6 research outputs found

    Characterization of Propagation Models in Wireless Communications for 4G Network

    Get PDF
    Estimating the pathloss and signal strength of the transmitted signal at specific distances is one of the main objectives of network designers. This paper aims to provide generalized pathloss models appropriate for urban areas in Muscat the capital city of the Sultanate of Oman environment. The research includes studying different models of pathloss for the 4G cellular network at Muttrah Business District (MBD) at Muscat. Different models (Free Space model, Okumura Hata, Extended Sakagami, Cost231 Hata, ECC-33 Hata – Okumura extended, Ericsson, Egli, and SUI) are used with 800MHz. The results of the prediction models are compared with real measured data by calculating RMSE. The generalized models are created by modified original models to get accepted RMSE values.  Different cells at MBD are tested by modified models. The RMSE values are then calculated for verification purposes.  To validate the modified pathloss models of 4G, they are also applied at different cells in different cities in the capital. They have approximately the same environment as MBD. The modified pathloss models provided accepted predictions in new locations

    Experimental Validation of a Best-Fit Model for Predicting Radio Wave Propagation through Vegetation

    Get PDF
    In this study, a model for predicting radio wave propagation through vegetation at 900 and 1800MHz is proposed. An integrated model comprising of ground and foliage induced effects is evaluated with respect to experimental data obtained through drive test in and around a vegetation environment, using Test Mobile System (TEMS) investigation tools. Measured path loss was compared against predictions made by four empirical vegetation models. Results indicate that the European Cooperation in Science and Technology (COST) 235 model gives the best prediction and compare favourably with measured path loss in areas where vegetation is dominant. Although, this model showed the most accurate prediction of foliage loss in the investigated area, there is a need to modify it for enhanced signal prediction. The modified model was found to predict the measured path loss with Root Mean Square Errors (RMSEs) of 6.98dB and 10.00dB at 900 and 1800MHz, respectively. Overall, findings revealed that these RMSEs are within the acceptable range of up to 15.00dB, for quality signal prediction in related environment

    Okumura-Hata Propagation Model Tuning Through Composite Function of Prediction Residual

    Get PDF
    In this paper, an innovative composite function of prediction residual-based approach for tuning Okumura-Hata propagation model in the 800-900MHz GSM frequency band is presented. The study is based on empirical measurements conducted at University Of Uyo (UNIUYO) town-campus located at latitude and longitude of 5.042976, 7.919046 respectively. The proposed path loss tuning approach is compared with RMSE based tuning approach. According to the results, the composite function of prediction residual tuned Okumura-Hata model has the lowest RMSE value of 2.164, the highest Coefficient Of Determination (R^2) value of  0.967 and the highest prediction accuracy of  98.64%. On the other hand , the RMSE- tuned Okumura-Hata model has a higher  RMSE value of 5.3, lower R^2 value of 0.814 and the lower prediction accuracy of 96.87%. Essentially, in all the three performance measures used , the composite function of prediction residual based tuning approach performed better than the RMSE based tuning approach. However, in pathloss tuning studies, RMSE value below  7dB is acceptable for the urban area. As such, the RMSE based tuning approach gave tuned model with acceptable RMSE value but with lower prediction accuracy than the model produced by the composite function of prediction residual based tuning approach

    Experimental Determination of Penetration Loss into Multi-Storey Buildings at 900 and 1800MHz

    Get PDF
    This study presents building pentration loss into and around multi-storey buildings at 900 and 1800MHz based on experimental data obtained through drive test, using Test Mobile System (TEMS) investigation tools. The received signal level was measured inside and outside three buildings; the Senate building of the University of Lagos (B1), Mike Adenuga Towers (B2) and the Sapetro Towers (B3) located in Victoria Island, Lagos Nigeria. The building penetration loss (BPL) was derived from measurements, and the average and standard deviations of the BPL were computed. Results showed that the average BPL of 17.0dB and 13.8dB obtained from building B1 at 900 and 1800MHz, respectively, are comparatively higher than those of buildings B2 and B3. The standard deviation of the BPL shows an increase from 5.2dB at 900MHz to 7.8dB at 1800MHz for building B1, whereas it fell drastically from 8.65dB at 900MHz to 1.40dB at 1800MHz for B2, and a similar behaviour in B1 is seen for building B3 where it rises sharply from 1.55dB at 900MHz to 6.55dB at 1800MHz. This is in agreement with the general trend of increasing penetration loss with increase in frequency except for building B2 where an anomaly is observed. In order to examine the correlation between the measured and the predicted BPL, cubic regression was used to fit a third order polynomial to the measured BPL. Overrall, the fitted models could find useful applications in the design of novel and robust BPL models for modern multi-floored buildings

    6G Enabled Smart Infrastructure for Sustainable Society: Opportunities, Challenges, and Research Roadmap

    Get PDF
    The 5G wireless communication network is currently faced with the challenge of limited data speed exacerbated by the proliferation of billions of data-intensive applications. To address this problem, researchers are developing cutting-edge technologies for the envisioned 6G wireless communication standards to satisfy the escalating wireless services demands. Though some of the candidate technologies in the 5G standards will apply to 6G wireless networks, key disruptive technologies that will guarantee the desired quality of physical experience to achieve ubiquitous wireless connectivity are expected in 6G. This article first provides a foundational background on the evolution of different wireless communication standards to have a proper insight into the vision and requirements of 6G. Second, we provide a panoramic view of the enabling technologies proposed to facilitate 6G and introduce emerging 6G applications such as multi-sensory–extended reality, digital replica, and more. Next, the technology-driven challenges, social, psychological, health and commercialization issues posed to actualizing 6G, and the probable solutions to tackle these challenges are discussed extensively. Additionally, we present new use cases of the 6G technology in agriculture, education, media and entertainment, logistics and transportation, and tourism. Furthermore, we discuss the multi-faceted communication capabilities of 6G that will contribute significantly to global sustainability and how 6G will bring about a dramatic change in the business arena. Finally, we highlight the research trends, open research issues, and key take-away lessons for future research exploration in 6G wireless communicatio

    Advanced Information Processing Methods and Their Applications

    Get PDF
    This Special Issue has collected and presented breakthrough research on information processing methods and their applications. Particular attention is paid to the study of the mathematical foundations of information processing methods, quantum computing, artificial intelligence, digital image processing, and the use of information technologies in medicine
    corecore