and traverses the nodes of lower levels in a depth-first manner. An adaptive search radius is used to

speed up the convergence of the algorithm by limiting the search within a hypersphere S. For the node

under checking, the partial distance resulted by the current path is compared with the radius. If the partial

distance is smaller than the radius, the search moves on to the children nodes on the next level. Otherwise,

the search jumps to another sibling node on the current level. When all the nodes of the level have already

been checked, the search goes back to the upper level. The radius is initially set to infinity and is adaptively

decreased according to the best solution already found in the search. Specifically, the radius is updated

taking into account the best combination of [c,d] and [a,b] (line 16 of Algorithm 2). The latter is obtained

from the parallel decisions phase. The tree search is terminated when all nodes within the hypersphere have

13
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been checked. The best solution is the ML solution.

The sequence in which the sibling nodes are visited is determined according to the their partial distances

in an ascending order. This is to guarantee that the promising candidates are visited first in order to reduce

the search complexity. This ordering process is referred to as Schnorr-Euchner enumeration [18, 27, 28]. It

can simply be implemented by a lookup table [29, 30] (line 4 in Algorithm 1) and its complexity is merely

the computation of the linear estimation ŝ
ZF
.

5.1.2 Parallel decision phase

Once a leaf node is achieved in the tree search, a better solution of [c,d] is found. Consequently, the tree

search process is suspended and the new [c,d] is used to trigger the parallel detections of rest symbols.

The parallel detection is depicted in Figure 4. The implementation details are presented in Algorithm 3.

As shown in Figure 4, the detections of [sR1 , s
R
2 ], [s

I
1, s

I
2], [s

R
3 , s

R
4 ] and [sI3, s

I
4] are carried out in parallel.

For each branch, a one-level sphere decoder is used to traverse all possible PAM symbols as given in (22).

The visiting sequence is also determined by the Schnorr-Euchner enumeration. The detections in different

branches are synchronized by a common clock signal because the operations are exactly the same for all

branches. All branches simultaneously check the first candidate PAM symbol and then move on to the

second one, and so on.

Moreover, we propose a mechanism that terminates the search in each branch not only based on its own

results, but also taking into account the results from other branches. In particular, once the best solution of

the jth branch is found ahead of others, the resulting branch distance dj is recorded and shared with other

branches to speed up the overall search process.

Take the search of the first branch as an example. The most promising PAM symbol in the unchecked

symbol list is assigned to sR2 (line 8 in Algorithm 3). The partial distance τ1 is calculated (line 9 in

Algorithm 3). The search is terminated in two cases: 1) if this partial distance is greater than the current

14



minimum branch distance (τ1 > p1); or 2) if the overall distance is beyond the current radius of the sphere

decoder in the tree search phase ((τ1 + d2 + d3 + d4 + d) > radius).

Once the searches on all branches are terminated, the solution [a,b] and the resulting distance dp are

returned to the tree search phase. The tree search process is resumed. The overall distance is compared

with the current radius (line 14 in Algorithm 2) to determine whether the current solution is a better one.

If a better solution is found, the radius is updated accordingly (line 16 in Algorithm 2). The tree search

process is moved on to the next unchecked node.

5.2 Column switch based on ZF estimation

In the proposed algorithm, the search of eight symbols is divided into a tree search for four symbols and

parallel detections for the other four symbols. Due to the symmetric structure of the codeword matrix

(10), some parts of the codewords can be exchanged without changing the properties of the 3D MIMO

code. For instance, we have the same properties as illustrated in Section 3 after exchanging the positions

of [s1, s2, s3, s4] with [s5, s6, s7, s8]. Similarly, if we exchange [s1, s2] with [s3, s4] and exchange [s5, s6] with

[s7, s8] simultaneously, the structure of R matrix maintains, as well. That is to say, besides the original

symbol sequence, the proposed low-complexity decoding algorithm is also valid with other three permuted

symbol sequences, i.e. [s5, s6, s7, s8, s1, s2, s3, s4], [s3, s4, s1, s2, s7, s8, s5, s6] and [s7, s8, s5, s6, s3, s4, s1, s2].

The exchanging of the symbol sequences can be achieved by permuting the corresponding columns in

the equivalent channel matrix Heq. Note that, the aforementioned column permutations do not affect the

decoding performance. This permits us to choose the symbols that will be determined by the tree search

and the ones that will be decoded in the parallel detections.

The proposed column switch method is presented in Algorithm 4. The basic idea is to use the tree search

to determine the more difficult half part and use the parallel detections to find the easier half part. The

reason behind this idea is that the parallel decoding is more efficient to decode the reliable symbols separately.

The more accurate the linear estimation, the faster convergence speed for each individual detection branch.

On the other hand, the tree search phase is a joint serial detection in nature which is more suitable to decode

those unreliable symbols.

The next question is how to properly choose the unreliable symbols. In the literature, Barbero et al.

proposed to sort the decoding sequence based on the norm of subchannels in the fixed-complexity sphere

decoder [26]. However, it is not applicable here because the 3D MIMO code achieves full-diversity and the

equivalent subchannels have similar norm values. In addition, as we have to maintain the structure of R
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matrix, the unconstrained subchannel sorting proposed in [29] is not applicable, either.

Alternatively, we propose to sort the information symbols according to the aggregate error of the linear

estimation:

ǫjk =
k∑

l=j

|ŝ
ZF
(l)− s

ZF
(l)|2, (25)

where s
ZF

= H†
eqy is the unconstrained estimation of the information symbols in which H†

eq represents the

inverse of equivalent channel matrix; ŝ
ZF

= Q(s
ZF
) is the constellation point that is closest to s

ZF
. The

metric is the distance between the estimated information symbols and the nearest constellation points, i.e.

an indicator of the estimation accuracy.

Using (25), the decoding sequence can be determined in two levels. We first compare the aggregate errors

of the first half and second half parts of symbols (line 2 in Algorithm 4). The half with worse accuracy is

assigned to the tree search (put in the latter part of the decoding sequence). Consequently, within this half

part, the errors of the first two symbols and the second two are compared. The two symbols with worse

accuracy are put closer to the root of the tree. If this two-symbol by two-symbol exchange takes place in the

second half of the symbols which are to be decoded using tree search, the same two-symbol by two-symbol

exchange should be done accordingly in the other half in order to maintain the structure of R matrix. If only

the symbol exchange between two halves of the symbols is carried out, it is referred to as “4-by-4 column

switch”. Otherwise, if the exchange within each half is also performed, it is called “2-by-2 column switch”.

The advantage of the column switch will be shown in the next section.
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6 Simulation Results
6.1 BER performance

Figure 5 presents the uncoded symbol error rate of the proposed simplified decoders in quasi-static inde-

pendent Rayleigh flat fading channel. The performances of the ML decoder and the sphere decoder with

Schnorr-Euchner (S-E) enumeration proposed by Guo and Nilson [28] are also given as references. The Guo-

Nilson’s sphere decoder is a low-complexity implementation of sphere decoder with S-E but is sub-optimal

in terms of symbol error rate. It can be seen that the proposed decoders achieve the same performance as

ML decoder with both QPSK and 16-QAM modulations. In addition, the proposed decoders outperform

the Guo-Nilson’s sphere decoder with 16-QAM modulation. A gain of around 0.7 dB can be observed at

symbol error rate level of 1× 10−4.

6.2 Computational complexity

Figure 6 and Figure 7 present the complexity in terms of number of visited nodes for decoding each codeword

with QPSK and 16-QAM, respectively. For the proposed decoders, this number is calculated as the number

of visited nodes in the tree search phase plus the maximum visited nodes among the four search branches.

The Guo-Nilson’s sphere decoder is also given as a reference. Since processing each node requires roughly the

same operations for both decoders, these experiments actually give the comparison of the processing time

latency [19,28]. It can be seen from the results that the proposed decoders require much less processing time

than the ML decoder which needs to traverse all M8 possibilities. In QPSK case, the proposed decoders
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Figure 7: Computational complexity in terms of visited nodes required by Guo-Nilson’s sphere decoder with
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modulation.

always yield less latency than Guo-Nilson’s sphere decoder. For instance, the proposed decoder with 2-by-2

column switch visits only 254.6 nodes on an average at SNR of 0 dB. Compared with the Guo-Nilson’s

decoder which visits 1276.6 nodes at SNR of 0 dB, the proposed one achieves a processing time reduction

of 80%. The reductions are 50% and 49% at 10 dB and 20 dB, respectively. In addition, the improvements

brought by the proposed column switch technique can also be seen in the results. For instance, the 2-by-2

column switch yields a processing time reduction of 38% at 0 dB compared with the decoder without column

switch. This improvement is less significant in high SNR region (e.g. greater than 15 dB). Moreover, the

2-by-2 column switch offers better performance than the 4-by-4 counterpart because it is more likely to

allocate the four most unreliable complex symbols to the tree-search stage, which helps improving the global

convergence speed. In 16-QAM case (see Figure 7), the proposed decoder with 2-by-2 column switch also

brings processing time reduction in low SNR region. At 8 dB, it visits 1301.1 nodes on an average, yielding

a time reduction of 84% compared with Guo-Nilson’s decoder. The proposed decoder needs similar time

latency as Guo-Nilson’s decoder in higher SNR region (e.g. greater than 15 dB). Taking into account the

symbol error rate performance given in Figure 5, 8 ∼ 15 dB is the SNR region where the error correction

ability of the channel coding will be carried out significantly. This region also represents the minimum SNR

level at which the receiver can still work properly.

Figure 8 and Figure 9 give the overall required multiplications to decode each codeword. For the proposed

decoders, the multiplications spent by the tree search and by all four search branches are taken into account.

The computation overheads such as QR decomposition, linear estimation, are also included in the results to
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give the overall complexity of the decoders. It can be seen from the results that, in QPSK case, the proposed

decoder with 2-by-2 column switch spends 11%, 21% and 3% more multiplications than Guo-Nilson’s decoder

at SNR of 0 dB, 6 dB and 20 dB, respectively. In 16-QAM case, it needs 5% less multiplication at 8 dB

but spends 85% and 9% more multiplications at 14 dB and 28 dB, respectively. However, it is worth noting

that with the cost of increased multiplications the proposed decoders provide less processing latencies. For

instance, the proposed decoder with 2-by-2 column switch achieves 62% processing time reduction at SNR

of 6 dB with QPSK and 42% reduction at 14 dB with 16-QAM, respectively.
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Figure 11: Computational complexity in terms of divisions required by Guo-Nilson’s sphere decoder with
S-E for 3D MIMO code and proposed simplified ML decoders, in quasi-static Rayleigh channel with 16-QAM
modulation.

Finally, Figure 10 and Figure 11 present the overall divisions spent by the decoders. The proposed

decoders require less divisions than the Guo-Nilson’s. For instance, the proposed decoder with 2-by-2 column

switch requires 47%, 9% and 5% less divisions at SNR of 0 dB, 10 dB and 20 dB, respectively, with QPSK.

In 16-QAM case, it achieves 79% reduction of divisions at 8 dB. In the meantime, the two decoders spend

roughly the same number of divisions in higher SNR region, e.g. greater than 18 dB.

In general, we can see the different trade-offs achieved by different decoders. Proposed decoders achieves

ML performance with less time latency and less divisions than Guo-Nilson’s. On the other hand, the Guo-

Nilson’s decoder needs less multiplications with some performance loss with 16-QAM.
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7 Conclusion

The 3D MIMO code has been shown to be efficient and robust in distributed MIMO scenarios. Yet, it suffers

from high ML decoding complexity. In this paper, we first proposed a new form of the 3D MIMO codeword

and investigated some important properties of the new codeword. With these properties, the 3D MIMO

code is proved to be fast decodable. Consequently, we proposed a reduced-complexity ML decoder for the

3D MIMO code which offers the same performance as ML decoder. Simulation results demonstrate that

the novel low-complexity decoder yields much less processing time latency than the classical Guo-Nilson’s

sphere decoder with Schnorr-Euchner enumeration. Moreover, the proposed 2-by-2 column switch technique

can significantly reduce the average decoding complexity, especially with 16-QAM modulation.

Algorithm 1: Simple ML decoder for 3D MIMO code.

Input: ỹ, Heq

Output: ŝ
1 [Q,R] = QR(Heq);

2 z̃ = QT ỹ, s
ZF

= H†
eqỹ;

3 [−→s
ZF
,
−→
Heq] = ColSwt (s

ZF
, Heq); % column switch

4 Ω = S-E(−→s
ZF
); % Schnorr-Euchner enumeration

5 radius = ∞, d = 0;
6 ŝ = zeros(16, 1), s = zeros(8, 1);
7 l = 8; % start from root node

8 run SimpML (z̃, R, ŝ, s, radius, l, d, Ω);

Appendices
Definition of QR decomposition

If we write Heq = [h1, . . . ,h2κ], the Heq’s QR decomposition Heq = QR is achieved by Gram-Schmidt

procedure such that: Q , [q1, . . . ,q2κ], where columns qj ’s are orthogonal, and

R ,




‖r1‖2 〈q1,h2〉 · · · 〈q1,h2κ〉
0 ‖r2‖2 · · · 〈q2,h2κ〉
...

...
. . .

...
0 0 · · · ‖r2κ‖2


 , (26)

where r1 = h1, rj = hj −
∑j−1

k=1〈qk,hj〉qk, qj = rj/‖rj‖, j = 1, . . . , 2κ.

Proof of Theorem 1

Based on Heq, after some straightforward computation, it yields 〈h1,h2〉 = 〈h1,h4〉 = 〈h2,h3〉 = 〈h3,h4〉 =

0. According to the definition of QR decomposition, q1 = h1/‖h1‖. Hence, 〈q1,h2〉 = 〈q1,h4〉 = 0.
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Algorithm 2: Simple ML decoder SimpML.

Input: z̃, R, ŝ, s, radius, l, d, Ω
Output: ŝ, radius, d

1 dnew = dp = dt = 0;
2 z̃14 = z̃(1 : 8), z̃58 = z̃(9 : 16);

3 for j = 1 to
√
M do % check all nodes

4 s(l) = Ω(l, j);
5 dnew = |z̃58(l)−R(l + 8, l+ 8 : 16)s(l : 8)|2 + d(l); % overall distance of [ŝ5 . . . , ŝ8]

T

6 if dnew < radius then % inside sphere

7 if l 6= 1 then % tree search phase

8 run SimpML (z̃, R, ŝ, s, radius, l− 1, dnew, Ω); % check lower layer

9 else % leaf node found

10 ĉ = s(1 : 4), d̂ = s(5 : 8);
11 compute v1, v2, v3 and v4;
12 run ParaDec(v1, v2, v3, v4, R, radius, dnew); % parallel decision phase

13 dt = dp + dnew; % overall distance

14 if dt < radius then % better solution found

15 ŝ = [â, b̂, ĉ, d̂]T ;
16 radius = dt;

In addition, r2 = h2 −〈q1,h2〉q1 = h2, q2 = r2/‖r2‖ = h2/‖h2‖. Taking into account that 〈h2,h3〉 = 0,

it yields 〈q2,h3〉 = 0.

Moreover, r3 = h3 − ∑2
j=1〈qj ,h3〉qj = h3 − 〈q1,h3〉q1 and q3 = r3/‖r3‖ = (h3 − 〈q1,h3〉q1)/‖r3‖.

Therefore, 〈q3,h4〉 = (〈h3,h4〉 − 〈q1,h3〉〈q1,h4〉)/‖r3‖ = 0.

This completes the proof of Theorem 1.

Proof of Theorem 2

Based on Heq, after some straightforward computation, it yields 〈hj ,hk〉 = 0, ∀j = 1, 2, 3, 4 and k = 5, 6, 7, 8.

Using q1 = h1/‖h1‖ and q2 = h2/‖h2‖ which have been proven in the proof of Theorem 1, it yields

〈qj ,hk〉 = 0, ∀j = 1, 2 and k = 5, 6, 7, 8.

Using q3 = (h3 −〈q1,h3〉q1)/‖r3‖ which has been proven in the proof of Theorem 1, it yields 〈q3,hk〉 =

(〈h3,hk〉 − 〈q1,h3〉〈q1,hk〉)/‖r3‖ = 0, ∀k = 5, 6, 7, 8.

Similarly, since q4 = (h4 − 〈q2,h4〉q2)/‖r4‖, it yields 〈q4,hk〉 = (〈h4,hk〉 − 〈q2,h4〉〈q2,hk〉)/‖r4‖ = 0,

∀k = 5, 6, 7, 8.

This completes the proof of Theorem 2.
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Algorithm 3: Parallel decision algorithm ParaDec.

Input: v1, v2, v3, v4, R, radius, d
Output: â, b̂, dp

1 R11 = R(1 : 4, 1 : 4), R22 = R(5 : 8, 5 : 8);
2 flag1 = flag2 = flag3 = flag4 = 1; % decision flags

3 τ1 = τ2 = τ3 = τ4 = ∞;
4 p1 = p2 = p3 = p4 = ∞;
5 d1 = d2 = d3 = d4 = ∞;

6 for j = 1 to
√
M do

7 if flag1 == 1 then

8 sR2 = Ω(3, j) ;

9 τ1 = |vR2 −R11(3, 3)s
R
2 |2 ; % current distance

10 if τ1 > p1||(τ1 + d2 + d3 + d4 + d) > radius then
11 flag1 = 0; % stop search in this branch

12 d1 = p1; % minimum distance of the branch

13 if flag1 = flag2 = flag3 = flag4 = 0 then

14 break; % terminate if all branches stop

15 repeat lines 7 to 12 for sI2, s
R
4 and sI4;

16 if flag1 == 1 then

17 sR1 = Q((vR1 −R11(1, 3)s
R
2 )/(R11(1, 1)));

18 τ ′1 = |vR1 −R11(1, 1)s
R
1 −R11(1, 3)s

R
2 |2 + τ1; % current distance of the branch

19 if τ ′1 < p1 then

20 ŝR1 = sR1 , ŝ
R
2 = sR2 ; % current best solutions

21 p1 = τ ′1 ; % current minimum branch distance

22 repeat lines 16 to 19 for other branches;

23 â = [ŝR1 , ŝ
I
1, ŝ

R
2 , ŝ

I
2], b̂ = [ŝR3 , ŝ

I
3, ŝ

R
4 , ŝ

I
4]; % best solution

24 dp = d1 + d2 + d3 + d4; % overall distance of [ŝ1, . . . ŝ4]
T

Proof of Corollary 1

Using the similar method as in the proof of Theorem 1, it can be computed from the definition of Heq that

〈h5,h6〉 = 〈h5,h8〉 = 〈h6,h7〉 = 〈h7,h8〉 = 0.

In addition, using Theorem 2, it can be obtained that q5 = h5/‖h5‖. Hence, 〈q5,h6〉 = 〈q5,h8〉 = 0.

Using 〈q5,h6〉 = 0 and Theorem 2, it yields q6 = h6/‖h6‖. Hence, 〈q6,h7〉 = 0.

Finally, using 〈q6,h7〉 = 0 and Theorem 2, it yields r7 = h7 − 〈q5,h7〉q5 and q7 = r7/‖r7‖ = (h7 −

〈q5,h7〉q5)/‖r7‖. Therefore, 〈q7,h8〉 = (〈h7,h8〉 − 〈q5,h7〉〈q5,h8〉)/‖r7‖ = 0.

This completes the proof of Corollary 1.
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Algorithm 4: Column switch algorithm ColSwt.

Input: s
ZF
, Heq

Output:
−→
Heq,

−→s
ZF

1 compute ǫjk’s ;
2 if ǫ14 < ǫ58 then % decode [s5, . . . s8] by tree search

3
−→s = [s1, s2, s3, s4, s5, s6, s7, s8] ;

4 if ǫ78 < ǫ56 then % valid only in 2-by-2 column switch

5
−→s = [s3, s4, s1, s2, s7, s8, s5, s6] ;

6 else % decode [s1, . . . s4] by tree search

7
−→s = [s5, s6, s7, s8, s1, s2, s3, s4] ;

8 if ǫ34 < ǫ12 then % valid only in 2-by-2 column switch

9
−→s = [s7, s8, s5, s6, s3, s4, s1, s2] ;

10 permute s
ZF

and Heq according to −→s ;
11 return permutation results

−→
Heq,

−→s
ZF
.
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Figures
Figure 1 - R matrix of the new 3D MIMO codeword

Illustration of the R matrix of the new 3D MIMO codeword given in (10) in quasi-static channel.

Figure 2 - R matrix of the original 3D MIMO codeword

Illustration of the R matrix of the original 3D MIMO codeword given in (9) in quasi-static channel.

Figure 3 - Two-stage sphere decoding

Illustration of the two-stage sphere decoding.

Figure 4 - Parallel decisions

Parallel decisions of [sR1 , s
R
2 ], [s

I
1, s

I
2], [s

R
3 , s

R
4 ] and [sI3, s

I
4].
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Figure 5 - Symbol error rate comparison

Symbol error rate obtained with Guo-Nilson’s sphere decoder with S-E for 3D MIMO code, ML decoder and

proposed simplified ML decoders in quasi-static Rayleigh channel with QPSK and 16QAM.

Figure 6 - Complexity in terms of visited nodes with QPSK

Computational complexity in terms of visited nodes required by Guo-Nilson’s sphere decoder with S-E for 3D

MIMO code and proposed simplified ML decoders, in quasi-static Rayleigh channel with QPSK modulation.

Figure 7 - Complexity in terms of visited nodes with 16-QAM

Computational complexity in terms of visited nodes required by Guo-Nilson’s sphere decoder with S-E

for 3D MIMO code and proposed simplified ML decoders, in quasi-static Rayleigh channel with 16-QAM

modulation.

Figure 8 - Complexity in terms of multiplications with QPSK

Computational complexity in terms of multiplications required by Guo-Nilson’s sphere decoder with S-E

for 3D MIMO code and proposed simplified ML decoders, in quasi-static Rayleigh channel with QPSK

modulation.

Figure 9 - Complexity in terms of multiplications with 16-QAM

Computational complexity in terms of multiplications required by Guo-Nilson’s sphere decoder with S-E

for 3D MIMO code and proposed simplified ML decoders, in quasi-static Rayleigh channel with 16-QAM

modulation.

Figure 10 - Complexity in terms of divisions with QPSK

Computational complexity in terms of divisions required by Guo-Nilson’s sphere decoder with S-E for 3D

MIMO code and proposed simplified ML decoders, in quasi-static Rayleigh channel with QPSK modulation.

Figure 11 - Complexity in terms of divisions with 16-QAM

Computational complexity in terms of divisions required by Guo-Nilson’s sphere decoder with S-E for 3D

MIMO code and proposed simplified ML decoders, in quasi-static Rayleigh channel with 16-QAM modula-

tion.
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Tables
Table 1 - Comparison of ML decoding complexities of STBCs for 4× 2 MIMO transmission

The table presents the ML decoding complexities of several STBCs that are suitable for 4 × 2 MIMO

transmission.
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