2,356 research outputs found

    Mobile WiMAX: multi-cell network evaluation and capacity optimization

    Get PDF

    Performance evaluation of broadband fixed wireless system based on IEEE 802.16

    Get PDF
    Fixed Wireless Access systems operating below 11 GHz have the potential to provide broadband wireless access for non line-of-sight operation. In this paper the performance of a typical broadband fixed wireless system based on the IEEE 802.16-2004 specifications is determined. A scenario for business applications with outdoor customer premises equipment is investigated in the 3.5 GHz frequency band. Different path loss models and terrain types are considered. Coverage and throughput in a sector are determined for this business scenario

    Mobile WiMAX system performance – simulated versus experimental results

    Get PDF
    This paper addresses the downlink performance of mobile WiMAX operating at 2.3GHz in an urban environment. The analysis includes a comparison of simulated and experimental results. Simulated packet error rate (PER) versus Signal to Noise Ratio (SNR) graphs are generated on a per link-speed basis using a fully compliant 512 carrier mobile WiMAX simulator. Experimental data is gathered using a carrier-class basestation, a mobile-WiMAX enabled laptop, and a suite of application layer logging software. An H264 AVC encoder and IP packetisation unit is used to transmit video to a mobile client. Results show strong agreement in terms of simulated and captured PER. Using this data, the downlink operating range is evaluated as a function of the Effective Isotropic Radiated Power (EIRP) and path loss exponent. Results indicate that at low EIRP (32 dBm) the expected outdoor operating range is around 200-400m. Applying the UK OFCOM regulations for licensed operation in the 2.5GHz band, downlink operation in excess of 2km can be achieved

    Demonstration of wireless backhauling over long-reach PONs

    Get PDF
    An IEEE 802.16e-2005 (WiMAX) compliant, longreach passive optical network is demonstrated, focusing on the development of next generation optical access with transparent wireless backhauling. In addition to the extended feeder reach, a wavelength band overlay is used to enhance network scalability by maintaining passive splitting in the field and with some design modification at the optical line terminal and remote base station. Radio-over-fiber is used to minimize network installation and maintenance costs through the use of simple remote radio heads complemented by frequency division multiplexing to address individual base stations. The implementation of overlapping radio cells/sectors is also proposed to provide joint signal processing at wireless user terminals. Experimental measurements confirmed EVMs below -30 and -23 dB downstream and upstream, respectively, over fiber link lengths of up to 84.6 km. In addition, adjacent channel leakage ratio measurements demonstrated that a figure of -45 dB with 40 MHz subcarrier spacing, as specified by the standard, can be readily achieved.Peer reviewe

    UWB Coexistence with 3G and 4G Cellular Systems

    Get PDF

    CINR Performance of Downlink Mobile WiMAX IEEE 802.16e Deployed Using Coexistence Cellular Terrestrial and HAPS

    Get PDF
    Deploying WiMAX through High Altitude Platform Station (HAPS) system is a new means of wireless delivery method and thus attracting much the attention in a telecommunication society. However delivering WiMAX through the terrestrial network has already been started a few years ago. Therefore, we need to look at the scenario of coexistence system both of HAPS and terrestrial in delivering WiMAX services. This paper evaluates the performance of coexistence system between cellular HAPS and terrestrial for the downlink scenario when they are transmitting WiMAX mobile 802.16e services. Our evaluation is based on the performance simulation of coexistence model using two methods. First method is a footprint exchange between the two systems.The second method is a combination of footprint exchange and HAPS footprint enhancement. The proposed methodsare then evaluated by computer simulation in terms of carrier to interference plus noise ratio (CINR) performance. In general, both methods resulting performance enhancement in CINR quality compared with coexistence deployment with normal scenario of the cell configuration used by HAPS and terrestrial. The method of combining footprint exchange and HAPS footprint enhancement is able to improve CINR more than 10 dB compared with the normal footprint configuration for all users location inside the coverage

    Joint distribution of polarization-multiplexed UWB and WiMAX radio in PON

    Get PDF
    In this paper, the feasibility of the joint distribution of ultra-wideband (UWB) and WIMAX wireless using polarization multiplexing as a coexistence technique is proposed and experimentally demonstrated within the framework of passive optical networks (PON). Four single- and orthogonal-polarization multiplexing schemes are studied targeting to reduce the mutual interference when UWB and WiMAX are distributed jointly through standard single-mode fiber (SSMF) without transmission impairments compensation techniques and amplification. Experimental results indicate successful transmission up to 25 km, in SSMF exceeding the range in typical PON deployments. The radio link penalty introduced by optical transmission is also investigated in this paper
    corecore