27 research outputs found

    Geometric Spanning Cycles in Bichromatic Point Sets

    Full text link
    Given a set of points in the plane each colored either red or blue, we find non-self-intersecting geometric spanning cycles of the red points and of the blue points such that each edge of the red spanning cycle is crossed at most three times by the blue spanning cycle and vice-versa

    The hamburger theorem

    Full text link
    We generalize the ham sandwich theorem to d+1d+1 measures in Rd\mathbb{R}^d as follows. Let μ1,μ2,,μd+1\mu_1,\mu_2, \dots, \mu_{d+1} be absolutely continuous finite Borel measures on Rd\mathbb{R}^d. Let ωi=μi(Rd)\omega_i=\mu_i(\mathbb{R}^d) for i[d+1]i\in [d+1], ω=min{ωi;i[d+1]}\omega=\min\{\omega_i; i\in [d+1]\} and assume that j=1d+1ωj=1\sum_{j=1}^{d+1} \omega_j=1. Assume that ωi1/d\omega_i \le 1/d for every i[d+1]i\in[d+1]. Then there exists a hyperplane hh such that each open halfspace HH defined by hh satisfies μi(H)(j=1d+1μj(H))/d\mu_i(H) \le (\sum_{j=1}^{d+1} \mu_j(H))/d for every i[d+1]i \in [d+1] and j=1d+1μj(H)min(1/2,1dω)1/(d+1)\sum_{j=1}^{d+1} \mu_j(H) \ge \min(1/2, 1-d\omega) \ge 1/(d+1). As a consequence we obtain that every (d+1)(d+1)-colored set of ndnd points in Rd\mathbb{R}^d such that no color is used for more than nn points can be partitioned into nn disjoint rainbow (d1)(d-1)-dimensional simplices.Comment: 11 pages, 2 figures; a new proof of Theorem 8, extended concluding remark

    K1,3K_{1,3}-covering red and blue points in the plane

    Get PDF
    We say that a finite set of red and blue points in the plane in general position can be K1,3K_{1,3}-covered if the set can be partitioned into subsets of size 44, with 33 points of one color and 11 point of the other color, in such a way that, if at each subset the fourth point is connected by straight-line segments to the same-colored points, then the resulting set of all segments has no crossings. We consider the following problem: Given a set RR of rr red points and a set BB of bb blue points in the plane in general position, how many points of RBR\cup B can be K1,3K_{1,3}-covered? and we prove the following results: (1) If r=3g+hr=3g+h and b=3h+gb=3h+g, for some non-negative integers gg and hh, then there are point sets RBR\cup B, like {1,3}\{1,3\}-equitable sets (i.e., r=3br=3b or b=3rb=3r) and linearly separable sets, that can be K1,3K_{1,3}-covered. (2) If r=3g+hr=3g+h, b=3h+gb=3h+g and the points in RBR\cup B are in convex position, then at least r+b4r+b-4 points can be K1,3K_{1,3}-covered, and this bound is tight. (3) There are arbitrarily large point sets RBR\cup B in general position, with r=b+1r=b+1, such that at most r+b5r+b-5 points can be K1,3K_{1,3}-covered. (4) If br3bb\le r\le 3b, then at least 89(r+b8)\frac{8}{9}(r+b-8) points of RBR\cup B can be K1,3K_{1,3}-covered. For r>3br>3b, there are too many red points and at least r3br-3b of them will remain uncovered in any K1,3K_{1,3}-covering. Furthermore, in all the cases we provide efficient algorithms to compute the corresponding coverings.Comment: 29 pages, 10 figures, 1 tabl

    Rainbow polygons for colored point sets in the plane

    Full text link
    Given a colored point set in the plane, a perfect rainbow polygon is a simple polygon that contains exactly one point of each color, either in its interior or on its boundary. Let rb-index(S)\operatorname{rb-index}(S) denote the smallest size of a perfect rainbow polygon for a colored point set SS, and let rb-index(k)\operatorname{rb-index}(k) be the maximum of rb-index(S)\operatorname{rb-index}(S) over all kk-colored point sets in general position; that is, every kk-colored point set SS has a perfect rainbow polygon with at most rb-index(k)\operatorname{rb-index}(k) vertices. In this paper, we determine the values of rb-index(k)\operatorname{rb-index}(k) up to k=7k=7, which is the first case where rb-index(k)k\operatorname{rb-index}(k)\neq k, and we prove that for k5k\ge 5, 40(k1)/2819rb-index(k)10k7+11. \frac{40\lfloor (k-1)/2 \rfloor -8}{19} %Birgit: \leq\operatorname{rb-index}(k)\leq 10 \bigg\lfloor\frac{k}{7}\bigg\rfloor + 11. Furthermore, for a kk-colored set of nn points in the plane in general position, a perfect rainbow polygon with at most 10k7+1110 \lfloor\frac{k}{7}\rfloor + 11 vertices can be computed in O(nlogn)O(n\log n) time.Comment: 23 pages, 11 figures, to appear at Discrete Mathematic

    Rainbow polygons for colored point sets in the plane

    Get PDF
    Given a colored point set in the plane, a perfect rainbow polygon is a simple polygon that contains exactly one point of each color, either in its interior or on its boundary. Let rb-index(S) denote the smallest size of a perfect rainbow polygon for a colored point set S, and let rb-index(k) be the maximum of rb-index(S) over all k-colored point sets in general position; that is, every k-colored point set S has a perfect rainbow polygon with at most rb-index(k) vertices. In this paper, we determine the values of rb-index(k) up to k=7, which is the first case where rb-index(k)¿k, and we prove that for k=5, [Formula presented] Furthermore, for a k-colored set of n points in the plane in general position, a perfect rainbow polygon with at most [Formula presented] vertices can be computed in O(nlogn) time. © 2021 Elsevier B.V

    K1,3-covering red and blue points in the plane

    Get PDF
    We say that a finite set of red and blue points in the plane in general position can be K1, 3-covered if the set can be partitioned into subsets of size 4, with 3 points of one color and 1 point of the other color, in such a way that, if at each subset the fourth point is connected by straight-line segments to the same-colored points, then the resulting set of all segments has no crossings. We consider the following problem: Given a set R of r red points and a set B of b blue points in the plane in general position, how many points of R ¿ B can be K1, 3-covered? and we prove the following results: (1) If r = 3g + h and b = 3h + g, for some non-negative integers g and h, then there are point sets R ¿ B, like {1, 3}-equitable sets (i.e., r = 3b or b = 3r) and linearly separable sets, that can be K1, 3-covered. (2) If r = 3g + h, b = 3h + g and the points in R ¿ B are in convex position, then at least r + b - 4 points can be K1, 3-covered, and this bound is tight. (3) There are arbitrarily large point sets R ¿ B in general position, with r = b + 1, such that at most r + b - 5 points can be K1, 3-covered. (4) If b = r = 3b, then at least 9 8 (r + b- 8) points of R ¿ B can be K1, 3-covered. For r > 3b, there are too many red points and at least r - 3b of them will remain uncovered in any K1, 3-covering. Furthermore, in all the cases we provide efficient algorithms to compute the corresponding coverings

    16th Scandinavian Symposium and Workshops on Algorithm Theory: SWAT 2018, June 18-20, 2018, Malmö University, Malmö, Sweden

    Get PDF
    corecore