111 research outputs found

    On the design of multimedia architectures : proceedings of a one-day workshop, Eindhoven, December 18, 2003

    Get PDF

    On the design of multimedia architectures : proceedings of a one-day workshop, Eindhoven, December 18, 2003

    Get PDF

    Un système d'analyse de la qualité: de la norme au produit en passant par le raffinement

    Get PDF
    www.cnam.frLe projet RNRT EQUAST a pour but la réalisation d'un outil de mesure de la qualité de service en télévision numérique terrestre (TNT). Une norme (Digital Video Broadcasting DVB; Measurement guidelines for DVB systems. ETSI TR 101 290 v1.2.1) identifie un certain nombre de contrôles et de paramètres permettant l'évaluation de la qualité de transmission du réseau. La mise en oeuvre de cette norme en un outil implique des calculs et des contraintes temps-réel forte; elle nécessite une modélisation préalable du système constitué par les paramètres de ladite norme. A partir des documents de normalisation et en relation avec nos partenaires, nous avons extrait et conçu des modèles B événementiels intégrant progressivement, par la relation de raffinement, tous les paramètres à évaluer. Le raffinement assure la cohérence par la preuve du modèle final obtenu et apporte une hiérarchie de dépendances entre les paramètres de la norme. Cette hiérarchie est produite à partir de l'invariant du modèle du système produit et permet de proposer une architecture pour la conception de l'outil de mesure. Ainsi, nous pouvons proposer un ordonnancement correct des tâches de l'application. La connaissance de cet ordonnancement ainsi que la vue structurée du système aide le concepteur dans ses choix d'implantation électronique. Les modèles abstraits du système sont utilisés d'une part pour la mise en évidence de l'organisation des traitements attachés aux paramètres et d'autre part pour la traduction dans un ensemble de programmes SystemC conservant les propriétés des modèles. Afin de demeurer dans une approche préservant les propriétés, nous avons dû modéliser le scheduler SystemC décrit dans le manuel SystemC et monter que les traductions automatisées préservaient effectivement les propriétés des modèles abstraits dans les programmes SystemC

    The Fifth NASA Symposium on VLSI Design

    Get PDF
    The fifth annual NASA Symposium on VLSI Design had 13 sessions including Radiation Effects, Architectures, Mixed Signal, Design Techniques, Fault Testing, Synthesis, Signal Processing, and other Featured Presentations. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The presentations share insights into next generation advances that will serve as a basis for future VLSI design

    A Decade of Neural Networks: Practical Applications and Prospects

    Get PDF
    The Jet Propulsion Laboratory Neural Network Workshop, sponsored by NASA and DOD, brings together sponsoring agencies, active researchers, and the user community to formulate a vision for the next decade of neural network research and application prospects. While the speed and computing power of microprocessors continue to grow at an ever-increasing pace, the demand to intelligently and adaptively deal with the complex, fuzzy, and often ill-defined world around us remains to a large extent unaddressed. Powerful, highly parallel computing paradigms such as neural networks promise to have a major impact in addressing these needs. Papers in the workshop proceedings highlight benefits of neural networks in real-world applications compared to conventional computing techniques. Topics include fault diagnosis, pattern recognition, and multiparameter optimization

    Improving the Efficiency of Energy Harvesting Embedded System

    Get PDF
    In the past decade, mobile embedded systems, such as cell phones and tablets have infiltrated and dramatically transformed our life. The computation power, storage capacity and data communication speed of mobile devices have increases tremendously, and they have been used for more critical applications with intensive computation/communication. As a result, the battery lifetime becomes increasingly important and tends to be one of the key considerations for the consumers. Researches have been carried out to improve the efficiency of the lithium ion battery, which is a specific member in the more general Electrical Energy Storage (EES) family and is widely used in mobile systems, as well as the efficiency of other electrical energy storage systems such as supercapacitor, lead acid battery, and nickel–hydrogen battery etc. Previous studies show that hybrid electrical energy storage (HEES), which is a mixture of different EES technologies, gives the best performance. On the other hand, the Energy Harvesting (EH) technique has the potential to solve the problem once and for all by providing green and semi-permanent supply of energy to the embedded systems. However, the harvesting power must submit to the uncertainty of the environment and the variation of the weather. A stable and consistent power supply cannot always be guaranteed. The limited lifetime of the EES system and the unstableness of the EH system can be overcome by combining these two together to an energy harvesting embedded system and making them work cooperatively. In an energy harvesting embedded systems, if the harvested power is sufficient for the workload, extra power can be stored in the EES element; if the harvested power is short, the energy stored in the EES bank can be used to support the load demand. How much energy can be stored in the charging phase and how long the EES bank lifetime will be are affected by many factors including the efficiency of the energy harvesting module, the input/output voltage of the DC-DC converters, the status of the EES elements, and the characteristics of the workload. In this thesis, when the harvesting energy is abundant, our goal is to store as much surplus energy as possible in the EES bank under the variation of the harvesting power and the workload power. We investigate the impact of workload scheduling and Dynamic Voltage and Frequency Scaling (DVFS) of the embedded system on the energy efficiency of the EES bank in the charging phase. We propose a fast heuristic algorithm to minimize the energy overhead on the DC-DC converter while satisfying the timing constraints of the embedded workload and maximizing the energy stored in the HEES system. The proposed algorithm improves the efficiency of charging and discharging in an energy harvesting embedded system. On the other hand, when the harvesting rate is low, workload power consumption is supplied by the EES bank. In this case, we try to minimize the energy consumption on the embedded system to extend its EES bank life. In this thesis, we consider the scenario when workload has uncertainties and is running on a heterogeneous multi-core system. The workload variation is represented by the selection of conditional branches which activate or deactivate a set of instructions belonging to a task. We employ both task scheduling and DVFS techniques for energy optimization. Our scheduling algorithm considers the statistical information of the workload to minimize the mean power consumption of the application while satisfying a hard deadline constraint. The proposed DVFS algorithm has pseudo linear complexity and achieves comparable energy reduction as the solutions found by mathematical programming. Due to its capability of slack reclaiming, our DVFS technique is less sensitive to small change in hardware or workload and works more robustly than other techniques without slack reclaiming

    NASA SBIR abstracts of 1991 phase 1 projects

    Get PDF
    The objectives of 301 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1991 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 301, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1991 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included

    N-variant Hardware Design

    Get PDF
    The emergence of lightweight embedded devices imposes stringent constraints on the area and power of the circuits used to construct them. Meanwhile, many of these embedded devices are used in applications that require diversity and flexibility to make them secure and adaptable to the fluctuating workload or variable fabric. While field programmable gate arrays (FPGAs) provide high flexibility, the use of application specific integrated circuits (ASICs) to implement such devices is more appealing because ASICs can currently provide an order of magnitude less area and better performance in terms of power and speed. My proposed research introduces the N-variant hardware design methodology that adds the sufficient flexibility needed by such devices while preserving the performance and area advantages of using ASICs. The N-variant hardware design embeds different variants of the design control part on the same IC to provide diversity and flexibility. Because the control circuitry usually represents a small fraction of the whole circuit, using multiple versions of the control circuitry is expected to have a low overhead. The objective of my thesis is to formulate a method that provides the following advantages: (i) ease of integration in the current ASIC design flow, (ii) minimal impact on the performance and area of the ASIC design, and (iii) providing a wide range of applications for hardware security and tuning the performance of chips either statically (e.g., post-silicon optimization) or dynamically (at runtime). This is achieved by adding diversity at two orthogonal levels: (i) state space diversity, and (ii) scheduling diversity. State space diversity expands the state space of the controller. Using state space diversity, we introduce an authentication mechanism and the first active hardware metering schemes. On the other hand, scheduling diversity is achieved by embedding different control schedules in the same design. The scheduling diversity can be spatial, temporal, or a hybrid of both methods. Spatial diversity is achieved by implementing multiple control schedules that use various parts of the chip at different rates. Temporal diversity provides variants of the controller that can operate at unequal speeds. A hybrid of both spatial and temporal diversities can also be implemented. Scheduling diversity is used to add the flexibility to tune the performance of the chip. An application of the thermal management of the chip is demonstrated using scheduling diversity. Experimental results show that the proposed method is easy to integrate in the current ASIC flow, has a wide range of applications, and incurs low overhead
    • …
    corecore