41 research outputs found

    Edge coloring BIBDS and constructing MOELRs

    Get PDF
    Chapter 1 is used to introduce the basic tools and mechanics used within this thesis. Some historical uses and background are touched upon as well. The majority of the definitions are contained within this chapter as well. In Chapter 2 we consider the question whether one can decompose λ copies of monochromatic Kv into copies of Kk such that each copy of the Kk contains at most one edge from each Kv. This is called a proper edge coloring (Hurd, Sarvate, [29]). The majority of the content in this section is a wide variety of examples to explain the constructions used in Chapters 3 and 4. In Chapters 3 and 4 we investigate how to properly color BIBD(v, k, λ) for k = 4, and 5. Not only will there be direct constructions of relatively small BIBDs, we also prove some generalized constructions used within. In Chapter 5 we talk about an alternate solution to Chapters 3 and 4. A purely graph theoretical solution using matchings, augmenting paths, and theorems about the edgechromatic number is used to develop a theorem that than covers all possible cases. We also discuss how this method performed compared to the methods in Chapters 3 and 4. In Chapter 6, we switch topics to Latin rectangles that have the same number of symbols and an equivalent sized matrix to Latin squares. Suppose ab = n2. We define an equitable Latin rectangle as an a × b matrix on a set of n symbols where each symbol appears either [b/n] or [b/n] times in each row of the matrix and either [a/n] or [a/n] times in each column of the matrix. Two equitable Latin rectangles are orthogonal in the usual way. Denote a set of ka × b mutually orthogonal equitable Latin rectangles as a k–MOELR(a, b; n). We show that there exists a k–MOELR(a, b; n) for all a, b, n where k is at least 3 with some exceptions

    On classifying finite edge colored graphs with two transitive automorphism groups

    Get PDF
    This paper classifies all finite edge colored graphs with doubly transitive automorphism groups. This result generalizes the classification of doubly transitive balanced incomplete block designs with λ=1 and doubly transitive one-factorizations of complete graphs. It also provides a classification of all doubly transitive symmetric association schemes

    Coloring decompositions of complete geometric graphs

    Get PDF
    A decomposition of a non-empty simple graph GG is a pair [G,P][G,P], such that PP is a set of non-empty induced subgraphs of GG, and every edge of GG belongs to exactly one subgraph in PP. The chromatic index χ([G,P])\chi'([G,P]) of a decomposition [G,P][G,P] is the smallest number kk for which there exists a kk-coloring of the elements of PP in such a way that: for every element of PP all of its edges have the same color, and if two members of PP share at least one vertex, then they have different colors. A long standing conjecture of Erd\H{o}s-Faber-Lov\'asz states that every decomposition [Kn,P][K_n,P] of the complete graph KnK_n satisfies χ([Kn,P])n\chi'([K_n,P])\leq n. In this paper we work with geometric graphs, and inspired by this formulation of the conjecture, we introduce the concept of chromatic index of a decomposition of the complete geometric graph. We present bounds for the chromatic index of several types of decompositions when the vertices of the graph are in general position. We also consider the particular case in which the vertices are in convex position and present bounds for the chromatic index of a few types of decompositions.Comment: 18 pages, 5 figure

    ON THE EMBEDDING OF GROUPS AND DESIGNS IN A DIFFERENCE BLOCK DESIGN

    Get PDF
    A difference BIBD is a balanced incomplete block design on a group which isconstructed by transferring a regular perfect difference system by a subgroup of its point set. There is an obvious bijection between these BIBDs and some copies of their point sets as two sets. In this paper, we investigate the algebraic structure of these block designs by definning a group-isomorphism between them and their point sets. It has done by defning some relations between the independent-graphs of difference BIBDs and some Cayley graphs of their point sets. It is shown that some Cayley graphs are embedded in the independent-graph of difference BIBDs as a spanning sub-graphs. Due to find these relations, we find out a configuration ordering on these BIBDs, also we achieve some results about the classification of these BIBDs. All in this paper are on difference BIBDs with even numbers of the points

    List colouring hypergraphs and extremal results for acyclic graphs

    Get PDF
    We study several extremal problems in graphs and hypergraphs. The first one is on list-colouring hypergraphs, which is a generalization of the ordinary colouring of hypergraphs. We discuss two methods for determining the list-chromatic number of hypergraphs. One method uses hypergraph polynomials, which invokes Alon's combinatorial nullstellensatz. This method usually requires computer power to complete the calculations needed for even a modest-sized hypergraph. The other method is elementary, and uses the idea of minimum improper colourings. We apply these methods to various classes of hypergraphs, including the projective planes. We focus on solving the list-colouring problem for Steiner triple systems (STS). It is not hard using either method to determine that Steiner triple systems of orders 7, 9 and 13 are 3-list-chromatic. For systems of order 15, we show that they are 4-list-colourable, but they are also ``almost'' 3-list-colourable. For all Steiner triple systems, we prove a couple of simple upper bounds on their list-chromatic numbers. Also, unlike ordinary colouring where a 3-chromatic STS exists for each admissible order, we prove using probabilistic methods that for every ss, every STS of high enough order is not ss-list-colourable. The second problem is on embedding nearly-spanning bounded-degree trees in sparse graphs. We determine sufficient conditions based on expansion properties for a sparse graph to embed every nearly-spanning tree of bounded degree. We then apply this to random graphs, addressing a question of Alon, Krivelevich and Sudakov, and determine a probability pp where the random graph Gn,pG_{n,p} asymptotically almost surely contains every tree of bounded degree. This pp is nearly optimal in terms of the maximum degree of the trees that we embed. Finally, we solve a problem that arises from quantum computing, which can be formulated as an extremal question about maximizing the size of a type of acyclic directed graph
    corecore