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Abstract 
In the past decade, mobile embedded systems, such as cell phones and tablets have 

infiltrated and dramatically transformed our life. The computation power, storage capacity and 

data communication speed of mobile devices have increases tremendously, and they have been 

used for more critical applications with intensive computation/communication. As a result, the 

battery lifetime becomes increasingly important and tends to be one of the key considerations for 

the consumers. Researches have been carried out to improve the efficiency of the lithium ion 

battery, which is a specific member in the more general Electrical Energy Storage (EES) family 

and is widely used in mobile systems, as well as the efficiency of other electrical energy storage 

systems such as supercapacitor, lead acid battery, and nickel–hydrogen battery etc. Previous 

studies show that hybrid electrical energy storage (HEES), which is a mixture of different EES 

technologies, gives the best performance. On the other hand, the Energy Harvesting (EH) 

technique has the potential to solve the problem once and for all by providing green and semi-

permanent supply of energy to the embedded systems. However, the harvesting power must 

submit to the uncertainty of the environment and the variation of the weather. A stable and 

consistent power supply cannot always be guaranteed. The limited lifetime of the EES system 

and the unstableness of the EH system can be overcome by combining these two together to an 

energy harvesting embedded system and making them work cooperatively. 

In an energy harvesting embedded systems, if the harvested power is sufficient for the 

workload, extra power can be stored in the EES element; if the harvested power is short, the 

energy stored in the EES bank can be used to support the load demand. How much energy can be 

stored in the charging phase and how long the EES bank lifetime will be are affected by many 
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factors including the efficiency of the energy harvesting module, the input/output voltage of the 

DC-DC converters, the status of the EES elements, and the characteristics of the workload.  

In this thesis, when the harvesting energy is abundant, our goal is to store as much 

surplus energy as possible in the EES bank under the variation of the harvesting power and the 

workload power. We investigate the impact of workload scheduling and Dynamic Voltage and 

Frequency Scaling (DVFS) of the embedded system on the energy efficiency of the EES bank in 

the charging phase. We propose a fast heuristic algorithm to minimize the energy overhead on 

the DC-DC converter while satisfying the timing constraints of the embedded workload and 

maximizing the energy stored in the HEES system. The proposed algorithm improves the 

efficiency of charging and discharging in an energy harvesting embedded system.  

On the other hand, when the harvesting rate is low, workload power consumption is 

supplied by the EES bank. In this case, we try to minimize the energy consumption on the 

embedded system to extend its EES bank life. In this thesis, we consider the scenario when 

workload has uncertainties and is running on a heterogeneous multi-core system. The workload 

variation is represented by the selection of conditional branches which activate or deactivate a set 

of instructions belonging to a task. We employ both task scheduling and DVFS techniques for 

energy optimization. Our scheduling algorithm considers the statistical information of the 

workload to minimize the mean power consumption of the application while satisfying a hard 

deadline constraint. The proposed DVFS algorithm has pseudo linear complexity and achieves 

comparable energy reduction as the solutions found by mathematical programming. Due to its 

capability of slack reclaiming, our DVFS technique is less sensitive to small change in hardware 

or workload and works more robustly than other techniques without slack reclaiming. 



	 iii	

 

Improving the Efficiency of Energy Harvesting Embedded 
System 

 
 
 

 
by 
 

Yukan Zhang 
 
 

B.S., Nankai University, China, 2006 
M.S., Binghamton University, 2009 

 

 

 

Dissertation 

Submitted in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy in Electrical & Computer Engineering. 

 

 

Syracuse University 

Decemeber 2016 

 

 

                                                            	

		

	

	

	





	 iv	

	

	

	

	

	

	

	

	

	

	
Copyright © Yukan Zhang December 2016 

All Rights Reserved	

	

 

  



	 v	

Table of Content 

 Introduction ............................................................................................................. 1 Chapter 1
1.1 An Overview of Energy Harvesting and Energy Storage Techniques ........................... 1 

1.1.1 Energy Harvesting Techniques ............................................................................................. 2 
1.1.2 Energy Storage Techniques ................................................................................................... 5 

1.1.2.1 Conventional Energy Storage ............................................................................................ 5 
1.1.2.2 Hybrid Electrical Energy Storage ..................................................................................... 8 

1.2 Power Consumption on Conversion and Transfer .......................................................... 9 
1.3 Power Management for Variable Workload ................................................................. 10 
1.4 Thesis Contributions ..................................................................................................... 11 

 Improving Charging Efficiency with Workload Scheduling and DVFS ......... 16 Chapter 2
2.1 Related Work and System Model ................................................................................. 22 

2.1.1 Related Work ....................................................................................................................... 22 
2.1.2 Energy Harvesting Embedded System Model ..................................................................... 23 

2.2 The DC-DC converter ................................................................................................... 23 
2.2.1 The DC-DC Converter Model ............................................................................................. 24 
2.2.2 Approximation of the Power Consumption of the DC-DC Converter ................................ 26 

2.3 Task Scheduling for Efficient EES Charging ............................................................... 30 
2.3.1 Problem Definition For Workload Schedule ....................................................................... 30 
2.3.2 Task Scheduling at the Fixed Harvesting Rate ................................................................... 31 

2.3.2.1 Scheduling of Two Charging Phases with Very Short Duration .................................... 31 
2.3.2.2 Scheduling of Multiple Charging Phases with Equally Short Durations ........................ 37 
2.3.2.3 Scheduling of Arbitrary Charging Phases ....................................................................... 39 

2.3.3 Task Scheduling at Varying Harvesting Rate ..................................................................... 39 
2.3.3.1 Scheduling with Monotonically Decreasing Harvesting Rate ........................................ 40 
2.3.3.2 Scheduling with Monotonically Increasing Harvesting Rate .......................................... 41 
2.3.3.3 Neural Network-Based EES Bank Energy Prediction Model ......................................... 42 

2.3.4 Task Scheduling Algorithm to Improve Charging Efficiency ............................................ 47 
2.4 Experimental Results for Workload Schedule .............................................................. 48 

2.4.1 Scheduling for Two Charging Phases ................................................................................. 49 
2.4.2 Scheduling Results for Multiple Tasks ............................................................................... 51 

2.5 DVFS Considering EES Charging Properties .............................................................. 54 
2.5.1 EES Bank Charging Characteristics and Motivational Example ........................................ 55 
2.5.2 Problem Definition .............................................................................................................. 57 
2.5.3 A Dynamic Programming- Based DVFS Algorithm .......................................................... 58 

2.6 Experimental Results For DVFS Algorithm ................................................................. 61 
2.6.1 Evaluation of Proposed DVFS Algorithm ........................................................................... 62 

2.7 Chapter Summary ......................................................................................................... 65 



	 vi	

 Improving Energy Efficiency for Energy Harvesting Embedded Systems ..... 67 Chapter 3
3.1 Related Work ................................................................................................................ 70 
3.2 Architecture for Green Powered HEES ........................................................................ 71 

3.2.1 Energy Harvesting System .................................................................................................. 71 
3.2.2 Balanced Reconfiguration of the HEES Bank .................................................................... 72 

3.3 Efficient Heuristic Energy Management Algorithm ..................................................... 73 
3.3.1 Problem Formulation ........................................................................................................... 73 
3.3.2 Observations of the DC-DC Converter ............................................................................... 74 
3.3.3 The Optimal Vcti for Discharging ....................................................................................... 76 
3.3.4 Efficient Energy Management Algorithm ........................................................................... 77 

3.4 Experiment Results ....................................................................................................... 80 
3.4.1 Constant Input Power Results ............................................................................................. 81 
3.4.2 Variable Sun Power Charging System ................................................................................ 84 

3.5 Chapter Summary ......................................................................................................... 84 
 Task Scheduling and Mapping for Applications on Heterogeneous Multi-Chapter 4

Processor Systems ................................................................................................................... 86 
4.1 Related Works .............................................................................................................. 89 
4.2 Application and Hardware Architecture Models .......................................................... 91 
4.3 Task Mapping and Scheduling ..................................................................................... 93 

4.3.1 Minimum Average Makespan CTG Scheduling ................................................................. 94 
4.3.2 Balancing Energy and Performance in a Heterogeneous Platform ..................................... 96 
4.3.3 Adding Control Edges to the CTG ...................................................................................... 98 

4.4 DVFS Based on Slack Reclaiming ............................................................................... 99 
4.5 Experimental Results .................................................................................................. 106 

4.5.1 Comparison with Random Mapping ................................................................................. 110 
4.5.2 Energy Consumption under Different System Utilization ................................................ 111 
4.5.3 The Effectiveness of Slack Reclaiming Algorithm ........................................................... 114 
4.5.4 Sensitivity to Branch Probability Change ......................................................................... 117 

4.6 Conclusion .................................................................................................................. 119 
 Conclusions and Future Directions ................................................................... 121 Chapter 5

5.1 Conclusion .................................................................................................................. 121 
5.2 Future Directions ........................................................................................................ 123 

Bibliography .......................................................................................................................... 126 



	 1	

 

 Introduction Chapter 1

Mobile and portable devices have become an indispensable part of our everyday life. 

They are used for more and more applications with intensive computation/communication, which 

are usually power-hungry. A recent survey shows that longer battery life is more important to 

user’s satisfactory than any other features for mobile embedded systems such as smartphones 

and tablet computers [70]. The importance of battery life is ranked even before those features 

that the sellers always use to attract people, such as the ease of use and screen size. Moreover, 

the LG Electronics Smartphone "Low Battery Anxiety" Survey investigated a random sample of 

2,000 smartphone users in U.S. It found that nearly nine out of 10 people "felt panic" when their 

phone battery drops to 20 percent or lower [71]. Therefore, despite the big screen size, powerful 

processor and fancy operating system, the truth is that the long battery life is the foundation of 

excellent user experience. 

1.1 An Overview of Energy Harvesting and Energy Storage 

Techniques 

In this section, we give a brief overview of general energy harvesting and energy storage 

techniques. Detailed information of existing works in each category will be presented later in the 

thesis. 
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1.1.1 Energy Harvesting Techniques 

Energy harvesting, which derive energy from ambient background as energy source, is a 

promising technique to extend the battery life. These free and clean energy around us can 

potentially be converted to electric energy. For example, the solar power, wind power, human 

motion and radio frequency energy can be collected and converted to electrical power by 

different energy harvesting modules. Existing energy harvesters includes Photovoltaic (PV) cells 

for solar power, wind turbine for wind power, piezoelectric cantilevers for vibration, and 

electromagnetic generators for Radio Frequency (RF) energy. 

Wind energy harvesting is a relatively matured technique and windfarms are now 

connecting to the grid. Large windfarms, e.g. the facility near Stockton, CA, contain up to 5000 

modern wind turbines [72]. These large wind turbines can achieve efficiencies of up to 40%. The 

theoretic power P available in the wind impinging on a wind driven generator is given by: P = 

½CAρv3, where C is an efficiency factor known as the power coefficient which depends on the 

machine design, A is the area of the wind front intercepted by the rotor blades (the swept area), ρ 

is the density of the air (averaging 1.225 Kg/m3 at sea level) and v is the wind velocity [73].  

Hence, the power collected related to area swept by the blades, the density of the air and to the 

cube of the wind speed. Wind power has the advantage that it is normally available 24 hours per 

day, unlike solar power which is only available during daylight hours. Unfortunately the 

availability of wind energy is less predictable than solar energy. And not all the wind power can 

be captured due to the conversion techniques. The efficiency of the wind turbine depends on the 

actual wind speed. For the most popular three-blade design, its maximum conversion efficiency 

is around 40% at an 18 mph wind. However, the wind speed is not stable around the optimal 
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conversion point. The average efficiency is around 20% [72]. In addition, the large-size wind 

turbine supporting high power system well is not suitable for low-power devices. 

Radio frequency energy is broadcasted from billions of radio transmitters, including 

mobile phones, portable radios, mobile base stations, and broadcast stations. Radio frequency 

energy harvesting is poised to serve as an energy source to low-power devices, which makes 

these products more stable, reliable and eco-friendly. It supplies power to various kinds of 

wireless sensing node with 24-hour operation [85]. The Friis transmission equation relates the 

received (Pr) and transmitted (Pt) power with the distance R as: Pr = PtGtGr (λ/4πR)2 where Gt 

and Gr are antenna gains, and λ is the wavelength of the transmitted signal [74]. Hence, the 

converted power depends on the available RF power, the choice of antenna and frequency band. 

Also, the received signal strength, diminishes with the square of the distance. The energy 

transmitted from the RF sources can be very high up to 30W for 10GHz frequency, but only a 

small amount can be scavenged in the real environment. The rest is dissipated as heat or 

absorbed by other materials [75]. 

Kinetic energy like vibration can be harvested by micro power generators and can 

become power sources for fitness wristbands, wireless sensors and other portable applications. 

Micro power generators have three common mechanisms: piezoelectric, electromagnetic, and 

electrostatic. But low frequency vibration such as human motion is only sufficient to generate an 

extremely low output of power. To overcome this problem, [86] developed a new electrostatic 

micro power generator. This generator shows 40µW of power output at very low frequency 

vibration (2Hz, 0.4G). However, the low vibration energy still faces the problem of instability. In 

the Netherlands, A dance club has a floor that harnesses the energy created by the dancers' steps. 

Designed by a Dutch company the Sustainable Dance Club, the floor based on the piezoelectric 
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effect can generate 2 to 20 Watts of electricity, depending on the impact of the patrons' feet. The 

designers hope it can supply 60% of the club’s electricity in one day.  But for now, due to low 

frequency and instability, it's just enough to power LED lights in the floor. 

In our work, we adopt the photovoltaic cells as the energy harvesting module. The solar 

energy harvesting is a popular and matured technology in both research and practice. Particularly, 

different sizes of solar panels are offered in the market from portable solar charger to solar panel 

backpack for mobile embedded systems. The U.S. solar market is set to grow a staggering 119 

percent in 2015, published in conjunction with the Solar Energy Industries Association (SEIA). 

In 2016, the residential and commercial markets will also experience strong growth in 2016 [76]. 

Two main types of solar panel in the market are crystalline silicon and thin-film solar panels. In 

2011, about 95% of all shipments by U.S. manufacturers to the residential sector were crystalline 

silicon solar panels. Crystalline silicon forms the basis of monocrystalline and polycrystalline 

silicon solar cells. Monocrystalline cells has high purity of silicon leading to high efficiency up 

to 40% but high cost, and polycrystalline cells lower the purity of silicon leading to related low 

efficiency of 16% and low cost. Much cheaper solar panel is thin-film solar panels with 

efficiency between 7%-10%. However it costs large space [77]. A monocrystalline 3VDC/40 mA 

miniature solar cell using a commercial solar module analyzer can achieve the output voltage of 

1.958 V at 300 W/m2 and 3.0V at 510 W/m2 solar irradiation condition. 

Factors may affect the solar power includes shadow effect caused by cloud and the 

ambient temperature which affects the output voltage. In order to guarantee a high conversion 

and transfer efficiency, Maximum Power Point Tracking (MPPT), which analyzes the output 

current- voltage curve of solar panel and apply the proper load to obtain maximum power for any 

given environmental conditions, and Maximum Power Transfer Tracking (MPTT), which makes 
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sure the maximum amount of power goes into the system while the power converter connected 

with the solar panel is considered, are usually performed [12]. 

1.1.2 Energy Storage Techniques 

1.1.2.1 Conventional Energy Storage  

One of the major obstacles of applying energy harvesting technique to real-time 

embedded system is that the harvesting power is not constant and may have large fluctuations. 

Due to many factors, for example, shadows, temperature and angle of sunlight affects the amount 

of solar energy that can be collected by the PV cells. For a practical implementation of such 

system, electrical energy storage element is usually employed as a buffer to compensate the 

power fluctuation caused by the energy harvesting. An Electrical Energy Storage (EES) element 

is an energy reservoir that can stores electrical energy when it is ample and supplies energy when 

necessary. With such an EES element integrated in the system, surplus energy can be stored 

while the harvesting rate is high. When the harvesting rate is low, the EES element can help the 

energy harvesting system or work as a single power source for the system. 

Table 1.1 presents different types of ESS elements in the market and their properties. In 

this table, the power capacity is defined as output power per unit volume; the energy density is 

defined as energy stored per unit volume; the leakage means self-leakage of the EES element; 

the cycle life is defined as the number of complete charge/discharge cycles that the battery is 

able to support before its capacity falls under 80% of it's original capacity; the cycle efficiency 

gives the ratio between the power transferred and the power loss during the transfer; and the cost 

is the cost per unit of the storage [8].   
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EES elements can roughly be divided into two categories, batteries and supercapacitors. 

In the battery category, some common batteries include the Li-ion battery, the NiMH battery, the 

lead-acid battery and the NiCd battery are presented. They have different performance metrics, 

which leads to different usages. For example, the lead-acid battery has low cost but short cycle 

life. However, it can provide the high current demand, so it is used in the automobile to supply 

the power for starter.  The NiCd battery is much smaller than the lead-acid battery. After being 

invented in 1988, due to its high cycle efficiency, the NiCd battery are used to account for 8% of 

all portable secondary (rechargeable) battery sales in the EU, and in the UK for 9.2% (disposal) 

and in Switzerland for 1.3% of all portable battery sales [79]. However, the NiCd battery is 

replaced by NiMH battery very quickly due to its heavy environmental hazard content. The 

NiMH battery is even smaller than the NiCd battery in size and is much safer. Now, it is widely 

in the high-drain devices like HD digital cameras and electric vehicles such as the General 

Motors EV1, Honda EV Plus, Ford Ranger EV and Vectrix scooter, and Hybrid vehicles such as 

the Toyota Prius, Honda Insight, Ford Escape Hybrid, Chevrolet Malibu Hybrid and Honda 

Civic Hybrid [80].  

The most popular battery in current market is the Li-ion battery, which has high 

efficiency, high cycle life, but very high cost. It is usually made in a very small size and widely 

applied in the embedded or mobile systems, such as cell phones, laptops, tablets, digital camera 

and etc. However, because of its high cycle efficiency and very high energy density, Li-ion 

batteries are also used for propelling a wide range of electric vehicles such as aircraft, electric 

cars, hybrid vehicles, advanced electric wheelchairs, radio-controlled models, model aircraft and 

electrical robots including the Mars Curiosity rover [81].  
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Table 1.1 Performance Metrics of Commercial Electrical Energy Storages [8] 

Another kind of EES element, supercapacitor, currently is very popular in research. The 

supercapacitor has high power density, high cycle efficiency but low energy density.  It typically 

stores 10 to 100 times more energy per unit volume than electrolytic capacitors, accepts and 

delivers charge much faster than batteries, and tolerates many more charge and discharge cycles 

than rechargeable batteries [84]. Moreover, the supercapacitor has less rate capacity effect 

compared with the battery, which make it able to provide high current to support the peak load 

demand. However, it is 10 times larger than conventional batteries for a given charge at the same 

capacity. In addition, it has very high self-leakage. It can lose all its energy in one day after being 

fully charged [8]. Hence, the supercapacitor is an ideal EES element for temporary energy 

storage. It is usually used for rapidly and frequently being charged and discharged, and also for 

shaving the peak current demand. Recently, more and more devices powered by supercapacitor 

are offered in the market. For example, portable speakers powered by supercapacitors were 

commercially available [82] as of 2013. As another example, a cordless electric screwdriver with 

supercapacitors for energy storage has about half the run time of a comparable battery model, but 

can be fully charged in 90 seconds [83].  Supercapacitors can provide backup or emergency 

shutdown power to low-power equipment such as RAM, SRAM, micro-controllers and PC Cards. 

Metrics 
Batteries 

Supercapacitor 
Li-ion NiMH Lead-acid NiCd 

Power capacity High High High High Ultra high 
Energy density Very high Medium Low Low Very low 

Leakage Low Low Low Low High 
Cycle life Medium Short Short Medium Very long 

Cycle efficiency High Low Low High Very high 
Cost High Medium Very low Low Very high 
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They are also the power source for low energy applications such as automated meter reading 

(AMR) equipment or for event notification in industrial electronics [84]. 

1.1.2.2 Hybrid Electrical Energy Storage 

Each of the aforementioned homogenous EES elements has its own pros and cons. In 

2010, the hybrid electrical energy storage system [9] has been proposed to overcome the 

drawbacks of the individual EES banks element while maintaining their strengths. The Hybrid 

Electrical Energy Storage (HEES) system connects different EES elements to achieve a good 

performance metric including high charge and discharge cycle efficiency, high energy density, 

high power delivery capacity, low cost per unit of storage, long cycle life and low leakage.  

 

Figure 1.1 the Hybrid Electrical Energy Storage System 

Figure 1.1 shows the HEES system proposed in [9]. In this block diagram, several 

different types of EES elements are connected with each other through charge transfer 

interconnect (CTI) and DC-DC converters. Each EES element is connected with two DC-DC 
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converters for both charging and discharging. These converters enable charge transfer incoming 

to and outgoing from EES elements through CTI by maintaining the voltage-level compatibility 

and supply a constant current and voltage. The power migration path in the HEES system can be 

simple wires, which only allow multiple-to-one charging/discharging operation, or expensive 

crossbar network that enables many-to-many charging/discharging operation. Several recent 

research works have addressed charge management in such system. For example, charging 

replacement scheme is discussed in [10]. It aims at selecting the EES bank(s) to be discharged to 

support a given load demand. Charge allocation scheme is also studied in [11], which solves an 

optimization problem to decide which EES bank to be used for energy storage when the system 

is in charge mode. Finally the charge migration problem is studied in [12] that determines how 

energy should be transferred internally from one EES bank to another.  

Our work aims at integrating the HEES system with the energy-harvesting device as a 

power supply to support the load demand and extend the battery life. 

1.2 Power Consumption on Conversion and Transfer 

The DC-DC converters are important components in the system and their energy 

efficiency has drawn lots of attentions in recent works. According to a measurement performed 

on the power conversion circuits in the Qualcomm snapdragon processors, the voltage regulators 

such as DC-DC converters can consume around 25% to 40% power from battery. Figure 1.2 

shows the measurement of power conversion efficiency of Qualcomm MDP MSM8660 [13]. 

Many works are proposed to reduce the power loss during the charge transfer on DC-DC 

converters in the energy storage system. In [14] [11][10][12], the author tried to minimize the 

power consumption on the DC-DC converter through controlling its input/output voltage/current. 
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Figure 1.2 Measured of traces of the power conversion efficiency in the Qualcomm Snapdragon 
MDP MSM8660 [13] 

In our work, the main approach to improve the energy efficiency is to reduce the energy 

overhead on the DC-DC converter during both charging and discharging phases while 

maximizing the energy stored in the HEES system and satisfying the task deadline constraints of 

the embedded workload.  

1.3 Power Management for Variable Workload 

With wide usage of green energy, energy harvesting system has been successfully applied 

in various applications, such as the solar powered laptop, SOL [78], and the autonomous space 

exploration rover, NASA Sprit, and the Opportunity mars rover [2].  Moreover, Internet giants 

like Google and Facebook announced plans on developing solar powered drones to deliver 

Internet access [3]. These robotic systems are able to carry relatively large size/capacity EES 

system to sustain their long operation cycles in extreme conditions and to store the extra energy 

harvested from environment; they are also integrated with embedded systems to do complex 

computation tasks, like data communication, image processing and recognition etc.  

In addition to energy harvesting techniques and techniques to improve the efficiency of 

the power system, power management has been adopted to reduce application’s energy demand 
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to extend the battery life while guarantee the system performance. These works include Dynamic 

Power Management (DPM) [15][16][17] and Dynamic Voltage and Frequency Scaling (DVFS) 

[18][19][20]. Most previous works [23][24][25][26][27][28][29] consider power aware task 

mapping, scheduling and DVFS for applications with fixed workload. However, this is not 

always true for real applications, whose workload depend on the input at runtime and may vary 

dramatically. In our work, we consider the power management techniques for applications with 

variable workload.  

With the DC-DC converters presented in the system, existing power management 

techniques, which aim to minimizing the load energy consumption does not always result in the 

most harvesting energy stored in the EES bank. Because the power loss on the DC-DC 

converters depends on factors like the input power to the DC-DC converter, the terminal voltage 

of the EES bank, and etc., which will be affected by either DPM or DVFS. In this work, we also 

investigate the impact of workload scheduling and DVFS of the embedded system on the storage 

efficiency of the EES bank. 

1.4 Thesis Contributions 

In this thesis, we present several techniques to improve efficiency of the energy 

harvesting embedded system. 

In the energy harvesting embedded system, if the harvested power is sufficient for the 

workload, extra power will be used to charge EES banks. How much power can be stored is 

affected by many factors including the efficiency of the energy harvesting module, the 

input/output voltage of the DC-DC converters, the status of the EES elements, and the 

characteristics of the workload.  
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This thesis investigates the impact of workload scheduling and DVFS of the embedded 

system on the storage efficiency of the EES bank. We present a simplified but accurate power 

consumption model of the DC-DC converter. Based on the approximated DC-DC converter 

model, we analytically prove that an optimal workload schedule is to always execute high power 

task first while the harvesting rate is fixed or monotonously decreases. Under the other 

conditions when the harvesting rate is changing, we developed an accurate energy prediction 

model to estimate the amount of energy that can be stored in the EES given its current status and 

the given workload. The model helps to choose a workload-scheduling algorithm that stores the 

maximum energy in the EES bank. The impact of DVFS of the workload on the storage 

efficiency of the EES bank is also considered.  A dynamic programming based approach is 

presented to decide task execution voltage/frequency and maximize the energy stored in EES 

bank. 

For those devices with more complex power supply system, which supports dynamic 

reconfiguration and variable CTI voltage, we then introduce a fast heuristic algorithm to search 

for the optimal HEES and CTI configuration that improves the efficiency of charge allocation 

and replacement. The goal of our algorithm is to minimize the energy overhead on the DC-DC 

converter and maximize the energy stored in the HEES system. Based on the previously 

developed DC-DC converter power consumption model, the optimal operating point of the 

system can be analytically solved. Integrated with the dynamic reconfiguration of the HEES 

bank, our algorithm provides energy efficiency improvement and run-time overhead reduction 

compared to previous approaches. 

When the harvesting power is short, the load demands are supported by the EES bank. 

Many works have been proposed to reduce the energy demand of applications through DPM or 
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DVFS. Instead of the fixed workload, our research considers the uncertain workload on real time 

applications. One of the major influences of the workload fluctuation is the selection of 

conditional branches which activate or deactivate a set of tasks. In this work, we capture the 

workload dynamics using Conditional Task Graph (CTG) and propose a set of algorithms for the 

optimization of task mapping, task ordering and dynamic voltage/frequency scaling of CTGs 

running on a heterogeneous multi-core system. Our mapping algorithm balances the latency and 

the energy dissipation among heterogeneous cores in order to maximize the slack time without 

significant energy increase. Our scheduling algorithm considers the statistical information of the 

workload to minimize the mean power consumption of the application while maintaining a hard 

deadline constraint. The proposed DVFS algorithm has pseudo linear complexity and achieves 

comparable energy reduction as the solutions found by mathematical programming. Due to its 

capability of slack reclaiming, our DVFS technique is less sensitive to small changes in hardware 

or workload and works more robustly than the DVFS techniques without slack reclaiming. 

The contributions of this thesis are outlined as the following: 

• Although there have been many publications on battery aware task scheduling, most 

of them consider the non-linear property of battery when it is in discharge mode [33]. 

To the best of our knowledge, this is the first work that optimizes the task scheduling 

to increase the efficiency of EES charging process. Furthermore, many of the existing 

works on EES efficiency optimization either ignore the impact of DC-DC converters 

([30] and [31]) or minimize the energy waste on DC-DC using dynamic voltage 

selection with an assumption of fixed task scheduling [14]. This is also the first work 

that investigates the impact of task scheduling on the energy efficiency with the 

consideration of the DC-DC converters. Our scheduling algorithm is rigorously 
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proved to be optimal under certain conditions. The scheduling algorithm under 

consistently decreases or fixed harvesting rate has low complexity as it only has to 

sort the tasks based on their power consumptions. For more general scenarios, we 

propose a neural network based energy prediction model that could accurately 

estimate the SOC of the EES bank given related parameters for the workload 

scheduling. Based on the energy prediction model, we also propose a dynamic 

programming based voltage/frequency scaling algorithm which maximizes the 

harvesting energy stored in the EES bank.  

• Our work for improving energy efficiency in the energy harvesting embedded system 

considers both charge allocation and charge replacement together. Besides the voltage 

of charge transfer interconnect, and the active set of banks, the proposed algorithm 

utilizes the EES bank reconfiguration as the additional control knob for better energy 

efficiency. Based on the proposed approximation of the DC-DC power consumption 

model, our heuristic algorithm has very low complexity compared to the previously 

proposed algorithms, which solve convex optimization problem iteratively and use 

binary search for optimal solution. The simplicity of our algorithm makes it suitable 

for runtime energy management for systems where the operating conditions vary 

rapidly. 

• This thesis addresses low power scheduling of conditional task graphs on 

heterogeneous multi-core platform. The proposed framework optimizes task mapping 

and scheduling simultaneously. We consider the application with conditional 

execution as a random procedure in which the branch selection probabilities can be 

profiled (or measured). Our algorithm utilizes such statistical information in each 
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optimization step to reduce the mean power consumption. The proposed slack 

reclaiming based DVFS algorithm has pseudo-linear complexity with the respect to 

the number of tasks in the CTG.  It also performs more robustly than the DVFS 

solution found by mathematical programming. More generalized hardware and 

software models are targeted in this work. The hardware platform consists of 

heterogeneous processing elements with different power-performance tradeoff 

characteristics. The only assumption that is required by our DVFS algorithm is a 

convex relation between the power and performance for each PE, which is usually 

true for many devices. The software application consists of a set of tasks with data 

and control dependencies and hard deadline constraint. 
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 Improving Charging Chapter 2
Efficiency with Workload 
Scheduling and DVFS 
 

Energy harvesting system has been applied in various area, from small wireless sensors to 

space exploration rovers. Wireless sensor nodes spatially distributed to monitor physical motion, 

temperature change, sound, pressure, and etc., are hard to be accessed again for battery 

replacement, so they are designed to support energy harvesting.   Energy harvesting system has 

also been successfully applied on autonomous space exploration rovers for several years, e.g. 

NASA Sprit and Opportunity mars rover [2].  

Recently, Internet giants like Google and Facebook announced plans on developing solar 

powered drones to deliver Internet access [3]. These robotic systems are able to carry relatively 

large size/capacity Electrical Energy Storage (EES) system to sustain their long operation cycles 

in extreme conditions and to store the extra energy harvested from environment; they are also 

integrated with embedded systems to do complex computation tasks, like data communication, 

image processing and recognition etc. An ultra-low-power power management IC is designed for 

energy-scavenged wireless sensor nodes [42].  

Such an energy harvesting embedded system is a complex platform consisting of many 

components that work collaboratively. And the energy efficiency of the system can be improved 

in many aspects and at different levels of abstraction. From the perspective of embedded system 
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optimization, the scheduling and operating frequency/voltage of the embedded processor should 

be carefully selected to satisfy the performance requirement as well as power/energy constraint. 

As mentioned above, since the peak of solar power harvesting mismatches the peak of the power 

consumption, we want to store the surplus harvested energy into the EES element as much as 

possible. Intuitively, we believe that less energy consumed on the load device, more energy will 

be stored in the EES bank. However, with the overhead of the DC-DC converters, the relation 

between energy consumed and stored is not straightforward.  

We use a simple example to show the detail. Assume that the input power from the 

energy harvesting module is 2W. Two different tasks will run on the energy dissipation module 

(EDM) sequentially with different power consumptions. The power consumption of high power 

workload is 1.5W and the power consumption of low power workload is 0.5W. Both tasks have 

duration 200 seconds. And the initial terminal voltage of the active EES bank is 0.5V. We 

simulate the charging process under two different workload schedules. If we scheduled the high 

power workload first, the system will charge the active EES bank using 0.5W charging power for 

the first 200 seconds and raise the terminal voltage of the EES bank to 0.8V. After finishing the 

high power workload, the EDM continues to execute the low power task. At this stage, the 

system charges the active EES bank using 1.5W charging power, and finally the terminal voltage 

is raised to 2.0V. On the other hand, if low power workload is scheduled at first, the system will 

charge the active EES bank using 1.5W, and it will raise the terminal voltage of the EES bank to 

1.7V. After that when high power workload is running on the EDM, the system will charge the 

active EES bank using 0.5W charging power. However, at this point, input power is too small to 

charge the bank. The DC-DC converter connected with the EES bank for charging consumes 

almost all the charging power because the terminal voltage of the active EES bank is so high that 
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the converter works in the boost mode and has high power consumption overhead. 

In this chapter, we investigate the impact of task scheduling and dynamic voltage and 

frequency scaling on the efficiency of an energy harvesting embedded system. More specifically, 

we consider the scenario where the harvested energy is more than enough to power the 

embedded system and the extra power will be used to charge an EES bank. Apparently, how 

much power is consumed by the embedded system directly affects the amount of remaining 

power that goes into the EES bank. For most EES modules (e.g. supercapacitors), their terminal 

voltage has a monotonically increasing relation with the amount of energy stored. From the 

example above, we know that different input power will increase energy storage at different rate 

and hence causes different terminal voltage. This affects the efficiency of the DC-DC converter, 

which matches the voltages between the EES and other system components. As a result, not all 

input energy can be stored in the EES and the efficiency of the EES charging process is affected. 

Our goal is to find a heuristic workload scheduling policy and Dynamic Voltage and Frequency 

Scaling (DVFS) strategy for the workload such that the most energy can be stored into the EES 

bank. 

We consider the most basic scheduling problem that has only two tasks with equally short 

execution time and different power consumptions under the scenario of fixed energy harvesting 

rate. To avoid iteratively solving the complex optimization problem, we first derive a simplified 

yet accurate power consumption model of the DC-DC converter. Using the approximated DC-

DC power model, we analytically prove that, in this special scenario, executing the high power 

task first enables more energy to be stored in EES. We then generalize this result to multiple 

tasks with arbitrary lengths under fixed and consistently decreasing energy harvesting scenario. 

We propose an accurate neural network based prediction model to estimate the state of charge 
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(SOC) of the EES bank given the input power to the EES bank, the initial SOC of the bank and 

the charging period. Based on the prediction model, we schedule the workload under all other 

conditions except when the harvesting rate is fixed or consistently decreasing. Combining both 

parts, we proposed a fast workload schedule to improve the efficiency of the EES bank 

effectively.  

In this chapter, we also investigate the impact of DVFS of embedded task set on the 

efficiency of such energy harvesting embedded system. Our goal is to find an optimal DVFS 

assignment of the embedded workload such that the most energy can be stored into the EES bank 

for the future when harvesting rate is low.  

The existence of DC-DC converters adds one more layer of complication to the problem 

for the following two reasons. First of all, the power consumption of DC-DC converters cannot 

be easily ignored and could be high if not configured properly. As a result, a DVFS scheme 

which minimizes the energy consumption of the embedded tasks does not necessarily minimize 

the overall energy consumption for the embedded system and DC-DC converters [43], which in 

turn does not result in the maximum energy stored in the EES bank. Second of all, as mentioned 

above, the power loss of the DC-DC converter is a complex non-linear function depending on the 

input/output terminal voltage and current. As a result, it is extremely difficult to use analytical 

approach to find out how much energy can be stored in the EES bank, which is a function of the 

integral of the DC-DC power loss, given the embedded task profile, the harvesting power profile 

and the initial condition. To circumvent these difficulties, previous works [14][11][41] propose 

approaches to optimize the instantaneous power efficiency of DC-DC converters. Their 

approaches assume that either input or output terminal voltage of the DC-DC converter is fixed 

and use binary search based method or convex optimization based method to find the optimal 
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voltage of another terminal. These approaches work very well if the terminal voltage is stable. 

However, if the terminal voltage varies dynamically, it is hard to find the optimal operation point 

to maximize the overall efficiency. And their sub-optimal approach is to divide the whole 

process into a number of small intervals and solve the instantaneous optimization problem 

periodically, which incurs a lot of computation overhead. 

We tackle the first problem by considering the power consumption of DC-DC converters 

and the embedded system altogether. The power overhead of DC-DC converters is accurately 

accounted. Our DVFS scheme maximizes the energy stored in the EES bank. We tackle the 

second problem by using prediction model based on neural network. This prediction model 

would enable us to completely eliminate the time consuming process of periodically solving the 

binary search or convex optimization problem. This not only reduces the computation overhead 

but can also result in better solution. And base on this prediction model, we propose a dynamic 

programming based DVFS algorithm to optimize the energy stored in the EES bank. 

The following summarizes the technical contributions of this work: 

• Although there have been many publications on battery aware task scheduling, most 

of them consider the non-linear property of battery when it is in discharge mode [33]. 

To the best of our knowledge, this is the first work that optimizes the task scheduling 

and DVFS to increase the efficiency of EES charging process. 

• We propose a neural network based energy prediction model which could accurately 

estimate the SOC of the EES bank given system variables. To our best knowledge, 

there is no existing work proposing the similar model to estimate the EES bank 

energy considering the DC-DC converters. 
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• We propose a fast and effective workload schedule based on the approximated DC-

DC converter power consumption model and neural network prediction model to 

maximize the energy stored in the EES bank while guarantee the task set deadline.  

• Base on the neural network prediction model, we propose a dynamic programming 

based voltage /frequency scaling algorithm which maximizes the harvesting energy 

stored in the EES bank. Unlike existing approaches which greedily optimize the 

instantaneous power input to the EES bank, the proposed approach considers the 

whole charging process and achieves better solution. 

• Many of the existing works on EES efficiency optimization either ignore the impact 

of DC-DC converters ([41] and [44]) or minimize the energy waste on DC-DC using 

dynamic voltage selection with an assumption of fixed task scheduling [45]. This is 

the first work that investigates the impact of task scheduling and DVFS on the energy 

efficiency with the consideration of the DC-DC converters.  

The rest of this chapter is organized as follows. The related work and system model are 

introduced in section 1. The DC-DC converter model and its approximation are presented in 

section 2. The proposed scheduling algorithm and neural network prediction model is in section 

3. Experimental results and discussions for workload schedule are in section 4. The problem 

definition and motivational example for task DVFS are presented and the proposed dynamic 

programming based voltage/frequency assignment algorithm is described in section 5. 

Experimental results and discussions for task DVFS are presented in section 6. We conclude our 

work in section 7. 
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2.1 Related Work and System Model 

2.1.1 Related Work 

From the perspective of embedded system optimization, the scheduling and operating 

frequency/voltage of the embedded processor should be carefully selected to satisfy the 

performance requirement as well as power/energy constraint. For example, the authors in [30] 

proposed an energy-harvesting aware dynamic voltage frequency selection (EA-DVFS) 

algorithm, which adjusts the speed of task execution based on the current energy reserve in the 

system. In [31], the energy savings is further improved by exploring task slacks. 

From the perspective of energy harvesting optimization, the operating conditions of the 

harvesting modules should be set carefully to generate more power. For example, in order to 

draw maximum amount of power from a photovoltaic (PV) array, various Maximum Power 

Point Tracking (MPPT) methods [36] have been proposed that dynamically adjust the output 

current to match the output impedance. In a recent work [44], the authors proposed a technique 

to improve the PV cells’ efficiency under partial shading conditions. 

The DC-DC converters are also important components in the system and their energy 

efficiency has drawn lots of attention in recent works. In [14], the authors proposed an analytic 

power model for DC-DC converters and based on this model, the authors found that the overall 

energy consumption of the embedded application and the converter is a convex function of the 

processor’s supply voltage. Thus, the optimal operating voltage can be solved by minimizing a 

convex function. The DC-DC converter’s power efficiency is also essential to the energy transfer 

between different components in the system. For example, [11][10][12] try to adjust the voltage 

of charge transfer interconnect (CTI) and active EES banks to reduce the power wasted on DC-
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DC converters. And [40] proposed to reconfigure the parallel and serial connection of the EES 

bank to match the input and output voltage of the DC-DC converter to reduce the DC-DC 

converter power consumption. 

2.1.2 Energy Harvesting Embedded System Model 

Energy is harvested from the environment by Energy Harvesting Module (EHM) and 

distributed to other components. Any type of EHM can be integrated in our system. When the 

harvested power is more than sufficient for the embedded workload, the extra power will be 

stored in the EES bank for future use. In order to minimize the power wasted on the DC-DC 

converter, we assume only one EES bank is turned on at any time to accept the extra power. The 

efficiency of DC-DC converter increases when the difference between its input and output 

voltage reduces [40] by setting the voltage of the Charge Transfer Interconnect (V!"#) to be equal 

to the V!! of the embedded processor, we can minimize the power wasted on ECMED. The very 

low V!! level used by today’s deep submicron technology will very likely keep V!"# lower than 

the terminal voltage of the EES bank, and consequently makes ECMES operate in the boost mode. 

Therefore, in this work, we confine our discussion to the scenario where ECMES operates in 

boost mode.  

2.2  The DC-DC converter 

Different components in the system cannot be connected to the charge transfer 

interconnect directly because these components usually have different operating voltage and 

current depending on their status. Therefore, the DC-DC power converters are placed between 

these components and the charge transfer interconnect for voltage and current regulation. A DC-
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DC converter can provide desired output voltage or current level regardless the status of the 

storage banks or the loads.  

2.2.1 The DC-DC Converter Model 

In this work, we assume the converters in the system are all identical uni-directional 

switching buck-boost converters as shown in Figure 2.1 [40]. For each EES bank, there are two 

converters connected to it. One is for charging (charger, blue one) and the other is for 

discharging (discharger, green one). We assume at any given time, only one converter of these 

two is on, i.e. the bank is either charging or discharging. When the EES bank is charging, the I!"# 

and I!"#$ are positive while the EES is discharging, they are all negative. 

 

 

Figure 2.1 The DC-DC power converter structure 

When the input voltage V!" is larger than the output voltage V!"#, the DC-DC converter 

operates at buck mode. On the other hand, when V!"# < V!", the DC-DC converter operates at 

boost mode. The power consumption P!"!" of the DC-DC converter strongly depends on V!", 

V!"# and the output current I!"#. It consists of three components: conduction loss P!"!#, switching 
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loss P!" and controller loss P!"#$. If the DC-DC converter is operating at buck mode, the power 

components can be expressed as [11]: 

P!"!# = I!"#! ⋅ R! + D ⋅ R!"# + 1− D ⋅ R!"# + R!"# + ΔI !
12 ⋅ (R! + D ⋅ R!"# + 1− D

⋅ R!"# + R!"# + R!) 

P!" = V!" ⋅ f! ⋅ (Q!"# + Q!"#) 

P!"#$ = V!" ⋅ I!"#$ 

Where D = V!"#/V!" is the duty ratio and ΔI = !!"#⋅(!!!)
!!⋅!!

 is the maximum current ripple. 

f! is the switching frequency; I!"#$ is the current flowing into the controller; R! and R! are the 

Equivalent Series Resistance (ESR) of inductor L and capacitor C, respectively; R!"#…!  and 

Q!"#…!  are the turn-on resistances and gate charges of the four switches in Figure 2.2, 

respectively. The power consumption on the DC-DC converter is the sum of Pcdct, Psw, and Pctrl. 

If the DC-DC converter is operating at boost mode, the power components can be 

expressed as: 

P!"!# =
I!"#!

D! ⋅ R! + 1− D ⋅ R!"# + D ⋅ R!"# + R!"# + D ⋅ 1− D ⋅ R! + ΔI !
12 ⋅ (R!

+ 1− D ⋅ R!"# + D ⋅ R!"# + R!"# + D ⋅ R!) 

P!" = V!"# ⋅ f! ⋅ (Q!"# + Q!"#) 

P!"#$ = V!" ⋅ I!"#$ 

Where D = V!"/V!"# and ΔI = !!"⋅(!!!)
!!⋅!!

. 
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2.2.2 Approximation of the Power Consumption of the DC-DC Converter 

The above equation shows that the power consumption of the DC-DC converter P!"!" is a 

function depends on the input voltage V!", output voltage V!"# and output current I!"#. And the 

P!"!" consists of three parts P!"!#, P!" and P!"#$. We further divided the P!"!# into two parts: 

P!"!#$ and P!"!#$. 

For buck mode: 

P!"!#$ = I!"#! ⋅ R! + D ⋅ R!"# + 1− D ⋅ R!"# + R!"#  

P!"!#$ =
ΔI !
12 ⋅ (R! + D ⋅ R!"# + 1− D ⋅ R!"# + R!"# + R!) 

For boost mode: 

P!"!#$ =
I!"#!

D! ⋅ R! + 1− D ⋅ R!"# + D ⋅ R!"# + R!"# + D ⋅ 1− D ⋅ R!  

P!"!#$ =
ΔI !
12 ⋅ (R! + 1− D ⋅ R!"# + D ⋅ R!"# + R!"# + D ⋅ R!) 

Because the resistance R!"# and R!"#, R!"# and R!"# have about the same value, we 

can simplify P!"!#$ and P!"!#$ as the following. 

For buck mode: 

P!"!#$ = I!"#! ⋅ R! + R!"# + R!"#  

P!"!#$ =
ΔI !
12 ⋅ (R! + R!"# + R!"# + R!) 
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For boost mode: 

P!"!#$ =
I!"#!

D! ⋅ R! + R!"# + R!"# + D ⋅ 1− D ⋅ R!  

P!"!#$ =
ΔI !
12 ⋅ (R! + R!"# + R!"# + D ⋅ R!) 

 

Figure 2.2 !!"!" against !!" curve 

As we can see, the power component P!" and P!"#$ are linearly dependent on V!" and V!"# 

in buck and boost mode respectively.  P!"!#$ is a constant in buck mode when I!"# is fixed and a 

non-linear function of Vin and Vout in boost mode. P!"!#$ is a non-linear functions of  both Vin 

and Vout. To illustrate the relation between the DC-DC power consumption and the related 

variables, we fix the V!"# = 5V and plot the P!"!" against V!" for I!"# is 1A (red), 2A (blue) and 

3A (green) in Figure 2.2. 
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 As shown in the figure that when the DC-DC converter is operating at buck mode, i.e. 

V!" > V!"#, the P!"!" increases almost linearly against the V!", which means the linear part is 

dominant in this region. Furthermore, we observe that when V!" = V!"#,  D = !!"#
!!"

= 1,ΔI =

!!"#⋅(!!!)
!!⋅!!

= 0, so P!"!#$ = 0; when V!" → ∞, D = !!"#
!!"

= 0,ΔI = !!"#⋅(!!!)
!!⋅!!

= !!"#
!!⋅!!

, so P!"!#$ is a 

constant. In both cases, P!"!#$ is is much smaller than P!"!#$. Therefore we could safely omit the 

non-linear part P!"!#$. Now P!"!" only linearly depends on V!" and I!"#!  as following: 

P!"!" =  P!"!#$ + P!" + P!"#$ 

=  I!"#! ⋅ R! + R!"# + R!"# + V!" ⋅ f! ⋅ (Q!"# + Q!"#)+V!" ⋅ I!"#$                  (2.1) 

On the other hand, when the converter is operating at boost mode, i.e. V!" ≤ V!"#, the 

power consumption increases non-linearly as the V!" decreases, which means that the non-linear 

parts (i.e. P!"!#$ and P!"!#$) are dominant in this region. In boost mode, when V!" = V!"#, P!"!#$ 

is 0 while P!"!#$ is non-zero. As V!" → 0, D → 1, so P!"!"# → ∞, and P!"!"# is a finite number. 

This suggests that P!"!"# can again be omitted compared to P!"!"#. Therefore, we approximate 

the P!"!" in boost mode as following: 

P!"!" = P!"!#$ + P!" + P!"#$ 

= !!"#!!"#
!!"

!
⋅ R! + R!"# + R!"# + V!"# ⋅ f! ⋅ Q!"# + Q!"# + V!" ⋅ I!"#$              (2.2) 
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Figure 2.3 Fitting results of our approximation 

Figure 2.3 compares the simplified P!"!"(i.e. Equation (2.1)) and its original function 

given in Section 2.2.1. It shows that the approximation closely follows the original function.  
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2.3 Task Scheduling for Efficient EES Charging 

2.3.1 Problem Definition For Workload Schedule 

We define our scheduling problem as following. Given an energy harvesting embedded 

system, which is used to process n periodic tasks T!,T!,… ,T! . All tasks are immediately 

available at the beginning of a new period. Their durations are t!, t!,… , t! . Tasks are 

independent, non-preemptive, and the processor works in single task mode. The power 

consumption of task T! is denoted as P!. At this time, we do not consider dynamic voltage and 

frequency scaling of the embedded processor; therefore, the power consumption of a task is 

assumed to be fixed during the runtime. We assume that the energy harvesting rate is higher than 

the power consumption of the EDM, therefore the EES bank works in charge mode. As we 

explained above, the DC-DC converter (ECMES) connecting the EES to the CTI operates in 

boost mode. Our goal is to find the optimal task schedule such that by the time when all tasks are 

completed the most energy can be stored into the EES bank.	

We refer to the different charging characteristics as charging phases of the EES bank. 

When the harvesting rate is given, the identification of charging phases is solely determined by 

task execution. Given a set of tasks and an energy harvesting rate, executing the task with higher 

power consumption is equivalent to charging the EES bank using a lower input power, and vice 

versa. Therefore, the task scheduling can also be viewed as charge phase scheduling. In this work, 

we use the name highest power workload first (HPWF) to refer to the scheme that gives the top 

priority to execute the workload with the highest power consumption, and use the name lowest 

power workload first (LPWF) to refer to the scheme that gives the top priority to execute the 

workload with the lowest power consumption. We also use names highest power charge first 
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(HPCF) and lowest power charge first (LPCF) to refer to the scheduling scheme that generates a 

sequence of EES charging phases whose input power follows descending or ascending order 

respectively. It is obvious that when the harvesting rate is fixed, LPWF is equivalent to HPCF 

and HPWF is equivalent to LPCF.  

Our task scheduling policy is explained in next sub-sections, the HPWF scheme is proved 

to be optimal at both the fixed and varying harvesting rate except one condition at the 

monotonically increasing harvesting rate. A neural network prediction model is introduced to fix 

this problem and applied in the our algorithm to find the task schedule such that by the time 

when all tasks are completed the most energy can be stored into the EES bank. 

2.3.2 Task Scheduling at the Fixed Harvesting Rate 

In this section, we first discuss the optimal charging phase scheduling when the 

harvesting rate is fixed and show that LPCF is superior to HPCF. This is proved first with the 

assumption that there are only two charging phases and both have the same durations that are 

extremely short. Then we extend this conclusion to scenarios with multiple charging phases that 

are equally short. Finally, we remove all constraint and generalize this conclusion to multiple 

charging phases with arbitrary duration. Based on this result, we further prove that HPWF is 

superior to LPWF. 

2.3.2.1 Scheduling of Two Charging Phases with Very Short Duration 

In this subsection, we consider two extremely short charging phases τ!  and τ!  with 

duration Δt → 0, and their charging powers has the relation P!" < P!". We denote the initial 

energy and voltage of the bank as (E!,V!). With the LPCF scheme, the bank is charged with P!" 

in the first phase and then charged with P!" in the second phase. The stored energy and voltage of 
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the bank at the end of phase 1 and phase 2 are denoted as (E!!"#$,V!!"#$) and (E!!"#$,V!!"#$) 

respectively. Similarly, with the HPCF scheme, the bank is charged with P! in the first phase and 

then is charged with P! in the second phase. The bank energy and voltage at the end of phase 1 

and phase 2 are denoted as (E!!"#$,V!!"#$) and E!!"#$,V!!"#$  respectively. 

Lemma 1. Given an EES with initial energy E0 and initial voltage V0. Charge this EES 

using two charging phases that has equal duration ∆t that is extremely small. Denote the 

charging powers in the first and second phases as PA and PB respectively, and the bank voltage at 

the end of first and second phases as VA and VB respectively. At the end of second phase, the 

amount of energy stored in EES is: 

E! = E! +
∆ P!,V! − V!"!

2α Δt+ ∆ P!,V! − V!"!
2α Δt 

where ∆ P,V =  V! + 4α P−  βV − γV V! , and α, β, and γ are positive constant parameters 

for the given DC-DC converter. 

Proof: Based on the DC-DC power approximation model, when in boost mode, P!"!" can be 

written as 

P!"!" = α !!"#
!!"

!
+  βV!"  + γV!"#                                      (2.3) 

Substitute P!"!" with P!" − P!"# in the above equation and rearrange the equation, we obtain 

αP!"#! + V!"! P!"# + βV!" + γV!"# − P!" V!"! = 0                         (2.4) 

Although P!"# can have two solutions, because P!"# > 0, the only valid solution is 

P!"# =
!!"! !!" !!"! !!!"!!!!"# !!"! !!!"!

!"                                     (2.5) 
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Based on the definition of ∆ P,V , we have 

P!"# =
∆ P!",V!"# − V!"!

2α  

The initial state of the bank is (E!,V!). After being charged using P! for Δt, the state of 

the bank becomes (E!,V!). Because Δt is very small, we assume the output voltage of the DC-

DC converter is the same during this period. Also because P!" and V!" are constant values during 

the same charging phase, the output power is also a constant value and is denoted as P!"#(P!,V!). 

Then we have 

E! = E! + P!"#(P!,V!)  ⋅ Δt = E! + ∆ !!,!! !!!"!
!" Δt                     (2.6) 

For the same reason, in the second charging phase, we charge the bank using P! for Δt 

and we have 

E! = E! + P!"# P!,V! ⋅ Δt = E! +
∆ P!,V! − V!"!

2α Δt 

    = E! +
∆ P!,V! − V!"!

2α Δt+ ∆ P!,V! − V!"!
2α Δt 

Based on Lemma 1, we have the following theorem.  

Theorem 1. Given that both charging phases have equal durations which are approaching 

to 0, the system follows LPCF scheme has more stored energy at the end of phase 2 than the 

system follows HPCF scheme, i.e. E!!"#$ > E!!"#$. 

Proof: For the LPCF scheme, we charge the bank using P!" followed by P!". Both charging 

phases lasts for Δt. Based on Lemma 1 the final energy stored in the EES is: 
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E!!"#$ = E! + P!"# P!",V!!"#$ ⋅ Δt = E! +
∆ P!",V!!"#$ − V!"!

2α Δt 

    = E! +
∆ P!",V! − V!"!

2α Δt+
∆ P!",V!!"#$ − V!"!

2α Δt 

,where V!!"#$ is the bank voltage at the end of phase 1 for the system using LPCF scheme.  

Similarity, with the HPCF scheme, the final energy in EES is: 

E!!"#$ = E! + P!"# P!",V!!"#$ ⋅ Δt = E! +
∆ P!",V!!"#$ − V!"!

2α Δt 

After eliminating the common terms we can see that, in order to prove E!!"#$ > E!!"#$, 

we only need to prove the following inequality: 

∆ P!",V! +  ∆ P!",V!!"#$ > ∆ P!",V! +  ∆ P!",V!!"#$                       (2.7) 

Before proving (2.7), let us first find the relation between V! and V!!"#$ or V!!"#$. For 

simplicity, we use supercapacitor as the EES bank in our proof. (The same discussion can be 

applied to any EES bank as long as its terminal voltage is a monotonically increasing function of 

its energy.)  

Let P denote the input power, V0 and V1 denote the initial bank voltage and the bank 

voltage after first charging phase. The energy of a supercapacitor can be represented as 

E = !
! CV

!. We used this to replace E in (2.6), and have  

1
2CV!

! = 1
2CV!

! + ∆ P ,V! − V!"!
2α ∆t 
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or equivalently 

C V! − V! V! + V! = ∆ P ,V! − V!"!
α ∆t 

Because Δt → 0, we could assume that V! ≈ V!, and V! + V! ≈ 2V!. Therefore, we have 

V! = V! +
∆ P ,V! − V!"!

2αCV!
∆t 

Therefore, we have: 

V!!"#$ = V! +
∆ P!",V! − V!"!

2αCV!
∆t 

and 

V!!"#$ = V! +
∆ P!",V! − V!"!

2αCV!
∆t 

We expand the V!!"#$ and V!!"#$ in ∆ P!",V!!"#$  and  ∆ P!",V!!"#$ :  

∆ P!",V!!"#$ =  V!"! + 4α P!" −  βV!" − γ(V! +
∆ P!",V! − V!"!

2CαV!
∆t) V!"!

=  ∆ P!",V! − 2γ( ∆ P!",V! − V!"! )V!"!
CV!

∆t 

∆ P!",V!!"#$ =  V!"! + 4α P!" −  βV!" − γ(V! +
∆ P!",V! − V!"!

2CαV!
∆t) V!"!

=  ∆ P!",V! − 2γ( ∆ P!",V! − V!"! )V!"!
CV!

∆t 

We plug the above two equations, the left side becomes: 
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∆ P!",V! +  ∆ P!!,V!!"#$ = 

∆ P!",V! +  ∆ P!",V! − !"( ∆ !!",!! !!!"! )!!"!
!!!

∆t               (2.8) 

While the right side becomes: 

∆ P!",V! +  ∆ P!",V!!"#$ = 

∆ P!",V! +  ∆ P!",V! − !"( ∆ !!",!! !!!"! )!!"!
!!!

∆t              (2.9) 

Then we take square on both (2.8) and (2.9), and denote Δ P,V!  as f(P), we have 

f P!" + f(P!") −
2γ f P!" − V!"! V!"! ∆t

CV!
+ 2 f P!" f P!" −

2f P!" γ f P!" − V!"! V!"! ∆t
CV!

 

and 

f P!" + f P!" −
2γ f P!" − V!"! V!"! ∆t

CV!
+ 2 f P!" f P!" −

2f P!" γ f P!" − V!"! V!"! ∆t
CV!

 

Eliminate the common terms in the above two equations, to prove (2.7), it is sufficient to 

prove the two inequalities below 

− 2γ f P!" − V!"! V!"! ∆t
CV!

> −
2γ f P!" − V!"! V!"! ∆t

CV!
 

− 2f P!" γ f P!" − V!"! V!"! ∆t
CV!

> −
2f P!" γ f P!" − V!"! V!"! ∆t

CV!
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Here we need to state two properties of f(P). 

• Because !" !!" = 4α > 0, f(P) is an increasing function of P. So f P!" > f P!" . 

• Based on Equation (3), we have  

f(P!")− V!"!
2α = ∆ P!",V! − V!"!

2α = P!"# > 0 

Therefore, f P!" > f P!" > V!"! . And consequently  

f P!" f P!" − V!"! < f P!" f P!" − V!"! . 

Given these two properties, it is not difficult to see that the two inequalities holds for 

P!" > P!".  

Combining the discussions above, we proved Theorem 1. 

2.3.2.2 Scheduling of Multiple Charging Phases with Equally Short Durations 

In this subsection, we consider the scheduling problem for arbitrary number of extremely 

short charging phases τ!, τ!,… , τ! with duration Δt → 0, and their charging powers are P!,… ,P!. 

Before giving the theorem, we first give a lemma. 

Lemma 2. Given two identical EES bank B! and B! with initial energy E! < E!. After 

charging them using the same power P for the same duration T, the energy in B1 is less than or 

equal to the energy in B2, i.e. E!! ≤ E!! . 
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Proof: Assume it takes time t to charge B! from E! to E! using P. Then after time T− t, bank B! 

reaches E!! , which equals the final energy of B! after time T. Continue to charge B! for time t, we 

have E!! ≥ E!! . 

Theorem 2. Given n charging phases τ!, τ!,… , τ!, with duration Δt → 0, scheduling 

them based on the ascending order of their power maximizes the amount of energy stored in EES. 

Such scheduling policy is referred as LPCF (i.e. Lowest Power charging First).  

Proof: We will prove this theorem using induction and contradiction. We know from Theorem 1 

that the statement is true when n = 2. Assume LPCF scheme is the optimal scheduling policy for 

any i charging phases as long as i ≤ N, we are going to prove LPCF scheme is the best for N+ 1 

charging phases. 

Assume the energy optimal scheduling for the N+ 1  charging phases are S!"# =

{τ!, τ!,… , τ!!!}, and their power are not in the ascending order. This means that there are two 

tasks τ! and τ!!! such that P! > P!!!. Then we construct a new schedule by switching phases τ! 

and τ!!! and get S! = {τ!,… , τ!!!, τ!,… , τ!!!}. Note that after charging phase τ!!!, the energy 

stored by both S!"# and S! are the same, because the first i− 1 charging phases are the same for 

the two schedules. For the next two charging phases, schedule {τ!, τ!!!} is worse than schedule 

τ!!!, τ!  because P!!! < P!. Therefore, at the end of i+ 1 th charging phase, schedule S! stores 

more energy than the schedule S!"#. Because the remaining N− i− 1 charging phases are the 

same for both schedules, based on Lemma 2, S! stores more energy than S!"# at the end of all 

charging phases. This contradicts the assumption that S!"# is the energy optimal scheduling. 

Therefore, for N+ 1 charging phases, the optimal scheduling is still the LPCF scheme.  
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From the above discussions, we have seen that for arbitrary number of very short 

charging phases, the LPCF scheme is the most energy efficient scheduling.  

 

2.3.2.3 Scheduling of Arbitrary Charging Phases 

In this subsection, we consider the scheduling problem for multiple charging phases with 

arbitrary duration. We claim that the LPCF scheme is still the best scheduling. This can be 

proved by dividing charging phases into very small slices such that t! = N!Δt, where ti is the 

duration of the ith charging phase. We consider each slice as a sub-phase. All sub-phases 

belonging to the ith phase have the same charging power Pi. 

Based on the discussion of previous sections, to reach the highest energy efficiency, these 

sub-phases should be arranged based on LPCF scheme. All sub-phases having the lowest 

charging power will be scheduled first, followed by the sub-phases having the second lowest 

charging power. This is equivalent as scheduling the charging phases from low power to high 

power, in another word, to execute tasks with highest power consumptions first. 

2.3.3 Task Scheduling at Varying Harvesting Rate 

It is easy to know that when the energy harvest rate is fixed, task scheduling and charging 

phase scheduling have direct correspondence. HPWF is the optimal task scheduling because it 

leads to LPCF, which has been proved to be optimal in previous sections. In this sub-section, we 

will show that HPWF is the optimal even if the energy harvesting rate is time varying except one 

condition at monotonically increasing harvesting rate which will be solved by neural network 

prediction model.	
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2.3.3.1 Scheduling with Monotonically Decreasing Harvesting Rate 

We will show that the HPWF scheduling is still optimal when the harvesting rate is 

monotonically decreasing. Similar to Section 2.3.2, we first consider two very short tasks t!" and 

t!", with duration τ → 0 and power consumption R!" and R!". Without loss of generality, we 

assume R!" > R!". The harvesting power during time period [0, τ] and [τ, 2τ] is denoted as Q! 

and Q! respectively. We assume harvesting power is more than enough to power either one of 

the two tasks, i.e. min(Q!,Q!) > max(R!",R!"). We focus our discussion to the case where the 

harvesting energy is decreasing, i.e. Q! > Q!. 

Based on the relations between R!",  R!" and Q!,Q!, we have two possible cases: 

Case1: Q! − R!" > Q! − R!",Q! − R!" > Q! − R!". 

Case 2: Q! − R!" < Q! − R!",Q! − R!" > Q! − R!". 

We denote P! = Q! − R!", P! = Q! − R!" and P!! = Q! − R!", P!! = Q! − R!". It is easy 

to see that if we execute task thi during the period [0, τ] and task tlo during the period [τ, 2τ], we 

are also charging the EES with input power P1 during the period [0, τ] and input power P2 

during the period [τ, 2τ]. On the other hand, if we execute tlo followed by task thi, we are 

charging the EES with P!! for the duration [0, τ] and P!!  for the duration [τ, 2τ]. Furthermore, 

P! + P! = P!! + P!! = P. 

We will first prove that, under case 1, HPWF is better than LPWF, i.e. charging EES with 

(P!,P!) is better than charging with P!!,P!! .  

Based on the lemma 1, using HPWF, the final energy stored in EES bank can be 

calculated as: 
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E! = E! +
∆ P!,V! − V!"!

2α Δt+ ∆ P!,V! − V!"!
2α Δt 

We are interested in finding the derivative of E!!  against P!, i.e. dE!! /dP!. Based on the 

definition of Δ(P!,V!) and given that P! = P− P!, and E!,V!" do not depend on P!, the derivative 

is: 

dE!!
dP!

= 1
∆ P!,V!

Δt−
1+ γ

CV! ∆ P!,V!
∆ P!,V!

Δt 

Based on the definition of ∆ P!,V! , we have ∆ P!,V! > ∆ P!,V!  because P! > P!. 

Since γ > 0, we also have 1+ !
!!! ∆ !!,!!

> 1. Together, we have dE!! /dP! < 0, when P! > P!. 

This means E!!  is a decreasing function against P!, if P! > P!. Because P!! > P!, charging with 

(P!,P!) is better than charging with P!!,P!! . So for case 1, HPWF is better than LPWF. 

For case 2, we note that, first, charging with (P!,P!) is better than (P!, P!), because 

(P!,P!) is LPCF. Then based on the discussion for case 1, we know (P!, P!) is better than 

P!!,P!! , because P! < P!!. Therefore HPWF is still better for case 2. 

We have proved that HPWF scheduling is optimal for two very short tasks under 

monotonically decreasing harvesting power. This result can be extended to any number of tasks 

with arbitrary duration by using the same techniques in Section 2.3.2. 

2.3.3.2 Scheduling with Monotonically Increasing Harvesting Rate 
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In this case, it is very difficult to analytically prove, for any given two tasks, which order 

is better. To see this, we again use the same notations as in the last section:	R!" <  R!" and 

Q! < Q!. Again, we have two possible cases: 

Case1: Q! − R!" < Q! − R!",Q! − R!" > Q! − R!". 

Case 2: Q! − R!" < Q! − R!",Q! − R!" < Q! − R!". 

We again denote the P! = Q! − R!", P! = Q! − R!" and derive !!!
!

!!!
, which is exactly the 

same as in the last section. But now, since P! < P!, the sign of !!!
!

!!!
 depends on the parameters, i.e. 

P!,P!,V!,C and γ, and cannot be guaranteed. Therefore, it is necessary to utilize a prediction 

model to estimate which execution order is better. 

2.3.3.3 Neural Network-Based EES Bank Energy Prediction Model 

The power consumption of DC-DC converters P!"!" (as well as the power goes into the 

bank) has a non-linear relation on the input/output voltage/current and it is very difficult to find 

an analytic expression of it with dependent parameters. The energy stored in the EES bank 

depends on the integral of P!"!", and is even harder to solve it analytically and efficiently. In this 

work, we overcome these difficulties by employing a neural network [47] to predict the energy 

stored in the EES bank based on system variables. Neural network is well known for its 

capability of accurately capturing the non-linear relation between its inputs and outputs. 

Although the training process is usually time consuming, however, it is an offline procedure and 

needs to be done only once. The recall process of the model has very low complexity. It only 

involves one light matrix-vector multiplication and one vector inner product for a neural network 

structure as shown in Figure 2.4. Hence, the runtime overhead is negligible. Furthermore, the 
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model treats the EES bank as a black-box, which enables it to be applied for any type of EES 

bank even without the knowledge of the detailed charging characteristics. 

 

Figure 2.4 Neural Network Prediction Model 

In this work, we adopt a two-layer neural network model as shown in Figure 2.4 to 

predict the energy stored in the EES bank. The input of the predictor is a set of variables that 

have direct impact on the energy stored in the EES. It includes: (1) The input power to DC-DC 

converters P!. Pc determines the power goes out of the DC-DC converter and into the EES bank. 

It is the difference between the harvesting power and the load power. Including Pc enables the 

model implicitly takes the load into account. (2) The initial energy level (SOC) of the EES bank 

E!"!#. E!"!# affects the efficiency of DC-DC converters as well as the final energy of the EES 

bank. (3) The charging duration t!. As shown in Figure 2.4, the model has 3 layers: one input 

layer, one hidden layer and one output layer. The inputs to the neural network model are s 

dimensional vectors (s = 3). There are m neurons in the hidden layer and one neuron in output 

layer. We set m to be 7 to get a good tradeoff between prediction accuracy and computation 

complexity. The !!, !!, b!, b! are m by s hidden layer weight matrix, 1 by m output layer 

weight matrix, 1 by m bias vector and 1 by 1 bias constant respectively. They will be learned 

during training process and used as known parameters later the neural network model is applied 

to make prediction. The transfer functions for the hidden layer (f!) and the output layer (f!) are 

the tansig function and the purelin function respectively as shown in the figure. Let P! denote the 
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input vector, the output of hidden layer can be calculated as P!  =  tansig(!!×P! + b!), and the 

output for the output layer is P!  =  purelin(!!×P! + b!), which is the predicted energy stored 

in the bank. The neural network predictor is trained using the memory efficient Levenberg-

Marquardt algorithm [47].  

In general, the more training data we have, the more accurate prediction model we could 

obtain. However, more training data means longer training time. In order to limit the amount of 

training data yet still be able to get accurate prediction model, it is desirable to reduce the 

dimension of the input vector. Therefore, instead of feeding the charge time directly to the neural 

network model, we fix it to a constant (say 10 seconds) during the training process, which is, in 

fact, eliminating one dimension (the charging time). In the prediction process, we interpolate the 

charging time to get the predicted energy. Here is one example, we want to predict the final 

energy of a charging period of 23 seconds, we would call the prediction model 2 and 3 times to 

obtain the prediction results for 20 and 30 seconds. Then we use linear interpolation to get the 

results for 23 seconds. 

More numerical details about generating the training data can be found in accuracy 

evaluation are as following. During prediction process, we feed the three inputs E!"!#, P! and t! to 

the trained model and obtain the final energy E!"# shown in the following equation (2.10).  

E!"# = nnet(E!"!#,P!, t!)                                          (2.10) 

We charge the supercapacitor bank with 11 different input powers ranging from 0W to 

4W with a step of 0.4W. Each charging process starts when supercapacitor bank voltage is 1.0V 

and lasts for 4000 seconds. We record the bank energy every 5 seconds and feed these data into 

the neural network model. Even with these limited training data, the neural network is still able 
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to learn an effective model and make accurate prediction on input power it has never seen as 

shown later in this section. This feature is particularly useful considering the harvesting power 

can have big variations. Each training data is a 3 dimensional vector, with the input being input 

power to the bank, current bank energy and charging duration (10 sec), and output being the 

bank energy after 10 seconds. During the neural network training process, we use 80% data as 

training data and leave 10% data as validation data and 10% data as testing data. In addition to 

this set of testing data, we generate another set of validation data similar as how we generate the 

training data. The only difference is that the input power is randomly chosen in the range [0W, 

4W]. 

 

Figure 2.5 Prediction Error for the Validation Data Set 

Figure 2.5 presents the prediction error for 4000 validation data, which are generated 

using 5 levels of input powers randomly selected in the range [0W, 4W], so each level of input 

power generates 800 testing data. Please note, these 4000 validation data is completely irrelevant 

with the testing data generated during the training process. The prediction error is defined as the 
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percentage difference between the predicted energy and the real energy stored in the EES bank. 

It clearly shows the accuracy of the prediction model. Most of the testing errors are less than 

0.5%, and all of them are less than 2.5%. We notice that the prediction model produces bigger 

error when the bank energy is low, because at this time the energy change is more sensitive to 

the charging power, i.e. the slope of the energy increasing curve is sharp in this area (left part of 

Figure 2.5). When bank energy is high, more charging power will be wasted on DC-DC 

converters and the energy increasing rate reduces. 

Figure 2.5 only shows the results of one step prediction, i.e. given the current bank 

energy and charging power, we predict the bank energy after charging for 10 seconds. This 

might work for a system with all tasks of about several tens of seconds. However, for the 

predictor to be truly useful, it must be able to accurately predict EES energy for variable 

charging durations. Figure 2.6 shows the prediction results when we use the model iteratively to 

estimate a charging period of 4000 seconds for three input powers. The results show that the 

prediction tracks the real energy accurately. 
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Figure 2.6 Multiple step prediction performance 

2.3.4 Task Scheduling Algorithm to Improve Charging Efficiency 

In this section, we present our heuristic task scheduling algorithm. The core idea is to 

consider low power charging first policy first, while leaving the unfitting case to the neural 

network predictor. We inspect each adjacent task pair, and their corresponding solar power 

profile. If the predicted solar power is monotonic non-increasing during the execution of the two 

tasks, then based on previous theorems, it ensures that the execution order which leads to the 

LPCF is optimal. If solar power is monotonically increasing, we apply the neural network to find 

out which of the two execution orders leads to more energy. The following pseudo code 

summarizes the task scheduling algorithm.  

Algorithm 2.1: Task Scheduling Algorithm 
      // Input: Two tasks (t1, t2), Predicted solar level S  
      // Output: optimal execution order of (t1, t2)  
1. if S is monotonic non-increasing:  
2. return LPCF schedule  
3. if S is monotonic decreasing and only one order leads to LPCF:  
4. return LPCF schedule  
5. e1 = predictEnergy(execute t1 first)  
6. e2 = predictEnergy(execute t2 first)  
7. if e1 >= e2  
8. return execute t1 first  
9. else  
10. return execute t2 first 

Algorithm 2.1 Task Scheduling Algorithm 

Algorithm 2.2: Task Scheduling Algorithm for N tasks 
// Input: N tasks (t1, t2, …, tN), Predicted solar level S 
// Output: optimal execution order of (t1, t2, …, tN)  

11. while (true) 
12.     swap = 0 
13.     for (i = 0; i < N-1; i++) 
14.          if (need to swap ti and ti+1) 
15.              swap++; 
16.      if (swap == 0) 
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17.           break; 

Algorithm 2.2 Task Scheduling Algorithm for N tasks 

For a group of tasks, algorithm 2.2 shows that we examine each adjacent pair of tasks and 

swap them if necessary according to algorithm 2.1 until there is no adjacent pair of tasks needs to 

be swapped. 

The above presented algorithm is an effective heuristic algorithm. First of all, in the case 

of stable harvesting rate or monotonous decreasing harvesting rate, it guarantees the optimality. 

Secondly, even with monotonous increasing harvesting rate or irregular harvesting rate, it can 

still use the accurate prediction to find a high quality schedule. In fact, without a prediction 

model, it is impossible to use bank energy as the objective in scheduling algorithm, because bank 

energy cannot be computed analytically.  

2.4  Experimental Results for Workload Schedule 

To demonstrate the effectiveness of the proposed algorithm, we implement a C++ 

simulator to model the energy harvesting embedded system. We assume the system has one 

customized supercapacitor [4] with 40F capacitance and 15V rated voltage as the EES element. 

This configuration is similar to the one used in [5]. We obtain the parameters of the DC-DC 

power converter model from [41]. These parameters are obtained from the datasheets of the real 

devices. We assume the V!! of the embedded system is 1.0V and the V!"# is operated at 1.0V to 

match V!!. The initial bank terminal voltage is also set to 1.0V. 
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2.4.1 Scheduling for Two Charging Phases 

In the first set of experiments, we examine the impact of the scheduling for two charging 

phases with different charging power. Because there are only two charging phases, only two 

possible schedules are available: the LPCF and the HPCF scheme.  

We first set the input power of one charging phase to be 0.5W and sweep the other from 

0.2W to 1.0W. Note that the input power here is the extra harvested power after supplying the 

embedded system. We skip the case when both charging phases are 0.5W. We also set the 

duration of both charging phases to be 30 min. This duration is similar to the military radio 

application [10]. Table 2.1 Shows the energy stored in the EES element for the two scheduling 

schemes. As we can see, the LPCF scheme always performs better than the HPCF scheme as 

expected, and the difference could be up to 24.6%. 

Power (W) 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1.0 
HPCF (J) 419.9 419.9 495.8 711.4 789.5 868.3 946.8 1069.2 
LPCF (J) 442.9 496.9 562.5 773.3 910.5 1046.2 1179.9 1311.4 
Impr. (%) 5.46% 18.34% 13.45% 8.70% 15.33% 20.49% 24.61% 22.65% 

Table 2.1 Comparison of Energy Stored by HPCF & LPCF 

As the input power increases in one of the charging phases and remains fixed in the other, 

the total energy stored in the EES element generally increases for both HPCF and LPCF. 

However, we also note that for the HPCF scheme, when the incoming power in one of the 

charging phase changes from 0.2W to 0.3W, the stored energy remains the same and all input 

power is consumed by the DC-DC converter. In fact, there is a minimum input power that is 

required to charge the EES bank. It can be estimated by setting P!" = P!"!" and P!"# = 0 in our 

approximation model given by Equation (2.3). The minimum required input power is a function 

of V!" and V!"#: 
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P!" = βV!"  + γV!"# 

which means we need more input power in order to break even of the consumption in the DC-

DC converter when the terminal voltage of EES bank (i.e. V!"#) increases. This can be viewed as 

an intuitive explanation of why LPCF is always better than the HPCF scheme. With the HPCF 

scheme, high power charging phase will first raise the terminal voltage of the EES bank to a high 

level, which reduces the opportunity for the bank to be charged in the future. 

In the next experiment, we sweep the charging power from 0.2W to 1.0W with a step of 

0.1W for both phases. The duration of each phase is still kept at 30 min. Figure 2.7a) shows the 

improvement of LPCF over HPCF for all possible combinations of charging phases. We could 

see that LPCF performs better than HPCF in all cases. And the average improvement is 10.41%. 

When the duration of the charge phase is set to 20min and 10min, the average improvement is 

9.14% and 6.86% respectively. 

 

a) Comparison of energy stored after 30min. 
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b) Comparison of energy stored after 20min. 

 

c) Comparison of energy stored after 10min 

Figure 2.7 Improvement of LPCF over HPCF when sweep power from 0.2w to 1w 

2.4.2 Scheduling Results for Multiple Tasks 
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1.2 W 1.4 W 1.6 W 

 
Sec 100 300 600 100 300 600 100 300 600 

8 tasks 

HPCF (J) 384.3 835.1 1364.5 514.4 1174.0 1935.4 644.2 1545.0 2600.1 
LPCF (J) 405.7 939.6 1598.6 535.7 1294.2 2238.7 663.6 1652.1 2901.3 
avg (J) 393.3 879.6 1458.4 524.0 1227.7 2065.1 653.0 1593.3 2735.6 
Im. H 5.58% 12.5% 17.2% 4.15% 10.2% 15.7% 3.01% 6.94% 11.6% 
Im. A  3.15% 6.83% 9.61% 2.23% 5.42% 8.41% 1.62% 3.69% 6.06% 
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Table 2.2 Scheduling of multiple tasks with constant solar power 

In the second set of experiments, we examined the impact of task scheduling for multiple 

tasks on the energy stored in the EES bank. Various system configurations are tested.  

Table 2.2 shows the result of scheduling of multiple tasks with constant solar power. The 

number of tasks in each configurations are set to 6, 8 and 10; the task durations varies from 100s, 

300s to 600s; and the harvesting power varies from 1.2W, 1.4W to 1.6W. The power 

consumption of each task is uniformly distributed between [0.2W, 1.0W]. We compare our 

LPCF scheme with HPCF scheme and the average results of 400 random generated schedules.  

Table 2.2 reports the amount of stored energy for EES under LPCF, HPCF and the 

average random scheduling for all test cases. It also reports the relative improvement of LPCF 

over HPCF and random scheduling. We could see from this table that the LPCF scheme 

consistently outperforms the HPCF as well as the random scheduling policy in all test cases. And 

the improvement can be up to 17.15% over the HPCF scheme and 9.61% over the random 

scheduling. The HPCF always stores the least energy, which is even less than the worst cases in 

6 tasks 

HPCF (J) 389.3 807.1 1262.8 488.5 1086.9 1783.2 585.4 1364.1 2307.4 
LPCF (J) 400.2 873.0 1450.9 498.4 1145.4 1951.3 594.6 1417.1 2459.4 
avg (J) 394.7 839.0 1354.4 493.4 1115.4 1865.1 589.9 1390.0 2381.8 
Im. H 2.81% 8.17% 14.9% 2.03% 5.39% 9.43% 1.56% 3.89% 6.59% 
Im. A 1.42% 4.05% 7.12% 1.03% 2.69% 4.62% 0.79% 1.95% 3.26% 

10 tasks 

HPCF (J) 493.8 1154.6 1921.9 656.7 1592. 2677.4 816.4 2049.8 3536.0 
LPCF (J) 519.8 1275.2 2208.9 679.9 1716.3 3012.5 837.6 2160.9 3840.4 
avg (J) 507.3 1215.3 2065.4 668.8 1657.0 2852.5 827.5 2107.9 3696.8 
Im. H 5.27% 10.5% 14.9% 3.53% 7.78% 12.5% 2.59% 5.42% 8.61% 
Im. A 2.47% 4.93% 6.94% 1.66% 3.58% 5.61% 1.22% 2.51% 3.88% 
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the random schedules. We observe that in some settings where the phase duration is short, the 

terminal voltage of the EES bank stays relatively low all the time. These cases are in general less 

sensitive to the scheduling order, so the difference between the three scheduling schemes is small. 

This explains the trend that the results for cases with 600s phase duration are generally better 

than the cases with 100s phase duration. For the similar reason, when the harvesting power 

increases, the system becomes less sensitive to the charging phase order. On the other hand, 

some settings are more sensitive to the scheduling. For example when the harvesting power is 

1.2W and duration is 600s. In these cases, inappropriately charging the EES bank with high 

power first will raise the terminal voltage of EES bank and prevent it to be further charged at low 

power phase. 

 

Num_ 
of_ 

Tasks 

Charging 
Power [1.5, 1.8] [1.6, 2.0] [1.8, 2.2] 

10 

lpwf 700.50761 861.67737 932.63295 
random 724.44418 880.80102 952.58636 
sched 750.30561 903.81158 975.7946 

Impr.L 8.29% 5.53% 5.18% 
Impr.R 4.14% 2.95% 2.72% 

15 

lpwf 957.73372 1129.22774 1263.49074 
random 1004.50876 1169.45109 1305.75648 
sched 1047.28694 1211.83534 1343.98414 

Impr.L 10.44% 8.03% 6.92% 
Impr.R 4.73% 3.96% 3.17% 

20 

lpwf 1244.41919 1441.21392 1738.8753 
random 1313.55971 1510.44985 1800.48796 
sched 1384.86407 1578.11509 1866.45214 

Impr.L 12.27% 10.21% 7.78% 
Impr.R 5.88% 4.80% 3.88% 

Table 2.3 Scheduling of multiple tasks with varying solar power 
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In this set of experiments, we examined the impact of task scheduling for multiple tasks 

on the energy stored in the EES bank when the harvesting rate is varied. The numbers of tasks in 

each configuration are set to 10, 15 and 20; the task duration is 100s; and the harvesting power 

varies within the range of [1.5W, 1.8W], [1.6W, 2.0W], [1.8W, 2.2W]. The power consumption 

of each task is uniformly distributed between [1.0W, 2.0W]. We compare our proposed task 

scheduling algorithm with LPWF scheme and the average results of 100 random generated 

schedules. 

Table 2.3 reports the amount of stored energy for EES under LPWF, the average random 

scheduling and the proposed scheduling algorithm for all test cases. It also reports the relative 

improvement of the proposed scheduling algorithm over LPWF and random scheduling. We 

could see from this table that our proposed algorithm consistently outperforms the LPWF as well 

as the random scheduling policy in all test cases. And the improvement can be up to 12.27% over 

the LPWF scheme and 5.88% over the random scheduling. 

2.5 DVFS Considering EES Charging Properties 

Dynamic voltage and frequency scaling is an effective energy reduction technique and 

has been widely applied to embedded systems. Traditional DVFS aims at reducing workload 

power consumption without violating the performance constraint. In an energy harvesting system, 

during charging mode, reducing workload power is equivalent to increasing the charging power. 

Due to the variable power overhead of DC-DC converter, when to reduce the workload power 

consumption and how much should it be reduced will have different impact to the amount of 

energy that can be charged into the EES. In this section, we consider DVFS during the charging 

mode. We continue using the same energy harvesting embedded system model and DC-DC 
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converter model as discussed in previous sections. And we consider the scenario that the 

harvesting energy is sufficient to support the load device and charge the EES bank.  

2.5.1 EES Bank Charging Characteristics and Motivational Example 

As we discussed before, that assumption that all of the excessive harvested energy will be 

stored into the EES system is not valid because the power consumed by the DC-DC converter is 

non-negligible [43]. Therefore, in addition to the factors like the harvesting energy from the 

renewable energy source and the energy consumption of the workload applications, the amount 

of energy that can be stored in the EES banks is also affected by the power consumption of DC-

DC converter.  

 

Figure 2.8 EES Bank Charging Characteristics 

The power consumption of the DC-DC converter is not a constant, and it depends on the 

terminal voltages of its input and output. This suggests even charging with constant voltage and 

constant current, the terminal voltage as well as the stored energy of the supercapacitor bank 
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behind the DC-DC converter will not grow linearly. Figure 2.8 shows the super-capacitor bank 

energy growth as a function of time charged with different constant current based on DC-DC 

converter model in [41]. The concave curve clearly shows that the energy growth rate keeps 

decreasing because the bank terminal voltage increases with charging. This indicates that more 

power is consumed by the converter. One observation from the figure is that, for a given 

charging power, the bank will eventually reach a state such that charging efficiency is very low. 

Conversely, for a given bank terminal voltage, there is a minimum requirement on the charging 

power such that any power below this threshold is not able to charge the bank efficiently. Such 

charging characteristic motivates our power management strategy. It is our hypothesis that the 

optimal DVFS assignment, which maximizes the energy stored in the bank, might not 

necessarily minimize the energy consumed by the load tasks; under certain circumstance, it is 

necessary to speed up the load tasks and leave more idle slacks so that harvesting power could be 

fully used to charge the bank. 

 

Figure 2.9 The Motivation Example 

Figure 2.9 illustrates a motivational example when intelligently investing more energy to 

speed up load tasks is beneficial to conserve more harvesting energy in the EES bank. Three 

DVFS settings are presented in this figure. The left one uses the most aggressive 

voltage/frequency combination, consuming more power than that of harvested by the system, and 

is simply infeasible. The middle one minimizes the load task energy by running them at the 

Deadline Deadline Deadline

Harvesting	Power
Charge	with	full	
harvesting	power

Extra	Harvesting	Power
Very	low	Charge	Efficiency	
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lowest voltage/frequency that just meets the scheduling deadline. Unfortunately, the surplus 

harvesting power is too low to charge the bank efficiently for current terminal voltage, and most 

of them are wasted. In this scenario, only the last DVFS setting could meet the scheduling 

deadline, while still being able to charge the supercapacitor bank with extra harvesting power in 

the idle slack. On the other hand, if the harvesting power is large enough to support the 

aggressive DVFS setting, then the left scheme leaves longer slack for harvesting power to be 

fully utilized to charge the bank and might be the best solution. Or if initial the bank terminal 

voltage is lower, then the extra power form the middle DVFS setting is probably able to charge 

the bank with high efficiency. And this setting might become the optimal solution as well. 

Obviously, the optimal DVFS strategy depends not only on the power consumption and deadline 

of the load tasks but also on the harvesting power and current SOC of the EES bank, which 

affects charging efficiency. The accurate estimation of energy stored into the bank plays a 

critical role in obtaining the best DVFS assignment. In the following section, we propose a 

dynamic programming based algorithm to find the optimal DVFS assignment. 

2.5.2 Problem Definition 

We define the DVFS assignment problem as the following. Consider an energy 

harvesting embedded system with K  voltage/frequency settings 

VF = {(v!, f!), (v!, f!),… , (v!, f!)} and a nominal setting (v!"#, f!"#) ∈ VF, which is used to 

process N tasks Γ = {τ!, τ!,… , τ!} with a common deadline D. In this work, we assume that task 

execution order is fixed and only consider DVFS. For a task τ!, it’s execution length and power 

consumption under V/F setting k are VL(n, k) and VP(n, k). The next task τ!!!is available when 

previous task τ! finishes. Yet τ!!! does not have to start immediately when τ! finishes. Our task 

model is similar to that of [31]. We assume that the energy harvesting rate is higher than the 
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power consumption of the load, therefore the EES bank works in charge mode. Our goal is to 

find the optimal DVFS setting as well as the start time for each task such that by the deadline D 

the most energy can be stored into the EES bank. 

2.5.3 A Dynamic Programming- Based DVFS Algorithm 

Our goal is to find the optimal voltage/frequency assignment for each task such that all 

the tasks are finished within the given deadline and the extra energy stored in the EES bank is 

maximized. The proposed voltage/frequency assignment algorithm is based on dynamic 

programming (DP) and it has polynomial complexity. The algorithm runs every time when a new 

task set arrives. The symbols are summarized in Table 2.4. 

	

Symbol Definition 

VF(n, t) Voltage of task τ! 

E(n, t) Energy stored in the EES bank when task τ! finishes 
S(n, t) Start time of task τ! 
v!"# Nominal voltage 
P! Harvesting power 

VP(i, k) Power of real task τ! running at kth voltage level 
VL(i, k) Execution length of real task τ! running at kth voltage level 
N,T,K Total number of tasks, timestamps and voltage/frequency levels 
n, t, k Index of tasks, timestamps and voltage/frequency levels 

Table 2.4 The List of Symbols 

We divide the deadline D of the task set into T timestamps: {0, 1,… ,T}. The task set is 

Γ = {τ!, τ!,… , τ!}. And then we build a two dimension table schedTable of size (N)×(T+ 1). 

Each entry (n, t) in this table contains 3 variables: VF(n, t), E(n, t) and S(n, t). For a task τ!, 

VF(n, t) equals the operating voltage of task if first n tasks can be finished exactly at time t, 

otherwise we set VF(n, t) to NULL. If VF(n, t) is NULL, then other two variables in the same 

table entry will be assigned NULL as well. And we mark such a table entry as invalid. On the 
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other hand, if VF(n, t) is not NULL, then E(n, t) is the energy stored in the EES bank when task 

τ! finishes and S(n, t) is the start time of task τ!, which also equals to the finish time of task 

τ!!!. It is easy to see that if table entry (n, t) is valid, then table entry (n− 1, S n, t ) is also a 

valid entry. And we utilize this property as the recurrence relation to fill in the schedTable table 

as shown in algorithm 2.3. 

Algorithm 2.3: Constructing the DP table !"#$%&'()$ 
Input: task set Γ, deadline D, with two tables VL(n, k), VP(n, k). 
Output: Fulfilled DP table 

(1) /* Initilize DP Table: entry (i, j) = NULL; */ 
(2) /* Fill the first row for idle task τ! */ 
(3) for (t = 0; t <= T; ++t) { 
(4)   S(0, t)=0; VF(0, t)=v!"#;  
(5)   E(1, t)=nnet(E!"!#, P!, t); 
(6) } 
(7) /* Fill the rest of the table for task τ! to τ!" */ 
(8) for (i = 1; i <= N; ++i) { 
(9)   for (j = 0; j <= T; ++j) { // real tasks 
(10)     if (entry(i-1,j) != NULL) { 
(11)       for (k = 0; k < K; ++k) { 
(12)         t = j + VL(i,k); 
(13)         E!"#$ = nnet(E(i-1,j),P!-VP(i,k),VL(i,k)); 
(14)         if ( (entry(i,t)==NULL) || (E!"#$ > E(i,t)) ) 
(15)           S(i,t)=j; VF(i,t)=k; E(i,t)=E!"#$; 
(16)         }  // if line 13 
(17)       }  // for k line 10 
(18)     }  // if line 9 
(19)   } // for j line 8 
(20) } // for i line 7 

Algorithm 2.3 Constructing the DP Table schedTable 

The input to Algorithm 2.3 is the task set Γ = {τ!, τ!, τ!,… , τ!}, the deadline T, along 

with the two N by K tables VP and VL. Each entry of the former table, VP (n, k), is the power 

consumption of task τ! under voltage k, and each entry of the latter one, VL(n, k) is the length of 

task τ! under voltage k. Initially, all entries in the schedTable are reset to NULL. Algorithm 2.3 

starts by filling the first row of schedTable, which is for the first task τ!. Only K entries in this 
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table will be valid, because the execution length of τ! has only K possibilities. It sets the 

variables in the table entry (1,VL(k))  to be VF 1,VL(k) = k , S 1,VL(k) = 0 , and 

E 1,VL(k) = nnet (E!"!#,VP(k),VL(k)), that is the predicted energy stored in the EES bank 

when idle task τ! finishes at time VL(k). Then it continues to fill the table entry for task τ! to τ!. 

For a task τ!, it looks for valid table entry in row i− 1. If (i− 1, t) is a valid table entry, then the 

algorithm updates the table entry (i, t+ VL (i, k)) for ∀k = 1,… ,K, only when this entry is not 

valid or previous predicted energy is less than current predicted energy (line 8 ~ 18). The 

complexity of the Algorithm 2.3 is O (TNK) and the memory requirement for the table is 

proportional to the table size, which is N (T+ 1). And each table entry only stores 3 floating 

numbers, which is 24 Byte. 

After the DP table schedTable is fulfilled, we use Algorithm 2.4 to back trace the 

optimal scheduling. It starts on the last row N and finds a valid table entry (N, t) with the 

maximum energy E (N, t). VF(N, t) is the voltage/frequency setting for task τ! in the optimal 

schedule. Algorithm 2.4 pushes the table entry (N, t) into a stack and goes to DP table entry 

(N− 1, S (N, t)), which must be a valid entry for task τ!"!! based on the recurrence relation 

mentioned in Algorithm 2.4. And VF (N− 1, S (N, t)) is the voltage/frequency setting for task 

τ!!! in the optimal schedule. The algorithm continues until all rows have been visited. The 

complexity for Algorithm 2.4 is O (T+ N). 

Algorithm 2.4: Back tracing to find the energy optimal schedule 
Input: Fulfilled DP table from Algorithm 1 
Output: Energy optimal schedule 
1. /* Find table entry with max energy in row N */ 
2. entry(N,t) = {(N, t) | E(N, t) is maximum}; 
3. stack.push_back(entry(N, t)); 
4. for (i = N; i >= 1; --i) { 
5.   t = S(i,t); 
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6.   stack.push_back(entry(i-1, t)); 
7. } 
8. return stack; 

Algorithm 2.4 Back tracing to find the energy optimal schedule 

2.6 Experimental Results For DVFS Algorithm 

In order to demonstrate the effectiveness of the proposed dynamic programming based 

DVFS algorithm, we implement a C++ simulator to model the energy harvesting embedded 

system. We assume the system has one customized supercapacitor bank [4] with 40F capacitance 

and 15V max voltage as the EES element. This configuration is similar to [40][5], and can be 

applied to relatively large system like rovers and drones. Yet as discussed in Section 3.3.4.2, the 

prediction model is not limited to the supercapacitor bank and can be applied to any type of EES 

bank. We obtain the parameters of the DC-DC power converter model from [41]. These 

parameters are obtained from the datasheets of the real devices. 

We assume that the V!! of the embedded system supports 3 voltage levels from 0.8V to 

1.0V with a step of 0.1V. We also assume that the power consumption of the embedded system 

is proportional to the cubic of the operating voltage and the operating frequency is linearly 

proportional to the voltage. Please note that our algorithm does not depend on this assumption to 

work. It only needs to know the power consumption of the embedded system for each task at 

different operating conditions (VF settings), and will pick the optimum VF setting for each task.  

The V!"# is assumed to operate at 1.0V, which means that the input voltage to DC-DC 

converters is 1.0V. Please note that we do not consider V!"# optimization techniques [11][48] in 

this work. However, those techniques are also orthogonal to our DVFS algorithm and can be 

combined together. 
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Finally, we assume that the harvesting power to the system is 4W, because there are a lot 

of portable solar panels available in the market which could output around this range. The 

variation of harvesting power will not affect our DVFS algorithm, because it only limits the 

voltage/frequency settings feasible to a task and the algorithm will always only choose valid 

voltage/frequency setting for a task. Therefore, we assume that harvesting rate is constant for 

simplicity. Since we only consider EES charging problem in this work, we assume the task 

power is always less than the load power. Otherwise it will become an EES discharging problem. 

 

2.6.1 Evaluation of Proposed DVFS Algorithm 

In this section, we evaluated our dynamic programming based DVFS algorithm. We 

compare the amount of energy stored in the EES banks when all tasks finish. The supercapacitor 

bank is assumed to be pre-charged to 2.5V. The processor of the load device can select the 

execute voltage among 0.8V, 0.9V and 1.0V.  

In the first experiment, there are 6 tasks in this task set. The load task power is generated 

randomly in a range of 1.0W to 2.0W. When the voltage is 1.0V, the execution time of each task 

is 100s. And the charging power is fixed at 2.0W.The basic idea of the baseline algorithm 1 is 

first to find the optimal frequency that minimizes the energy consumption of the load tasks 

assuming that the frequency can be adjusted continuously. If the optimal frequency is not 

supported by the system, it chooses between two adjacent frequency levels to approximate the 

optimal frequency while making the task set meet the deadline. The idea of the baseline 

algorithm 2 is to choose the minimum frequency which makes the task set meet the deadline at 

the beginning of each task. 
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WCET/DEADLINE VS Baseline1 VS Baseline2 
~0.88 9.99% 9.99% 
~0.86 17.36% 11.13% 
~0.85 23.60% 10.17% 
~0.84 22.48% 3.93% 
~0.83 27.14% 8.67% 
~0.82 31.89% 6.30% 
~0.81 34.13% 2.94% 

 
Table 2.5 Comparison of different slow down ratios 

Table 2.5 shows the results of the first experiment. We set the deadline so that the 

baseline algorithm 1 needs to use at least 0.9V to execute the task set. For example, when we set 

the deadline 680, the lowest voltage for the task set is 0.89V. Hence, the baseline algorithm 

needs to select 0.9 V to guarantee the task set can be finished on time. In the experiment, we 

extend the deadline before the baseline algorithm 1 could select 0.8 to execute the task set and 

still guarantee the deadline is met. The experiment shows that our algorithm can outperform the 

baseline algorithm 1 up to 34.13% in this case. And when the lowest voltage is further from 0.9V, 

our algorithm works better than the baseline algorithm1. That’s because the baseline algorithm 1 

just consider to minimize the power dissipation on the load devices, but our algorithm consider 

to maximize the energy stored in the EES bank directly while reducing the power consumption 

on the load device. The results based on baseline algorithm 2 are better than baseline algorithm 1, 

because it begins to slow down part of the tasks when the slow down ratio is set to 0.86. It means 

that part of tasks use 0.9V and the others use less than 0.9V. However, our DVFS algorithm still 

outperforms the baseline algorithm 2 in all cases, and the improvement can be as large as 11%. 

Baseline algorithm 2 adjusts the task execution speed only based on the task order and available 

slack, without considering the critical power information. Therefore, it cannot find the optimal 
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speed for each task. Whereas our algorithm take account of the power consumption of each task 

in the task set, which leads to more energy saved in EES bank. 

In the second experiment, we randomly generate task sets with 6, 8, and 10 tasks with 

task power in a range of 1.0W to 2.0W, and the execution length of each task is still 100 seconds 

when the voltage is 1.0V. Also, we first assume that the baseline algorithm needs use 0.9V to 

execute the task set. In two cases, we set the two deadlines so that the lowest voltage for one is 

around 0.85V, and the lowest voltage for the other is around 0.81V. We compare our algorithm 

with the baseline algorithms and the “no-DVFS” policy which runs the tasks without any DVFS. 

Apparently, “no-DVFS” policy will finish the task set first. Then the energy harvested in the 

slack between the finish time and deadline will be fully used to charge the EES banks. This table 

shows our algorithm stored up to 44.34% more energy compare to “no-DVFS”.  

Num 
Tasks Algorithms W/D ≈ 0.85 W/D ≈ 0.81 

6 
Impr.no-DVFS 39.50% 44.34% 

Impr.BL1 9.86% 16.08% 
Impr.BL2 3.63% 1.55% 

8 
Impr.no-DVFS 37.63% 40.90% 

Impr.BL1 10.60% 15.21% 
Impr.BL2 4.16% 1.78% 

10 
Impr.no-DVFS 41.21% 43.99% 

Impr.BL1 11.33% 10.66% 
Impr.BL2 3.62% 1.51% 

Table 2.6 Comparison of different task sets 

Table 2.7 shows the percentage improvement of energy stored in the supercapacitor bank 

of our DVFS algorithm over the baseline algorithms when the ratio between the load task power 

and harvested power changes. The execution length of each task is 100 seconds when the voltage 

is 1.0V. This table clearly shows the trend that when average ratio between task power and 

harvested energy is increasing, our algorithm can store more energy compare to the baseline 
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algorithms. When task power ranges from 60% ~ 70% of harvesting power (first column), the 

improvement is minimum; and when it ranges from 70% ~ 80% (last column), the improvements 

are larger. That’s because the voltage/frequency of each task needs to be assigned more and more 

carefully when the extra power decreases. Otherwise, the extra harvesting power saved by 

running the load tasks at lower voltage is more likely to be wasted on the DC-DC converters, like 

the middle example shown in Figure. 

Num 
Tasks Charging Power [2.8, 3.2] [2.6, 3.0] [2.5, 2.8] 

6 
Impr.no-DVFS 22.42% 25.78% 29.39% 

Impr.BL1 5.71% 6.44% 7.19% 
Impr.BL2 1.93% 2.22% 2.54% 

8 
Impr.no-DVFS 22.20% 26.25% 29.17% 

Impr.BL1 5.93% 6.83% 7.50% 
Impr.BL2 2.13% 2.51% 2.77% 

10 
Impr.no-DVFS 24.31% 27.86% 31.02% 

Impr.BL1 6.67% 7.50% 8.12% 
Impr.BL2 2.00% 2.25% 2.38% 

Table 2.7 Comparison of different energy harvesting ratios 

2.7 Chapter Summary 

In this chapter, we investigate the effects of workload scheduling on the efficiency of the 

EES charge process in an energy harvesting embedded system. We found that low power first 

scheme always performs better than the high power first scheme when the harvesting rate is 

fixed or monotonically decreases. It is proved using an approximated but accurate power model 

of the DC-DC converter. We proposed a neural network based prediction model which could 

accurately estimate bank energy given input power, initial bank energy and charging time. Under 

other situations, we use the energy prediction model to help task scheduling. We integrate both 

parts to build a fast and effective task scheduling algorithm such that the energy stored in the 
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EES bank is minimized and the task set deadline is guaranteed. Experimental results show that 

the HPWF outperforms the LPWF by up to 24.61% for two charging phases. For multiple tasks, 

HPWF outperforms LPWF by up to 12.27% and outperforms the random scheduling scheme by 

up to 5.88%. We also investigate the effects of DVFS on the efficiency of supercapacitor bank 

charging process in an energy harvesting embedded system. Based on the same energy prediction 

model, we propose a dynamic programming based DVFS algorithm which performs robustly 

regardless the variation of bank SOC, task load power consumption and schedule deadline 

compare to two baseline algorithms. Results show that up to 34% more harvesting energy could 

be stored into the EES bank. 
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 Improving Energy Chapter 3
Efficiency for Energy 
Harvesting Embedded Systems 
 

As mentioned above, environmental energy harvesting is a promising technique for 

sustainable operation of embedded system (e.g. wireless sensor node). It can potentially provide 

the possibility of unlimited lifetime [34]. However, one of the major constraints of applying 

energy harvesting technique to real-time embedded system is the uncertainty and large variation 

in harvesting rate [31]. For a practical implementation of such system, Electrical Energy Storage 

(EES) element is usually employed to compensate the power fluctuation caused by the energy 

harvesting. With such an EES element integrated in the system, excessive energy can be stored 

while the harvesting rate is high. When the harvesting rate is low, the EES element can be a 

supplement energy source for the embedded system to work properly.  

Traditional EES systems are mainly homogenous and have the same type of storage 

banks. Recently, the Hybrid Electrical Energy Storage (HEES) system [9] has been proposed to 

overcome the drawbacks of different types of EES banks while exposing their strengths. These 

EES banks have different characteristics such as cycle efficiency, leakage current, cycle life, 

storage cost and volumetric energy density, power rating and so on. These EES elements are 

connected via Charge Transfer Interconnect (CTI) and DC-DC power converters to enable power 

transfer. Due to the combination of various EES elements, HEES system may show good 
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performance metric including high energy density, high power delivery capacity, low cost, and 

low leakage. 

Several research works have addressed different problems on charge transfer including 

charge replacement, charge allocation and charge migration. One drawback of previous works is 

the high complexity of the algorithm, which might not be feasible for online applications, 

because the status of the EES banks, the power input to the system and the load characteristics 

could change rapidly. When these system status change, the control parameters have to be 

recomputed, which could incur large runtime overhead. 

In this chapter, we propose a fast heuristic algorithm to improve the energy efficiency for 

charge allocation and replacement in an EHS/HEES equipped embedded system. We observed 

that the major energy loss in the system during charge allocation and replacement is on the DC-

DC power converters, which are important components in the system. So the goal of our 

algorithm is to minimize the energy overhead on the DC-DC converter while maximizing the 

energy stored in the HEES system and satisfying the task deadline constraints of the embedded 

workload. We divide the energy efficiency optimization problem into two parts. When the 

harvesting power is high enough, the problem becomes charge allocation problem. In addition to 

supplying the embedded workload, excessive energy will be stored in the HEES system. On the 

other hand, when the harvesting power is low, the problem becomes charge replacement problem, 

because the energy is drawn from the HEES to supply the embedded load. 

We observed that when the input and output voltage of the DC-DC converter matches, 

the power consumption of the converter is minimized. Therefore, our algorithm tries to match the 

terminal voltages of the DC-DC converters in the system for both charge allocation and 
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replacement. Compare to the previous works [11][10][12][35], in addition to voltage of charge 

transfer interconnect (Vcti) and the active set of banks, our algorithm has one more control knob, 

i.e. the structure of EES bank. We utilize the EES bank reconfiguration technique to dynamically 

adjust the connection of the EES bank so that the bank terminal voltage could better match the 

Vcti .  

The following summarizes the key characteristics of this chapter: 

• Unlike the previous works [11][10][12][35], which only consider one sub-

problem of the HEES system, our work considers both charge allocation and 

charge replacement together. In addition to Vcti and the active set of banks, the 

proposed algorithm utilizes the EES bank reconfiguration as additional control 

knob for better energy efficiency. 

• Based on the proposed approximation of the DC-DC power consumption 

model, our heuristic algorithm has very low complexity compared to the 

previously proposed algorithms which solve the convex optimization problem 

iteratively and use binary search for optimal Vcti. The simplicity of our 

algorithm makes it suitable for runtime energy management for systems where 

the operating conditions vary rapidly. 

• Compared to the previous proposed approach, our algorithm can achieve up to 

41.23% improvement in energy efficiency for constant power charging and 

achieve up to 124.05% improvement in energy efficiency for a system 

charging and discharging under real solar power profile. 
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The rest of this chapter is organized as follows. Existing works on charge transfer in 

HEES systems are introduced in section 1. The energy harvesting system model and some 

assumptions are presented in section 2. The proposed heuristic energy management algorithm is 

described in section 3. Experimental results and discussions are presented in section 4. We 

conclude our work in section 5. 

3.1 Related Work 

In [10], the goal of charge replacement problem is to select which EES banks to be 

discharged and determine the discharging current of each selected EES bank to support a given 

load demand. In contrast with drawing power out of the HEES bank, the goal of charge 

allocation [11] is to solve the dual problem when the external power comes into the HEES 

system. The goal of charge migration problem [12] is to transfer energy internally from one EES 

bank to another, while improving the energy efficiency and reducing the energy loss during the 

transfer process. The HEES system could also be integrated with energy harvesting devices like 

PV cells [35] to store the maximum amount of solar energy. The main control knobs in these 

problems are the voltage of charge transfer interconnect V!"#, the set of active EES banks and the 

bank current. The algorithms for finding the optimal control variables in these problems are 

similar. The outer loop of these algorithms is to select the best V!"# for a given active set of EES 

banks using binary search, while the inner loop is to select the optimal set of active EES banks. 

In the inner loop, a convex optimization problem is solved iteratively until the set of active banks 

and the bank terminal voltages converge. 
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3.2 Architecture for Green Powered HEES  

In this section, we introduce the system architecture of energy harvesting embedded 

system. We use the same energy harvesting and storage system model as the one in previous 

chapter. And we use our approximated DC-DC converter power consumption model in this work.  

Figure 3.1 shows a block diagram of the system architecture considered in this work. The 

system consists of the following components, an Energy Harvesting Module (EHM), several 

heterogeneous Electrical Energy Storage (EES) banks and the embedded systems, i.e. the Energy 

Dissipation Module (EDM). All these components are connected together through Charge 

Transfer Interconnect (CTI) and DC-DC converters.  We refer those DC-DC converters as 

Energy Conversion Modules (ECM). The DC-DC converters connected to EHM, EDM and ESS 

are called ECMEH, ECMED, and ECMES respectively. The ECMES can further be divided into two 

function units, ECMES_charge and ECMES_discharge, which involve in ESS charge and discharge 

processes.  

3.2.1 Energy Harvesting System 

On the left part of the system, energy is harvested from the environment by the energy 

harvesting system and distributed to other components of the system. Although any EHS can be 

integrated in our system, in this work, we assume that they are a set of photovoltaic (PV) arrays. 

The PV array exhibits non-linear current-voltage characteristics so that the output current has to 

be adjusted dynamically to match the output impedance to draw the maximum amount of power 

from the PV system. This technique is called Maximum Power Point Tracking (MPPT) and there 

are several methods proposed by previous works that could achieve the MPPT, e.g. the perturb 

and observe (P&O) method [36], the incremental conduction method [37] and the ripple 
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correlation control method [38]. When the power consumption of the charger is taken into 

consideration, a Maximum Power Transfer Tracking (MPTT) method is proposed [39] to 

guarantee the maximum amount of power input into the system. In this work, we assume the 

MPTT method is applied to the EHS so that the maximum amount of power goes into the system.  

 

Figure 3.1 Energy Harvesting Embedded System Architecture 

3.2.2 Balanced Reconfiguration of the HEES Bank 

In this work, we consider two types of EES banks, one is supercapacitor bank and the 

other is battery bank. We assume the storage cells in an EES bank are identical and have same 

terminal voltages at all time in this work. As we mentioned, the power consumption of DC-DC 

converter depends on its input voltage V!" and output voltage V!"#. And we will show in next 

section, the further apart between V!" and V!"#, the higher P!"!" will be. Therefore, we use EES 

bank reconfiguration technique to match the V!" and V!"#. Let N be the number of cells in an EES 

bank, we define that a balanced configuration (m,n) of an EES bank has m cells in series and n 

cells in parallel such that N = m×n . For example, for a four-cell bank, the balanced 
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configurations are (4,1) , (2,2)  and 4,1 .  Figure 3.2 shows the three possible balanced 

reconfiguration of the four-cell EES bank. Each cell has three switches: one series switch (S-

switch, orange one) and two parallel switches (P-switches, green ones) except for the last cell. In 

the (4,1) configuration, all the S-switches are on while all the P-switches are off. On the other 

hand, in the (1,4) configuration, only the P-switches are on while all S-switches are off. 

(4, 1) (2, 2) (1, 4) 

   

 
 

 

Figure 3.2 Reconfiguration of an EES Bank 

3.3 Efficient Heuristic Energy Management Algorithm 

3.3.1 Problem Formulation 

For an energy harvesting embedded system modeled in the last section, energy is 

harvested from the renewable source and is either consumed immediately by the embedded 

system (load) or stored in the HEES bank for future use. As the energy flow through the system, 

some portion of the energy inevitably lost in the system. The major loss in such a system is 
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caused by the energy consumption of the DC-DC converters. Therefore, to improve the energy 

efficiency of the whole system, we have to reduce the energy wasted on the DC-DC converters.  

In such a system, there are several control knobs we could manipulate to achieve the 

energy efficiency. For example, the voltage of the CTI Vcti, the configuration of the HEES bank 

and operating conditions of the embedded system. We formally define our problem as following.  

Given: the harvesting power profile G(t), the load application characteristics. 

Goal: dynamically adjust the Vcti, the configuration of the HEES bank and the operating 

voltage and current of the embedded system such that the energy wasted on the DC-DC 

converters is minimized and the energy stored in the HEES bank is maximized. And the deadline 

of the embedded application is satisfied. 

3.3.2 Observations of the DC-DC Converter 

 

Figure 3.3 !!"!" against !!" curve 
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To illustrate the relation between the DC-DC power consumption and the related 

variables, we fix the V!"# = 5V, and according to the approximated DC-DC converter power 

model proposed in the last chapter, plot the P!"!" against V!" for I!"# is 1A (red), 2A (blue) and 

3A (green) in Figure 3.3. 

 

 

Figure 3.4 Fitting results of our approximation 
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Figure 3.4 compares the simplified P!"!"(i.e. Equation (2.1)) and its original function 

given in Section 2.2.  

From these figures, we have several observations based on the above analysis: 

• Firstly, for the given V!"#  and I!"# , P!"!"  reaches its minimum at V!" = V!"# .  

According to this observation, we tried to minimum power loss on DC-DC converters 

connecting with EES banks through keeping reconfiguring the EES bank to make its 

terminal voltage match the CTI voltage as close as possible during charging and 

discharging 

• Secondly, as the V!" moves away from V!"#, P!"!" increases much faster in the boost 

mode than in the buck mode. These two observations suggest that it is better to 

operate the DC-DC converter at buck mode and set the V!" close to V!"#.  

• Thirdly, P!"!" increases as the I!"# increases.  

3.3.3 The Optimal V!"# for Discharging 

Given the load power consumption characteristics and current status of one energy 

storage bank, we are interested in finding the optimal V!"# to maximize the discharging efficiency, 

i.e. to minimize the power consumption on the two DC-DC converters, (dcdc1 connects the bank 

and the CTI and dcdc2 connects the CTI and the load). Based on the approximation of P!"!" in 

the last section, we can derive an analytic expression for the optimal V!"# in discharging process. 

Assume both the converters are operating in the buck mode, the operating voltage and current for 

the load is V!"#$ and I!"#$, and the EES bank voltage is V!"#$. Then the power consumption of 

the two DC-DC converters are given as  
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P!"!"# = αV!"#$ + βI!"#!  

P!"!"# = αV!"# + βI!"#$!  

We could substitute the I!"# with (P!"!"# + P!"#$)/V!"#, because the power provided by the 

CTI is consumed by the load and dcdc2. Our goal is to find the best V!"# to minimize P!"!" =

P!"!"# + P!"!"#. We differentiate P!"!" with the variable V!"# and set it to 0 as following: 

∂P!"!"
∂V!"#

= α− 2αβγV!"#!
− 2αγ

!

V!"#!
= 0 

i.e. 

V!"#! − 2βγV!"# − 2γ! = 0 

In the above equation, γ = βI!"#$! + P!"#$. Because it is a cubic equation, it is analytically 

solvable [7], and we could find the optimal V!"# by solving the above equation. Let V!"# denote 

the optimal V!"# , one observation that can be made from the above analysis is that the value of 

V!"# is only determined by the load characteristics and does not depend on the status of the bank 

V!"#$, as long as V!"#$ is high enough to make both DC-DC converters operates at the buck 

mode. However the P!"!" does increase as the V!"#$ increase. This also suggests that we should 

set the V!"#$ to be the lowest level that is greater than V!"#.  This provides a guideline for the 

reconfiguration of the HEES banks. 

3.3.4 Efficient Energy Management Algorithm 

In this section, we describe our efficient energy management algorithm. Our algorithm 

can be divided into two parts. The first part is called charging process, which is used when the 

harvesting power is high (e.g. during the noon) and in addition to supplying the load, there is 
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extra energy that can be stored in the HEES bank. The second part is called discharging process 

which is used when harvesting power is low or even zero, e.g. in the early morning or during the 

midnight. In this case, energy has to be drawn from the HEES system. 

The main idea of our algorithm is to save the energy wasted on DC-DC converter to 

improve the energy efficiency by dynamically adjusting the operating voltage and frequency of 

the load, the voltage of interconnect V!"# and the configuration of the HEES system. We use one 

bank from the HEES system as the source for charging or discharging at a time so that only one 

DC-DC converter will be turned on, therefore the energy consumed by DC-DC converter can be 

reduced. We use the supercapacitor banks as the primary charging/discharging source while 

leaving the battery bank as the secondary source because supercapacitors have very high cycle 

efficiency and bigger voltage swings than the batteries so that the input and output voltage of the 

DC-DC convert can be matched better. In addition, the supercapacitor has no rate capacity 

effects as the battery. 

We summarize our charging process in Algorithm 3.1. For a given workload, we first 

find the optimal V!"#$  and I!"#$  to minimize the energy consumption of the embedded 

application. Any existing optimization algorithm can be integrated because this step is 

independent to other parts of the algorithm. If the supercapacitor bank is not fully charged, we 

will charge the supercapacitor bank, otherwise we will charge the battery bank. 

As we show in Section 3.3.2, the P!"!" is minimized when V!" matches V!"#, and buck 

mode is more energy efficient than boost mode. So the ideal charging situation would be 

V!"# = V!"#$ = V!"#$. But this might not always be possible depending on the amount of energy 

stored in the HEES bank. Therefore, we select a configuration that gives the highest bank voltage 
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V!"#$,!"# that is smaller than V!"#$ (line 3). In this case, if we set V!"# = V!"#$, one converter is 

operating at buck mode and another converter’s input voltage and output voltage are same. 

Therefore the energy on DC-DC converters is reduced. However, if we are not able to find a 

configuration with V!"#$,!"# less than V!"#$, then we will set all capacitors connecting in parallel 

to reduce the bank terminal voltage and set V!"# = V!"#$,!"#. In this case, the DC-DC converter 

on the supercapacitor bank side (i.e. dcdc1) has matching input and output voltage while the 

converter on the load side (i.e. dcdc2) operating at buck mode (line 6). If the supercapacitor bank 

is fully charged, we will charge the battery bank. The configuration for battery bank (line 8~11) 

is similar as the configuration for supercapacitor bank (line 3~6). 

Algorithm 3.1: Charging Process 
• Find the most energy efficient V!"#$ and I!"#$ setting for current load 
• if (supercapacitor bank is not full) // Charge the supcap bank 
•     s,p = Choose a config. s.t. V!"#$,!"# ≤ V!"#$ and V!"#$ is closet to V!"#$  

•     if ( s,p == ∅) 
•         s,p = (1,N!"#) 
•     V!"# = max(V!"#$,!"#,V!"#$) 
• else // Charge the battery bank 
•     s,p = Choose a config. s.t. V!"#$,!"# ≤ V!"#$ and V!"#$ is closet to V!"#$  

•     if ( s,p == ∅) 
•         s,p = (1,N!"#) 
•     V!"# = max(V!"#$,!"#,V!"#$) 
• return V!"#, s,p ; 

Algorithm 3.1 Algorithm for Charging Process 

The discharging process is shown in Algorithm 3.2. Again, we first find the optimal V!"#$ 

and I!"#$ that minimize the energy consumption of the embedded application. Next, we use the 

method discussed in Section 3.3.3 to find the optimal CTI voltage V!"# and set V!"# = V!"# (line 

2). Then we will discharge from the supercapacitor bank if it is not empty. From the discussion 

in Section 3.3.3, it is better to operate the DC-DC converter at lower input voltage for energy 
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efficiency as long as it is in buck mode. Therefore, we select a configuration such that gives the 

lowest bank terminal voltage V!"#$,!"# ≥ V!"# (line 4). If there is no such feasible configuration, 

we will connect all supercapacitors in series. We will switch to battery bank for discharging until 

the supercapacitor bank is depleted. The configuration process for battery bank (line 8~10) is 

similar as that of supercapacitor bank (line 4~6). 

Algorithm 3.2: Discharging Process 
1. Find the most energy efficient V!"#$ and I!"#$ setting for current load 
2. Find the optimal CTI voltage V!"# for (V!"#$, I!"#$), set V!"# = V!"# 
3. if (supercapacitor bank is not empty) // Discharge from supcap bank 
4.     s,p = Choose a config. s.t. V!"#$,!"# ≥ V!"# and V!"#$,!"# is closet to V!"#  

5.     if ( s,p == ∅) 
6.         s,p = (N!"#, 1) 
7. else // Discharge from the battery bank 
8.     s,p = Choose a config. s.t. V!"#$,!"# ≥ V!"# and V!"#$,!"# is closet to V!"#  

9.     if ( s,p == ∅) 
10.         s,p = (N!"#, 1) 
11. return V!"#, s,p ; 

Algorithm 3.2 Algorithm for Discharging Process 

3.4 Experiment Results 

To demonstrate the effectiveness of the proposed algorithm, we implement a C++ 

simulator to model the HEES system. The HEES consists of one supercapacitor bank and one 

battery bank. The supercapacitor bank consists of 4 capacitors with 100F capacitance [40][35]. 

We obtain other components like battery and DC-DC power converter model parameters from 

[41]. These parameters are obtained from the datasheets of the real devices. We assume the load 

power consumption is constant for a given period. 
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3.4.1 Constant Input Power Results 

In this section, we compare the energy efficiency of our heuristic algorithm and that of 

the algorithm proposed in previous works [11][10][12][35]. The previous work is referred as 

Adaptive V!"#. As mentioned before, this algorithm uses binary search to adaptively adjust V!"# to 

minimize the energy consumed on the DC-DC converters. It does not consider the 

reconfiguration of the HEES. 

Charging 
Power (4, 1) (J) (2, 2)  (J) (1, 4)  (J) Our  (J) 

1.75w 169.92 189.75 179.67 194.75 
1.25w 15.05 14.77 13.49 19.05 

Table 3.1 Energy stored in HEES for constant power input 

Table 3.1 shows the amount of energy stored in the HEES system after it is charged using 

constant power input for 10 minutes. In this set of experiments, because there are 4 

supercapacitors in the supercapacitor bank, the possible configurations of the bank are (4,1), 

(2,2) and 4,1  as shown in the example of section Error! Reference source not found.. We 

onsider two scenarios when the input power to the system is 1.75w and 1.25w. In the former case, 

our heuristic algorithm stores 14.61%, 2.64% and 8.39% more energy compared to the Adaptive 

V!"# algorithms whose potential configurations are (4,1), (2,2) and 4,1  respectively. While in 

the latter case, the proposed algorithm stores 26.58%, 28.96% and 41.23% more energy. As we 

could see, one supercapacitor configuration might work better than others at certain power input 

level, when the power input level changes, their efficiency will degrade. However, our algorithm 

works consistently better than the fixed configuration. Although the Adaptive V!"# algorithm 

always finds the optimal V!"# for a fixed configuration, it can still produce large imbalance 

between the input and output voltage of the DC-DC converters. Therefore it cannot minimize the 

power consumed on the converters. On the contrary, through reconfiguration, our algorithm can 
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always keep the terminal voltage of the DC-DC converters better matched. Thus it is more 

effective in reducing the energy wasted on the converters.  

 

Figure 3.5  !!"#$%against the Energy Stored in the EES Bank 

Figure 3.5 further explains why our algorithm can improve energy efficiency. This figure 

shows the wasted power against the energy stored in the supercapacitor bank during the charging 

process. Wasted power consists of the power consumed on the DC-DC converter and on the 

internal resistance of the EES bank. Apparently, when the EES bank does not store too much 

energy, it is better to connect them in series (i.e. (4, 1) configuration) to produce higher terminal 

voltage so that input and output voltage of the DC-DC converter can be better matched. As the 

charging process continues, the bank energy as well as the terminal voltage increases, the (4, 1) 

configuration first enters the boost mode, and the P!"#$% starts to increase. In this time, it is better 

to reconfigure the bank to (2, 2). Overall, our algorithm is able to track the most energy efficient 

bank configuration during the charging process. 
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Our algorithm could achieve better energy efficiency during discharge process as well. In 

the second set of experiment, we start using the energy stored in the HEES system to provide the 

load demands after the 10 minutes charging mentioned before. Our algorithm could last 17.24%, 

4.11% and 32.59% longer compared to Adaptive V!"# with (4,1), (2,2) and 1,4  configurations 

respectively when the input power is 1.75W, and last 23.15%, 44.57% and 72.73% longer when 

in 1.25W. 

 

Figure 3.6 !!"# Comparison between Our Proposed Heuristic and Binary Search 

Figure 3.6 shows the comparison of V!"# change between the base line Adaptive V!!" 

approach and our approach based on the approximation mode during the discharge process. In 

this experiment, we fix the bank configurations of both approaches to be (4, 1). And the load 

changes from 1.0w to 1.3w with a period of 120 seconds. The Adaptive V!"# policy uses binary 
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applicable in time critical applications. Based on our approximation of the DC-DC converter 

power model, V!"# can be computed directly. As the figure shows, our method tracks the optimal 

V!"# pretty well. 

3.4.2 Variable Sun Power Charging System 

Config. (4, 1) (J) (2, 2)  (J) (1, 4)  (J) Our  (J) 
Energy 325.504 558.459 711.643 729.287 
Impr. 124.05% 30.59% 2.48% - 

Table 3.2 Energy stored in HEES for real solar irradiation 

In this section, we integrated a real solar irradiation profile [39] as the power input to our 

system. We start charging the system from 11:00am to 12:00pm when the solar irradiance 

reaches its maximum value. As Table 2.2 shows, in this charging profile, our algorithm 

outperforms the baseline algorithm with previously mentioned three configurations by 124.05%, 

30.59% and 2.48% respectively. During the charging process, the bank terminal voltages of 

configuration (4, 1) and (2, 2) exceeds the input voltage of the DC-DC converters for a long time, 

which means they spend a large portion of time in boost mode which has low energy efficiency. 

As a result, large amount of energy wasted on DC-DC converters and less amount of energy is 

stored in the HEES bank for future use.  We again compare the discharging time after this 

charging process. The proposed algorithm last 140.22%, 34.02% and 5.29% longer compared to 

(4,1), (2,2) and (4,1) configuration respectively. 

3.5 Chapter Summary 

In this chapter, we proposed an efficient heuristic algorithm for the energy efficiency 

optimization problem of charge allocation and replacement in an EHS/HEES equipped 

embedded system. Our goal is to minimize the energy wa sted on the DC-DC converters while 
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maximizing the energy stored in the HEES system. To avoid the complexity of iteratively 

searching the optimal operating point, we developed an approximation power model of the DC-

DC converter. Based on this model, our algorithm tries to match the input and output voltages of 

the DC-DC converters by dynamically adjusting the V!! of the embedded load, the charge 

transfer interconnect voltage V!"# and the storage bank terminal voltage using reconfiguration. 

Experimental results show that our algorithm could store up to 124.05% more energy during 

charging process and last up to 140.22% longer. 
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 Task Scheduling and Chapter 4
Mapping for Applications on 
Heterogeneous Multi-Processor 
Systems 
	

 

When the harvesting power is short, the load demands are supported by the EES bank 

only. Many works have been proposed to reduce the power dissipation on the battery-powered 

devices and systems. In this chapter, we will discuss the task mapping, scheduling and Dynamic 

Voltage and Frequency Scaling (DVFS) algorithms on the heterogeneous system, which is one of 

the solutions to raise the system performance and improve the energy efficiency.  

Many real time applications demonstrate uncertain workload that varies during runtime. 

One of the major influences of the workload fluctuation is the selection of conditional branches 

which activate or deactivate a set of instructions belonging to a task. Many techniques have been 

proposed that perform power aware task mapping, ordering and DVFS for applications with 

fixed workload [23][49][50]. However, they may not achieve their best performance with real 

life applications that demonstrate workload variations. This work considers task scheduling and 

voltage selection of applications with variable workload on a heterogeneous multiprocessor 

system-on-chip. We focus on the set of applications which can be decomposed into repeated 
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tasks with relatively constant execution time. The uncertainty of the workload is reflected by the 

random activation and deactivation of certain tasks during run- time and it is captured by branch 

selections among tasks. We assume that such branch information is observable to the scheduling 

software to assist runtime scheduling and power management of the system. Examples of such 

task level branching include branches that enable or disable IDCT function during MPEG 

decoding or branches that select different modulation schemes for preamble and payload based 

on 802.11b physical layer standard. We model an application with dynamic branch selections 

using a conditional task graph (CTG). In this work, we capture the workload dynamics using 

Conditional Task Graph (CTG) and propose a set of algorithms for the optimization of task 

mapping, task ordering and dynamic voltage/frequency scaling of CTGs running on a 

heterogeneous multicore system.  

We study the power aware task mapping and scheduling techniques for the CTGs with a 

particular interest in their performance on the heterogeneous multi-core system. It is important to 

investigate the low power techniques for the heterogeneous multi-core system, not only because 

it is the architecture of many embedded computing systems such as the Pasta sensor node [51], 

the LEAP system [52], and the mPlatform [53], but also because, due to the within-die variation 

and transistor wear-out, a homogenous multi-core system will exhibit heterogeneity over time 

[54]. 

The proposed framework optimizes the task mapping, task ordering and dynamic 

voltage/frequency scaling of CTGs running on a heterogeneous multi-core system. Due to the 

probabilistic branching, the execution of CTG is a random process. Our goal is to minimize the 

mean power consumption instead of the worst case power consumption of the application while 

meeting the hard real-time constraint. Our mapping algorithm balances the latency and the 
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energy dissipation among heterogeneous cores in order to maximize the slack time without 

significant energy increase. Our scheduling algorithm minimizes the mean power consumption 

of the application while maintaining a hard deadline constraint. Our DVFS algorithm 

dynamically distributes slacks during runtime, and achieves comparable energy reduction as the 

solutions found by non-linear mathematical programming. Due to its capability of slack 

reclaiming, our DVFS technique is less sensitive to the slight change in hardware or task 

execution and works more robustly than the conventional DVFS techniques. Compared to the 

existing works, the uniqueness of our approach can be summarized as the following: 

• The proposed framework optimizes task mapping and scheduling simultaneously. We 

modify the Dynamic Level based Scheduling (DLS) algorithm [55] to find mapping 

and scheduling of CTGs on a heterogeneous platform. The complexity of task 

mapping and ordering is O(MN) where M is the number of processing elements (PEs) 

in the system and N is the number of tasks in the task graph. 

• We consider the application with conditional execution as a random procedure in 

which the branch selection probabilities can be profiled (or measured). Our algorithm 

utilizes such statistical information in each optimization step to reduce the mean 

power consumption.  

• The proposed slack reclaiming based DVFS algorithm has pseudo-linear complexity 

with the respect to the number of tasks in the CTG.  It also performs more robustly 

than the DVFS solution found by mathematical programming. 

The rest of this section is organized as follows: section 1 presents related works; section 2 

introduces the application and hardware architecture models; section 3 and section 4 present in 

detail the underlying scheduling, mapping and DVFS algorithms. Section 5 gives the 
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experimental results. Finally, section 6 concludes the work. 

4.1 Related Works 

Task mapping, ordering, and DVFS for CTGs have been studied in many literatures. In 

[56], Dolif et al. propose an exact analytic formulation of the stochastic objective function for 

conditional task mapping and scheduling based on task graph analysis. Their approach considers 

stochastic branching probabilities and improves the overall performance by optimizing the bus 

activity. In [57], Eles et al. present an approach to minimize the worst case delay, which 

considers the communication workload and branch control. A recursive algorithm is proposed to 

generate the schedule table, which stores the start time of each task at different execution 

scenarios. In [58], Xie et al. propose a task mapping and scheduling algorithm which is sensitive 

to mutually exclusive tasks in the CTG. Their algorithm exploits the processor sharing for 

mutually exclusive tasks to minimize the worst case delay of the CTG. All these works do not 

minimize energy dissipations.  

Wu et al. [59] utilized a scheduling table for runtime DVFS. The slack time of each task 

can be derived from the table. A genetic algorithm based task mapping algorithm is proposed for 

further energy savings. An implicit assumption of this technique is that all the conditional 

branches will be selected with equal probability, which might not be realistic for a real system. 

Furthermore, the GA based task mapping algorithm has very high complexity because the inner 

loop of this algorithm needs to perform the task ordering and stretching for the entire CTG. 

Shin et al. [60] proposed an algorithm for task scheduling and DVFS of CTG which 

considers the run-time behavior. The algorithm is based on a modified list scheduling and non-
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linear programming (NLP) based voltage/frequency optimization. Because the algorithm 

schedules a task with different start time and speed under different branch selection scenarios, it 

is referred as condition aware scheduling. However, their task mapping is assumed to be fixed. 

In [61] and [62] we proposed a Communication Aware Probability-based (CAP) 

scheduling algorithms for CTGs on a DVFS enabled multiprocessor platform. However, the 

algorithm assumes that all the PEs have the same energy-performance characteristics. 

Furthermore, its DVFS algorithm relies on evaluating all the paths, which has exponential 

complexity. In this work, we completely revised the CAP algorithm and consider a 

heterogeneous system where each PE has unique power-performance characteristics. The 

complexity of the DVFS algorithm is also significantly reduced. 

Power aware task mapping, scheduling and DVFS techniques for heterogeneous 

multiprocessor system has been studied in [23][24][25][26][27][28][29]. In [23], a two-phase 

algorithm is proposed for distributed real-time embedded system. A static scheduling algorithm 

first generates the schedule for all tasks in the CTG, and then a dynamic scheduling algorithm 

determines the speed ratio for mutual exclusive tasks during the runtime. In [24], the authors 

focus on the critical paths and distribute the slack time over the tasks on the critical path to 

achieve energy savings. Both works assume that only processors have DVFS capability and their 

power-performance characteristics are identical. [25] and [26] study the energy-efficient 

software partition in heterogeneous multiprocessor system. In [25], Goraczko et al. formulate the 

software partitioning problem as an integer linear programming (ILP) constrained by the 

deadline. The solution of the ILP gives the number of processors needed by the system and task 

mapping information. In [26], Yang et al present an approximate algorithm for task partition to 

find near-optimal task mapping and scheduling with minimum energy consumption. In both 
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these works, tasks are assumed to be independent to each other. A leakage aware DVFS 

algorithm is proposed in [27]. Unlike our work, it only considers heterogeneous system with only 

2 types of processing elements (PE), one with high performance and high power consumption 

while the other with low performance and low power consumption. The objective is to maximize 

the number of tasks mapped on the PEs with low performance while satisfy the deadline 

constraint. Deadline Monotonic (DM) rule is used in the task scheduling while Random 

Algorithm (RA), First-Fit Decreasing Density (FFDD), Genetic Algorithm (GA) and Simulated 

Annealing (SA) are used for task mapping. In [28], Azevedo et al propose to do intra task DVS 

based on the program checkpoint, while in [29], Yang et al rely the Pareto curve profiling for a 

task graph to do online task mapping and scheduling. Both of these works do not consider energy 

and performance heterogeneity of the multiprocessor platform. 

4.2 Application and Hardware Architecture Models 

The CTG that we are using is similar to the one specified in [60]. A CTG is a directed 

acyclic graph < V,E >. Each vertex τ∈V represents a task. An edge e=(τi, τj) in the graph 

represents that the task τi must complete before task τj can start. A conditional edge e is 

associated with a condition C(e). The tail node of a conditional edge is called branch fork node. 

We use prob(e) to denote the probability that the condition C(e) is true; and we use succ(τ) and 

pred(τ) to denote the set of successors and predecessors of a taskτ. We assume that all tasks 

have the same deadline. 

A node is activated when all its predecessors are completed and the conditions of the 

corresponding edges are satisfied. The condition that the task τi is activated is called the 
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activation condition and denoted as X(τi). It can be written as ∨!!∈!"#$ !! C τ!, τ! ∧ X τ! , 

where “⋀” and “⋁” represent logic operations “AND” and “OR”.  

A minterm m is a possible combination of all conditions of CTG. We use M to denote the 

set of all possible minterms of CTG. A task τ is associated with a minterm m if X(τ) is true when 

m is evaluated to be 1. The set of minterms with which τ is associated is referred as activation set 

of τ and denoted as Γ(τ). Two tasks τi and τj are mutually exclusive if they cannot be activated at 

the same time, i.e. Γ τ! ∩ Γ τ! = ϕ. The set of all unique Γ(τ), ∀τ∈V, is called activation 

space and denoted as T. 

The amount of data that pass from one task to another is also captured by the CTG. Each 

edge (τi, τj) in the CTG associates with a value Comm(τi, τj) which gives the communication 

volume. Finally, we assume a periodic graph and use a common deadline for the entire CTG. 

                    

Figure 4.1 an example of a CTG 

Figure 4.1 shows an example of a CTG. The edges coming out from τ3 and τ5 are 

conditional edges therefore nodes τ3 and τ5 are branch fork nodes. The symbol marked beside a 

conditional edge denotes the condition under which the edge will be activated. For example, C(τ3, 

τ4) = a1. There are total of 4 minterms in the CTG and M = a!b!, a!b!, a!b!, a!b! . We have 
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Γ τ! = Γ τ! = Γ τ! = a!b!, a!b!, a!b!, a!b! , Γ τ! = Γ τ! = a!b!, a!b! , Γ τ! =

a!b!, a!b! , Γ τ! = a!b! , Γ τ! = a!b! . The execution profile and communication 

volume are given beside the CTG. The activation space is: 

T = a!b!, a!b!, a!b!, a!b! , a!b!, a!b! , a!b!, a!b! , a!b! , a!b!  

4.3 Task Mapping and Scheduling 

Our task mapping and scheduling is based on a modified Dynamic Level based 

Scheduling (DLS) [55] algorithm that finds task mapping and ordering simultaneously. Our goal 

is to implement an on-line scheduling, mapping DVFS algorithm that adaptively change with the 

branch probability. That’s why we choose the DL-based approach. The DLS algorithm is a list 

scheduling algorithm. It maintains a ready list that stores tasks whose predecessors have been 

scheduled and mapped. For each task τi in the ready list, the dynamic level DL(τi, pj) is 

calculated using the following equation: 

                                         DL τ!,p! = SL τ! − AT(τ!,p!)                                          (4.1) 

where pj is one of the processing elements, SL(τi) is the static level of task τi, which is equal to 

the longest distance from node τi to any of the end nodes in the task graph (i.e. the longest 

remaining execution time), AT(τ!,p!) is the earliest time that task τ! can start at processor pj, it is 

calculated as AT τ!,p! = max DA τ!,p! ,TF(p!) , where DA(τi, pj) is the earliest time that all 

data required by node τi is available at the jth PE with the consideration of both computation and 

communication delay, and TF(pj) is the time that the last task assigned to the jth PE finishes its 

execution. The pair of (τi, pj) which gives the maximum dynamic level will be selected and the 

mapping is performed accordingly. The task is scheduled to be started at the time 
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max DA τ!,p! ,TF(p!) . After that, the ready list is updated and the dynamic level of each task 

in the ready list is re-calculated. Because we need to calculate the DL for each task processor 

pair in the system, the complexity of the DLS algorithm is O(|V|*N), where |V| is the number of 

tasks and N is the number of PEs in the system. 

The original DLS algorithm does not handle mutual exclusive tasks. Its goal is to 

minimize the makespan of the application. Although minimal makespan scheduling usually 

enables more aggressive DVFS and hence lower power consumption in a homogenous multi-

core system, this is not always true in a heterogeneous system. In this work we adopt the general 

flow of the DLS algorithm but modify the way that the dynamic level (DL) is calculated to 

consider the mutual exclusiveness among conditional tasks, the probability of branch selection 

and the energy performance heterogeneity among processors. 

4.3.1 Minimum Average Makespan CTG Scheduling 

Our first step is to modify the DL function to explore the mutual exclusiveness among 

conditional tasks and consider the branch selection probability. The goal of such modification is 

to minimize the average makespan instead of the worst case makespan of the application. In the 

modified algorithm, the static level (SL) of a task τ is used to represent the average remaining 

execution time when τ has just started.  

The static level of a non-branching node is the maximum static level of its successors 

plus the average WCET (denoted as WCETavg) of itself. Let Succ(τi) be the set of successors of τi, 

equation (4.2) calculates the SL of a non-branching node. 

                            SL τ! = WCET!"# τ! +max!!SL τ! , τ! ∈ Succ(τ!)                     (4.2) 
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The static level of a branch fork node is the mean of the static level of all its successors 

plus the WCETavg of itself. Let cij denote the condition of edge (τ!, τ!), equation (11) calculates 

the static level of a branch fork node. 

                      SL τ! = WCET!"# τ! + prob(c!")SL(τ!)! , τ! ∈ Succ(τ!)                (4.3) 

where prob(c!") is the probability that condition c!" is true. 

For a task τi without successors, its static level equals to its average worst case execution 

time: SL τ! = WCET!"# τ! . 

The dynamic level of task-processor pair (τi, pj) is calculated as the following equation. 

                                 DL τ!,p! = SL τ! − AT τ!,p! + δ(τ!,p!)                               (4.4) 

      The term δ(τ!,p!) is the difference between WCETavg(τi) and WCET τ!,p!  which 

accounts for the performance heterogeneity. Adding this offset ensures correct evaluation of a 

task’s DL for different processors since SL is computed using the average WCET. AT(τ!,p!) is 

the earliest time that task τi can start on processor pj. It must satisfy the following two conditions: 

• At time  AT (τ!,p!)  all data required by τ!  is available at p! , i.e. AT(τ!,p!) ≥

DA(τ!,p!). 

• If a task τj is scheduled during the interval AT τ!,p! ,AT τ!,p! +WCET τ!,p! , 

then τj and τi are mutually exclusive. This condition allows two mutually exclusive 

tasks to share the same processor at the same time, and thus making the schedule 

more efficient.  
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The data available time of a task τi on processor pj is calculated as the latest time when its 

predecessor completed execution plus the time to transfer the data, i.e. 

DA τ!,p! = max!! ET τ′ + comm(τ′, τ!)/BW(p!,p!) , ∀τ′ ∈ pred(τ!) , where p’ is the 

processor where τ′ is mapped to and ET(τ’) is the end time of task τ’. Here we assume point-to-

point communication between two processors. Please note that we can extend the framework to 

systems with shared communication links by considering all data communications as separate 

tasks and all communication links as separate resources and schedule communication tasks in the 

similar way as the computation tasks. Please note that our DLS algorithm could also handle the 

overhead of reconfiguring voltage and frequency by adding the overhead to the variable 

AT τ!,p! . 

4.3.2 Balancing Energy and Performance in a Heterogeneous Platform 

In a homogenous system, because all PEs are identical in energy performance 

characteristics, the total energy dissipation is determined solely by the slowdown ratio. 

Minimizing the average makespan will generally produce more slacks for each task and enable a 

lower execution speed for more energy reduction. Such monotonic relation does not exist in 

heterogeneous system, where the application energy dissipation does not only depend on the 

slowdown ratio, but also on which core the application is mapped to.  

There is a fundamental tradeoff between energy and performance in a heterogeneous 

system. Mapping a task τ to a faster PE could result better performance and shorter execution 

time but will incur higher energy consumption. To compensate the extra energy incurred by task 

τ, later tasks have to choose slower PEs to run and result longer latency. The performance gain 

by running task τ  at faster speed will diminish. From this perspective, higher energy 
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consumption is equivalent to longer execution latency. Our modified DLS algorithm is already 

capable of handling performance heterogeneity among PEs (by introducing δ(τ!,p!) in Equation 

(4.4)), to further consider energy heterogeneity in the algorithm, we propose a heuristic method 

to convert energy heterogeneity into performance heterogeneity, and handle them in a unified 

way. 

In the rest of this sub-section, we use WCET!"#(τ) and WCET(τ,p) to denote the average 

WCET of task τ and the WCET of task τ on processor p. Etotal(p,T) and Eavg(T) to denote the 

overall cycle energy of processor p and the average cycle energy of all PEs when their clock 

period is T. We use prob(τ) to denote the probability that task τ is activated. Finally, we use 

∆E(τ,p) to denote the difference between the energy dissipation of task τ running on p and the 

mean energy dissipation of τ running on the heterogeneous system:  

∆E τ,p = [E!"!#$ p,T!"# ∙WCET τ,p − E!"# T!"# ∙WCET!"# τ ] ∗ prob(τ) 

Here T!"# = 1 f!"# is the period of the fastest clock. Note that ∆E(τ,p) represents the extra 

energy of running task τ on p, and it could be positive or negative. In order to make up for this 

extra energy, we must run the entire application at a lower clock frequency and lower supply 

voltage (or a higher clock frequency and higher supply voltage if ∆E(τ,p) is negative.) Assume 

that setting the clock period to T’ can balance the energy. Then we have, 

                                        ∆E τ,p = WCET!"# τ′ ∗ [E!"#(T!"#)!!∈! − E!"#(T!)]                      (4.5) 

Here we use WCET!"# τ ∗ E!"#(T)!∈!  to approximate the total energy of the application 

when all processors are running at clock frequency 1/T. This is only a rough estimation of the 
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true energy dissipation of the application because not all tasks have been scheduled and mapped 

yet. Solving Equation (4.5) we get the T’: 

T! = E!"#!![E!"# T!"# − ∆E τ,p
WCET!"# τ!!!∈!

] 

To make up for the extra energy incurred by mapping τ to processor p, the total execution time 

of the application must be extended by (T! − T!"#) WCET!"#(τ)! . Therefore, we adjust the 

WCET of τ and calculate its effective WCET as: 

                      WCET!"" τ,p = WCET τ,p + λ(T! − T!"#) WCET!"#(τ)!             (4.6) 

The parameter λ is introduced to provide a tradeoff between performance and energy. It will be 

referred as the balance factor in the rest of the chapter. When λ is 0, the algorithm is reduced to 

the minimum average makespan scheduling as we introduced in Section 4.3.1 regardless of 

energy heterogeneity among processors. When λ is very large, the algorithm maps a task to the 

minimum energy processor, without making effort to reserve slacks for the DVFS algorithm 

which will be applied later.  

4.3.3 Adding Control Edges to the CTG 

After task mapping and ordering, the original CTG must be modified to reflect the new 

precedence constraints. Edges representing control dependencies will be inserted. These control 

edges will be used to find the execution paths for DVFS control. a control edge (τi, τj) must have 

the following properties: 

• Both τi  and τj are mapped to the same PE.  

• Task τi is executed before task τj. 
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• If there is another control edge (τk, τj), then τk and τi do not have identical 

activation set, i.e. Γ(τ!) ≠ Γ(τ!). 

• If a task τk is mapped to the same PE as τi and τj, and Γ τ! = Γ(τ!), then τk is 

executed either after τj or before τi. 

Algorithm 4.1: Relink CTG 
1. for each task τ∈V { 
2.       for each activation set Γ∈T { 
3.             τlink = NULL; 
4.             for each task τ’ executed before τ  on the same PE { 
5.                     if Γ(τ’)=Γ and τ’ is executed before τlink then τlink = τ’; 
6.             } 
7.             if τlink ≠ NULL then add control edge from τlink  to τ ; 
8.         } 
9. } 

Algorithm 4.1. Relink CTG 

Algorithm 4.1 gives the algorithm that adds control edges to the CTG. For each task τ 

and each unique activation set Γ, it searches for the latest task whose activation set is Γ and is 

executed before τ. Let C denote the number of unique activation sets in the CTG, the worst case 

complexity of Algorithm 1 is O(C *|V|2). The modified CTG will be used by the DVFS 

algorithm introduced in the next section. 

4.4 DVFS Based on Slack Reclaiming 

Although it gives the optimal solution, solving the above mentioned NLP is time 

consuming. In the next, we will introduce a heuristic DVFS algorithm based on slack reclaiming 

(SR). In the rest of the chapter, it is referred as SR_DVFS. In order to apply the slack reclaiming 

algorithm during the runtime, the following information is needed for each task: overall average 
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remaining execution time (ARETτ), the maximum remaining execution time (MxRETτ), the 

average remaining execution time along the most critical path on different PEs (ARET_PEτ[i], 

1 ≤ i ≤ N), and a look-up-table of slack distribution rules (LUTτ). We divide the total available 

slack into multiple discrete levels. Given the available slack l, the element LUTτ[l] specifies the 

amount of slacks (out of l) that should be distributed to the PE that τ is mapped to. 

  Algorithm 4.2: Calc. ARET, MxRET 
• Topological sort the modified CTG; 
• for each task τ starting from the lowest topological order { 
•       ARET

τ
 = 0; 

•       for each minterm m∈Γ(τ) { 
•             max_aret = 0; 
•             for each successor τi of τ  with m∈Γ(τi) { 
•                   if(max_aret < ARET

τi +comm(τ, τi )/BW(τ, τi )) 
•                         max_aret = ARET

τ i +comm(τ, τi )/BW(τ, τi ); 
•              } 
•             ARET

τ
 = pr(m)/pr(τ )* max_aret; 

•       }  
•       ARET

τ
 = ARET

τ
  + WCET(τ, p

τ
); 

•       MxRET
τ
 = 0; 

•       for each successor τi of τ  { 
•             if(MxRET

τ
 < MxRET

τi +comm(τ, τi )/BW(τ, τi )+WCET(τ, p
τ
)) 

•                   MxRET
τ
 = MxRET

τi +comm(τ, τi )/BW(τ, τi )+WCET(τ, p
τ
); 

•       } 
• } 

Algorithm 4.2 Algorithm for ARET, MxRET calculation 

Algorithm 4.2 gives the algorithm that calculates the values of ARET and MxRET of 

each task. The algorithm processes the tasks based on the reverse topological order of the 

modified CTG. Steps 3 through 10 in the algorithm calculates the ARET of a task τ. For each 

minterm m, the ARET of τ is the maximum value of its successor’s ARET plus the data 

communication time. The overall ARET of τ is the sum of the ARETs under each minterm m 
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weighted by the condition probability that minterm m is true given that task τ is activated (i.e. 

pr(m)/pr(τ)). Finally, the ARET of task τ should include the execution time of τ itself as 

specified in step 10. Steps 12 through 17 in the algorithm calculate the MxRET. It is equal to the 

largest MxRET of τ’s successors plus the data communication time. Let S denote the maximum 

number of immediate successors of a task, the worst case complexity of the algorithm is 

O(MS|V|). 

The values of ARET and MxRET are used to determine the remaining slack that will be 

distributed to the current task and the following tasks. In a heterogeneous multi-core system, 

where each PE has different power-performance tradeoff characteristics, the slacks will be 

distributed to different PEs non-uniformly. Therefore, we need to know not only the overall 

average remaining execution time, but also the remaining execution time on different PEs. 

Based on Algorithm 4.2, the ARET of a task reflects the longest path in the modified 

CTG. Considering only the longest path while ignoring the power-performance tradeoff 

efficiency of each PE will not result the best slack distribution policy. Let  f!"# p  denote the 

energy-performance tradeoff (EPT) factor of processor p. It is calculated as f!"# p =
!!!"!#$(!)

!" !!! !!"#
. We choose the path that has the highest EPT as the most critical path and 

collect the average remaining execution time on different PEs along this critical path.  

Algorithm 4.3 gives the algorithm that calculates the variables ARET_PE[i] for each PE i. 

For each task τ, a variable AR!"# � is maintained. It records the average total EPT of the 

remaining tasks along the most critical path (i.e. the path with the highest EPT efficiency). The 

ARET_PE of a task τ under minterm m is determined by the ARET_PE of its successor that is 
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active under the same minterm and has the largest remaining EPT. The overall ARET_PE of a 

task is the sum of its ARET_PEs under different minterms weighted by the conditional 

probability that the minterm m is active given the condition that the task τ is going to be 

executed. Similar to Algorithm 6, the worst case complexity of Algorithm 4.3 is also O(MS|V|). 

  Algorithm 4.3: Calc. ARET_PE 
• for each task τ starting from the lowest topological order { 
•       ARET_PE

τ
[i] = 0, 0≤i≤N; 

•       for each minterm m∈Γ(τ) { 
•             eng= 0; 
•             Find τi with the largest eng

τI ,τI∈succ(τ ) and m∈Γ(τi)  
•             eng

τ
 = pr(m)/pr(τ )* eng

τi; 
•             ARET_PE

τ
[i] = ARET_PE

τ
[i] + pr(m)/pr(τ )ARET_PE

τi[i], 0≤i≤N; 
•       }  
•       ARET_PE

τ
[p

τ
] = ARET_PE

τ
 [p

τ
] + WCET(τ, p

τ
); 

•       eng
τ
= eng

τ
+ WCET(τ, p

τ
)*Etotal(pτ

) 
• } 

Algorithm 4.3 Algorithm for ARET_PE Calculation 

As we can see, the ARET_PE shows the computing time distribution along the path with 

the highest EPT efficiency. This information determines how the average available slack will be 

distributed.    

Let E!!(T!"# ∙ L) denote the energy dissipation over L clock cycles on processor pi when 

the clock period is set to Tclk. We know that E!! T!"# ∙ L = LE!"!#$(p!,T!"#). Replacing T!"# ∙ L 

with a new variable D, E!!(D) gives the energy dissipation of pi running for a duration D at clock 

speed 1/Tclk. D is a linear function of Tclk and E!!(D) is a convex function of D. Assume that, 

scaling the voltage and frequency extends task execution time from D1 to D2. Let ES! D!,D!  

denote the energy saving, i.e.  ES! D!,D! = E!! D! − E!!(D!).  
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Theorem 2. The energy savings of the optimal continuous DVFS is incremental, i.e. 

ES! D,D+ Y = ES! D,D+ X + ES! D+ X,D+ Y , ∀X ∈ (0,Y) . Furthermore, the energy 

saving ES! D,D+ X ,X > 0 is a decreasing function of D. 

Proof: The first part of the theorem can be proved from the definition of the function ES(). An 

optimal DVFS with continuous voltage and frequency levels will set the Tclk to be D L.  The left 

side of the equation is: 

ES! D,D+ Y = CE!"!#$ D L − CE!"!#$ (D+ Y) L  

The right side of the equation is: 

ES! D,D+ X + ES! D+ X,D+ Y

= CE!"!#$ D L − E!"!#$ (D+ X) L + CE!"!#$ (D+ X) L

− CE!"!#$ (D+ Y) L  

The left and right sides equal to each other.  

To prove the second part of the theorem, we only need to prove that ES! D,D+ X −

ES! D+ Y,D+ Y+ X > 0, ∀X,Y > 0 . 

The left part of the inequality is:  

ES! D,D+ X − ES! D+ Y,D+ Y+ X = E!! D − E!! D+ X − E!! D+ Y + E!! D+ Y+

X   

Because E!!() is a convex function, we know that: 

E!! D + E!! D+ Y+ X �E!! D+ X + E!! D+ Y . 
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The second part of the theorem is also proved. 

Algorithm 4.4: Generate slack distribution table for task τ  
• Input:  ARET

τ
, ARET_PE

τ
[i], ESi(), Smax (maximum slow down ratio) 

• for each PE i with non-zero ARET_PE
τ
[i] { 

•       ESi [l] = ESi(ARET_PE
τ
[i]+l, ARET_PE

τ
[i]+l+1),  

                             1≤l<min(deadline, Smax*ARET_PE
τ
[i]);  } 

• Clear LUT
τ
[], idx = 0, slack = 0; 

• While (not all Esi[] arrays are empty) { 
•       Compare the leading elements in ESi[] arrays, 1≤i≤N; 
•       Assume the largest value located in the pth array (i.e. ESp[0]);  
•       If p = p

τ
  then  LUT

τ
[idx++] = ++slack; 

•       else LUT
τ
[idx++] = slack; 

•       delete the leading element in ESp[] and point to the next one; 
• } 

Algorithm 4.4 Slack Distribution LUT Generation 

Based on these properties, we design the algorithm that generates the slack distribution 

table shown in Algorithm 4.4. The input of the algorithm is the average remaining execution 

time (i.e. ARETτ), the remaining execution time on different PEs (i.e. ARET_PEτ[i], 1≤i≤N), the 

energy saving characteristics of each PE, ESi(), and the maximum slow down ratio Si of each PE 

i. The algorithm increases the slack allocation to each PE with uniform time step and records the 

corresponding energy saving in an array ESi[] (Steps 2~4). This procedure ends when the 

maximum slow down ratio is reached. The value of ESi[j] tell us the energy saving of extending 

the total execution time of all tasks on PEi from D+j-1 to D+j, where D is the  minimum 

execution time. Based on Theorem 2, the array ESi[] is decreasing. Using the information in 

ESi[], in Steps 7~11, we distributed slacks one unit by one unit to the PEs that has the highest 

energy saving. The amount of slacks distributed to pτ is stored in array LUTτ[idx]. The ith 
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element of LUTτ[] gives the amount of slacks pτ receiving when the total available slack is i. Let 

T denote the minimum time steps in slack distribution. The maximum length of each LUT array 

is bounded by deadline ∙ S!"#/!. The worst case complexity of Algorithm 8 is O (N ∙ deadline ∙
!!"#
! ). 

Algorithm 4.5 gives the SR_DVFS algorithm. It is executed during runtime. Before 

executing a task τ, the SR_DVFS algorithm calculates the available slack (step 1), then it uses 

the look-up-table to determine how many slacks should be distributed to the current PE where 

task τ is mapped to (Step 2). The execution speed (i.e. sτ) is calculated in Step 3 of the algorithm. 

We then check the longest path to see if this solution violates the deadline constraint (Step 4). If 

the answer is false, the algorithm returns, otherwise we recalculate the available slack by 

considering only the longest path (Step 5) and repeat the previous steps. Note that Algorithm 4.5 

has a constant complexity; however, it must be executed each time before a task is executed.  

Algorithm 4.5: SR_DVFS (τ , t): τ  -- current task id, t -- current time 
Calculate the available slack tsl = deadline – t - ARET

τ
; 

1. The slack distributed to p
τ
 is tsl(τ) = LUT(tsl); 

2. s
τ
 = (tsl(τ) + ARET_PE

τ
)/ ARET_PE

τ
; 

3. if ( WCET(τ, p
τ
) * (s

τ
 -1) + MxRET

τ
 +t> deadline) { 

4.          tsl = deadline – t – MxRET
τ
; 

5.          tsl(τ) = LUT(tsl); 
6.          s

τ
 = (tsl(τ) + ARET_PE

τ
)/ ARET_PE

τ
; 

7. } 

Algorithm 4.5 SR_DVFS Algorithm 

If the application consists of single path across different PEs, then the SR_DVFS gives 

the optimal solution. However, parallel execution paths usually exist in a multi-core system and 

there are synchronization events among these execution paths. Therefore, the SR_DVFS is only 
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a greedy heuristic. Our experimental results show that compared to the NLP based DVFS, the 

system using SR_DVFS algorithm consumes 4.1% more energy in average. 

The effectiveness of the SR_DVFS relies on two important conditions: 1. the power 

consumption of a PE must be a convex function of its clock period; 2. the PEs must support 

continuous voltage and frequency scaling. The first condition can be satisfied by most existing 

microprocessors with support of DVFS. The second assumption is not quite realistic, because 

many real life microprocessors only support discrete DVFS. However, it has been pointed out in 

[100] that using intra-task DVFS, we can approximate any voltage and frequency setting using 2 

discrete voltage and frequency levels. Even if the intra-task DVFS is not available, the SR-DVFS 

algorithm works fine under discrete voltage-frequency because it reclaims the slack that cannot 

be utilized by previous tasks due to the voltage (frequency) round up. Note that the NLP based 

approach cannot handle discrete voltage (frequency) level due to the high complexity. As we will 

show in Section VI, compared to a DVFS choice that simply rounds up the voltage and 

frequency solution of the NLP to the nearest level, the slack reclaiming algorithm reduces the 

energy by 41.37%. 

4.5 Experimental Results 

We assume that there are three different kinds of PEs in the system. They are XScale 

80500, XScale PXA255 and PowerPC processors. These processors operate at different voltage 

and frequency, and they have different power/performance characteristics. We obtained their 

cycle energies under different voltage and frequencies from [64], [65] and [66] respectively. We 

use curve fitting to approximate the cycle energy as a continuous function of the cycle period and 

use this model to predict the cycle energy for any cycle period which is between the maximum 
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and minimum supported frequency. We summarize the processors’ parameters in Table 4.1 and 

plot the cycle energy curves in Figure 4.2. 

To account for different graph structures and complexities which resemble numerous real 

applications, we carried experiments on CTGs modified from random task graphs generated by 

TGFF [63]. The MPSoC consists of either 3 PEs (one of each aforementioned mentioned type) or 

4 PEs (with an additional Xscale 80500 processor).  Table 8 gives the summary of some statistics 

of the 6 test cases including the number of tasks, the number of PEs, and the number of branch 

fork nodes in the CTG. The first row of the table gives the ID of each test case, which will be 

used in the rest of the section. 

Type Max_V (Volt) Max_f (MHz) Min_V (Volt) Min_f (MHz) 
PPC 1.9 333 1 33 

Xscale 1.49 733 0.91 333 
PXA255 1.3 400 0.85 100 

Table 4.1 Processor parameters 

 

Figure 4.2 Processor Cycle Energy Curves 
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In addition to these 6 cases, and in order to test the scalability of the proposed algorithms 

and its performance on large applications and systems, we also construct a large CTG with 86 

tasks and allocate them on a 16-PE MPSoC system. We call the test case CTG-large.  

Furthermore, we apply our algorithm on a real-world application, i.e. the MPEG decoder. 

The MPEG decoding process keeps varying according to the contents of the visual scene. Each 

video frame in the encoded video stream is composed of various macroblocks that represents 

16x16 pixel area of the image. The macroblocks are further classified into I, P and B blocks. 

Different types of macroblock require different decoding procedure. For example, the I-blocks 

will perform the IDCT function while the B-blocks may skip the IDCT. The CTG for MPEG 

decoding process have 46 tasks. Among these tasks, 9 of them are branch nodes. Due to space 

limitations we cannot show the whole graph of the decoding process. We map the MPEG 

decoding CTG to a system consists of 6 PEs. We call the test case CTG-mpeg. 

Test Case ID 0 1 2 3 4 5 
Number of nodes in CTG 12 25 16 15 15 25 

Number of PEs 3 3 3 4 4 4 
Number of branch fork nodes 1 3 1 2 1 3 

Probability of each 
 branch fork nodes (0.9,0.1) 

(0.9,0.1) 
(0.9,0.1) 
(0.9,0.1) 

(0.9,0.1) (0.9,0.1) 
(0.9,0.1) (0.8,0.1,0.1) 

(0.8,0.2) 
(0.8,0.2) 
(0.8,0.2) 

Table 4.2 Summary of generated test cases 

We define the system utilization as U = WCET(τ!)!!∈! (D ∙ N)  where D is the 

application deadline and N is the number of PEs. Obviously, the effectiveness of the low power 

scheduling algorithm should change as the system utilization varies. 

We refer to our algorithm as Balanced Energy Slack Scheduling (BESS) as it considers 

both the energy and performance in a heterogeneous system. For each CTG, the algorithm 
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generates a task mapping, a schedule and a voltage/frequency selection. We call the combination 

a Solution.  

Sometime, the mapping between tasks and PEs are predetermined. We can extend BESS 

to find the task execution order for the CTGs with fixed mapping by considering only those 

given task-PE pairs in DL calculation. We refer to this degenerated version of BESS as BESS-

FM (BESS with Fixed Mapping). For comparison purpose, we implemented NLP based DVFS 

similar to the algorithm described in [90]. By default, the BESS algorithm uses NLP based 

DVFS. We use BESS-SR to refer to the BESS algorithm utilizing the slack reclamation based 

DVFS. 

One of the major questions of BESS is how to determine the value of λ in Equation (4.5). 

When λ is 0, the algorithm degenerates into the minimum average make span scheduling; and 

when λ is very large, the algorithm maps a task to the minimum energy processor without 

considering the slacks for the DVFS algorithm. Strictly speaking, the optimum value of λ is a 

function of many parameters, including the topology of the CTG, the branch probability, the 

performance and power characteristics of the multi-core system, and the system utilization, etc. 

For those 8 test cases, we vary their branch probability and deadline (which consequently affects 

the system utilization) and generate a large number of different scenarios. For each scenario, we 

sweep λ to find its optimal value. We found that (1) the best value of λ is always within a small 

range for majority of the scenarios; (2) some values of λ consistently outperform other values for 

all system utilization and branch probability settings, and the difference between these local 

maximum points is not significant.  
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Figure 4.3 The Effect of λ on Energy Consumption 
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In the first experiment, we evaluate the quality of the task mapping function in BESS. For 

each test case, large numbers of random mappings are generated and scheduled using BESS-FM. 

The best result is compared to the result found by the original BESS, which optimizes both task 

mapping, ordering and DVFS.  

Table 4.3 compares the system energy dissipation of running the solution generated by 

BESS, the best results and average results of 10,000 random mappings scheduled using BESS-

FM and the improvement of BESS over the best and average random mapping. As we can see, 

even with 10,000 random samples, we cannot find a task mapping that is as energy efficient as 

the one found by BESS.  

CTG# BESS (mJ) 
Best of 10,000 Random 

Mapping (mJ) 
Average of 10,000 

Random Mapping (mJ) 
BESS-FM Impr. BESS-FM Impr. 

CTG0 157.38 163.97 4.02% 291.54 46.02% 
CTG1 101.01 120.88 16.44% 158.72 36.36% 
CTG2 196.99 378.24 47.92% 763.07 74.18% 
CTG3 298.25 320.77 7.02% 506.21 41.08% 
CTG4 512.08 558.99 8.39% 829.40 38.26% 
CTG5 918.38 1042.85 11.94% 1250.61 26.57% 

CTG-large 1114.44 2604.5 57.21% 3686.68 69.77% 
CTG-mpeg 92.99 110.29 15.69% 162.92 42.92% 

Table 4.3 Comparison to Random Mapping 

4.5.2 Energy Consumption under Different System Utilization 

In the following experiments, we will demonstrate the necessity of considering delay and 

energy jointly during every step of the resource management algorithm, and will compare the 

solution of our algorithm with four other scheduling algorithms: the Minimum Make Span 

(MMS), the Minimum Energy (MNRG), the Earliest Start Time (EST), and one of the previous 

works in reference [79]. These 4 algorithms are very similar to BESS. The only deviation is how 

the dynamic level (i.e. DL) is calculated. The MMS algorithm uses the original WCET instead of 
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the effective WCET that converts energy heterogeneity to performance heterogeneity. Therefore, 

it maps tasks to minimize the average make span as stated in Section 4.3.1. Please note that the 

MMS algorithm is equivalent to the CAP algorithm [91][92]. The MNRG algorithm calculates 

the dynamic level as: DL τ!,p! = −WCET τ!,p! ×E!"!#$(p!, f!"#); therefore, it maps a task to 

the PE that is the most energy efficient for this task. Finally the EST algorithm calculates the 

dynamic level as:  DL τ!,p! = −AT(τ!,p!), therefore, it maps tasks to where they can start the 

earliest. 

To the best of our knowledge, there is no existing work that considers the exact same 

problem as this work (i.e. task mapping, scheduling and DVFS for CTG in a heterogeneous 

multiprocessor platform.) In order to compare with existing work, we modified the algorithm 

proposed by Zhang et. al. in [79] to consider conditional branches. Their algorithm is modified 

so that the slack is replaced by average slack and mutually exclusive tasks can share the same PE 

at the same time. 

Figure 4.4 shows the energy consumption of the 8 test cases under those 5 scheduling 

algorithms. In those figures X-axis represents the percentage system utilization and Y-axis 

represents the energy consumption. Please note that not all scheduling algorithms have feasible 

solutions for all system utilizations. As we expected, when the system utilization increases, the 

energy consumptions also increase because tasks have to run at higher speed to guarantee the 

deadline. 

As shown in the figure, in general, MNRG is ineffective as it cannot find feasible 

solution for most of the test cases. The BESS algorithm is able to find better solutions than other 

four algorithms in all cases because it is not only able to leave enough slack for DVFS but also 
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able to explore the energy heterogeneity. Because [79] approach does not consider 

power/performance heterogeneity, it could not achieve the same energy savings as BESS. 

Overall, comparing to BESS, MMS, MNRG, EST and [79] consume 25.3%, 85.7%, 69.8% and 

70.3% more energy for test case 0-5 respectively. 
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Figure 4.4 Energy Consumption under Different System Utilization 
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Figure 4.5 Comparison of NLP and SR Based DVFS 
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As shown in these figures, the SR algorithm tracks the NPL based DVFS algorithm very 

well and gives close energy consumptions. In average, systems using SR based DVFS method 

only consume 4.1% more energy than the system using NLP based DVFS. 

CTGs Continuous DVFS (mJ) Discrete DVFS (mJ) 
NLP SR NLP SR 

CTG 0 192.64 202.66 415.29 218.92 
CTG 1 73.19 80.34 183.86 92.82 
CTG 2 253.59 268.27 321.29 270.44 
CTG 3 377.38 394.75 614.2 418.48 
CTG 4 464.83 492.13 859.52 491.86 
CTG 5 697.23 721.79 1985.3 775.60 

Table 4.4 Comparison of Continuous and Discrete DVFS 

Table 4.4 shows the comparison between the continuous and discrete DVFS. As shown in 

the table, the performance of NLP based DVFS is severely degraded when only discrete voltage 

and frequency level is supported by the system, while the SR algorithm dynamically adjusts the 

slowdown ratio based on current remaining slack. On average, the discretized slack reclaiming 

algorithm reduces the energy dissipation by 41.37% comparing to discretized NLP algorithm. 

Please note that for test case CTG-large CTG-mpeg, the only feasible DVFS algorithm is Slack 

Reclaiming based algorithm, thus in this subsection, we do not have results for them. 

In the next experiment we restrict the PE’s voltage and frequency to those discrete levels 

specified in Table 4.1. With NLP based DVFS, in order to guarantee deadline, the voltage and 

frequency are always round up to the nearest level. With SR based DVFS, the extra slack 

generated by rounding up of current task will be reclaimed by future tasks 
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4.5.4 Sensitivity to Branch Probability Change 

In previous experiments, we assume that the branch probabilities are known and fixed 

during run time. In the next set of experiments, we examine the sensitivity of BESS to the 

change of branch probability. The results will help us to understand the performance of BESS 

under inaccurate software model or insufficient profiling information. 

The solution of BESS consists of 3 parts: task mapping, task ordering and 

voltage/frequency selection. When the branch probability of an application changes from A to B 

during the runtime, we have 4 options: (1) Continue using the initial scheduling found based on 

branch probability A. This option will be referred as “No update” as it updates nothing. (2) 

Continue using the original task mapping and ordering, but update the voltage and frequency 

selection using the new branch probability B. This option will be referred as “DVFS only”. (3) 

Continue using the original task mapping, but update the task ordering and voltage/frequency 

selection. It will be referred as “DVFS+SCH”. (4) Update everything in solution including task 

mapping, ordering and voltage/frequency selection. We refer to this option as “All update”. In 

the rest of the chapter, we refer to the original branch probability A as the “biased branch 

probability” and the updated branch probability B as the “actual branch probability”. We refer to 

the first 3 scheduling options that update none or only part of the solution as biased scheduling 

and the last scheduling option as the unbiased scheduling. 

We use CTG0 to illustrate the impact of branch probability on the quality of solution. We 

set the actual branch probability B to (0.1, 0.9). Figure 17 shows the energy dissipation of the 

system under 3 biased scheduling algorithms with the biased probability A varying from (0.1, 0.9) 

to (0.9, 0.1). All 3 curves give the same best result when the biased probability A equals to the 
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actual branch probability B, which stands for the unbiased scheduling option (i.e. “ALL”) that 

updates everything in the solution. 

 

Figure 4.6 Energy Consumption under Inaccurate Branch Probability 
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Bias Distance 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 
DVFS+SCH 0.14% 0.30% 0.69% 1.12% 1.71% 2.33% 3.16% 5.12% 
DVFS only 0.22% 0.34% 0.74% 1.19% 1.79% 2.44% 3.32% 5.12% 
No update 0.27% 0.54% 1.06% 1.72% 2.57% 3.54% 4.85% 7.47% 

Table 4.5 Solution Quality Degradation as the Bias Distance Increases 

The similar trend is found for other CTGs. First, we define the Bias Distance to quantify 

the difference between the actual branch probability and the biased probability. Assume a CTG 

has n conditional edges and the actual branch probabilities for these branches are 

! = (!!, !!,… , !!), the biased branch probabilities are ! = (!!,!!,… ,!!). Then the distance 

between A and B is defined as the L1-norm of the vector A− B, i.e. D(A,B) = a! − b!!
!!! . A 

large bias distance means that the biased probability used for optimization is far from the actual 

probability during runtime, which, intuitively, could induce low quality solution. This trend is 

shown in Table 4.1. For each CTGs, we select one branch fork node and vary its real branch 

probabilities to generate test cases whose biased distance ranging from 0.2 to 1.6. For each test 

case, the energy dissipation of the system under 3 biased scheduling algorithms is recorded. 

Table 4.1 gives the percentage energy increase of biased solutions over the unbiased solution. As 

expected, when the bias distance increase, the solution quality degrades and energy consumption 

increases. Furthermore, performing “DVFS only” and “DVFS+SCH” give very similar results in 

terms of energy savings. This indicates that without correct task mapping, updating the task 

ordering does not make much difference.  

4.6 Conclusion 

In this chapter, we proposed a framework for simultaneous task mapping and ordering 

followed by DVFS of control intensive real-time applications modeled as probabilistic 
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conditional task graph. The goal of our scheduling algorithm is to minimize the mathematical 

expectation of the energy by utilizing the branch selection probability. The proposed mapping 

and scheduling algorithm balances the energy and performance of tasks running on a 

heterogeneous multi-core platform. The proposed slack reclaiming DVFS algorithm effectively 

distributes the slack based on current branch selection at run time and achieves similar energy 

reduction as mathematical programming based DVFS with much lower complexity. 

We compared our proposed mapping and ordering algorithm with the minimum 

makespan, the minimum energy, the earliest start time and the mapping and ordering algorithm 

proposed in [79] on 8 CTGs, and the proposed algorithm can reduce 25.3%, 85.7%, 69.8% and 

70.3% energy consumption respectively. The proposed Slack Reclaiming DVFS algorithm could 

find good solution which only consumes 4% more energy compared to the solution found by 

Nonlinear Mathematical Programming based DVFS when the operating voltage can be adjusted 

continuously. When the operating voltage is discrete, our Slack Reclaiming DVFS algorithm 

reduces the energy dissipation by 41.37% comparing to discretized NLP algorithm.  
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 Conclusions and Chapter 5
Future Directions 
 

The battery life limits the customer’s experience while using the portable devices, and the 

life of battery limits the life of portable devices.  Energy harvesting systems have been adopted 

as a clean and semi-permanent power source for some portable devices in order to extend the life 

of portable devices and improve the customer’s experience. However, due to the instability of the 

harvesting energy, the electrical energy storage has been used to store extra energy when the 

harvesting rate is high and supports the devices with stored energy when the harvesting rate is 

low. The popularity of these types of devices in commercial market and in research community 

motivates us to propose several techniques to improve energy efficiency on the energy 

harvesting embedded system. 

5.1 Conclusion 

First, we investigate the effects of workload scheduling on the efficiency of the EES 

charge process in an energy harvesting embedded system.  Our analytic algorithm always 

charges the EES bank using the lower power first scheme at fixed harvesting rate and 

monotonically decreasing harvesting rate. We found that high power workload first scheme 

always performs better than the low power workload first scheme. The algorithm has been 

proved by using the approximated but accurate power model of the DC-DC converter. We 

proposed a neural network based prediction model to predict the energy conserved in the EES 

bank after one charge phase. It is adopted in the workload scheduling algorithm to solve the 
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cases that do not fit the HPWF scheme. Experimental results show that the HPWF outperforms 

the LPWF by up to 24.61% for two charging phases. For multiple tasks, our workload scheduling 

outperforms LPWF by up to 12.27% and outperforms the random scheduling scheme by up to 

5.88%. Then, we investigate the effects of DVFS on the efficiency of supercapacitor bank 

charging process in an energy harvesting embedded system. Our algorithm used the dynamic 

programing based DVFS policy based on the prediction of the stored energy in the EES bank. 

For prediction, we adopted the proposed neural network based prediction model which could 

accurately estimate bank energy given input power, initial bank energy and charging time. Based 

on this prediction model, we propose a dynamic programming based DVFS algorithm which 

performs robustly regardless the variation of bank SOC, task load power consumption and 

schedule deadline compare to a baseline algorithm. Results show that up to 80% more harvesting 

energy could be stored into the EES bank. 

Secondly, as realized the DC-DC converter is playing an important role on the energy 

efficiency in the energy harvesting embedded system, we proposed an efficient heuristic 

algorithm for the energy efficiency optimization problem on the DC-DC converter for charge 

allocation and replacement in an EHS/HEES equipped embedded system.  In order to avoid the 

complexity of iteratively searching the optimal operating point, we adopted the proposed 

approximation power model of the DC-DC converter in the framework. Our goal is to minimize 

the energy wasted on the DC-DC converters while maximizing the energy stored in the HEES 

system during the charge transfer.  The heuristic algorithm is divided into the charging part and 

discharging part, which tries to match the input and output voltages of the DC-DC converters by 

dynamically adjusting the Vdd of the embedded load, the charge transfer interconnect voltage Vcti 

and the storage bank terminal voltage using reconfiguration. Experimental results show that our 
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algorithm could store up to 124.05% more energy during charging process and last up to 140.22% 

longer. 

Finally, in order to reduce the power consumption when the harvesting rate is short and 

the EES banks support the load devices alone, we proposed a framework for simultaneous task 

mapping and ordering followed by DVFS of control intensive real-time applications modeled as 

probabilistic conditional task graph. The goal of our scheduling algorithm is to minimize the 

mathematical expectation of the energy by utilizing the branch selection probability. The 

proposed mapping and scheduling algorithm balances the energy and performance of tasks 

running on a heterogeneous multi-core platform. The proposed slack reclaiming DVFS algorithm 

effectively distributes the slack based on current branch selection at run time and achieves 

similar energy reduction as mathematical programming based DVFS with much lower 

complexity. The proposed algorithm can reduce 25.3%, 85.7%, 69.8% and 70.3% energy 

consumption respectively compared to the baseline algorithms. The proposed Slack Reclaiming 

DVFS algorithm could find good solution which only consumes 4% more energy compared to 

the solution found by Nonlinear Mathematical Programming based DVFS when the operating 

voltage can be adjusted continuously. When the operating voltage is discrete, our Slack 

Reclaiming DVFS algorithm reduces the energy dissipation by 41.37% comparing to discretized 

NLP algorithm. 

5.2 Future Directions 

In the future, according to different demands on energy and different characteristics of 

power consumption, if it is a challenge to design an energy harvesting system and energy storage 

system for a specific device. Some problems are as following: 
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• Which type of EES bank is best to be a main storage or a secondary storage bank? It 

is important to choose among different EES elements for constructing a HEES system.  

For example, in the smart building, lead acid battery may be used as the main storage 

due to its low cost, and li-ion battery may be the secondary storage to reserve the 

energy for a long time because of its low self-leakage. [67] However, for a mobile 

device, lead acid battery is too large to pack onto it. Under this situation, while li-ion 

battery is using a main energy storage, supercapacitors can be adopted as the backup 

power source or charging buffer.  

• Deciding the size of each EES elements is also application dependent. If the HEES 

system is applied on a mobile embedded system, it should be large enough to support 

the system and small enough to be carried on. [68] tries to solve this problem on the 

electric vehicles. The vehicle has the limitation on its own size, and it is not energy 

efficient if it costs more energy to carry the EES bank itself. The embedded system 

faces the similar problem. 

• With the rise of requirements, it is necessary to charge and discharge several banks 

simultaneously. Hence, how to do the charge management under this scenario attracts 

researcher’s attention. It is one solution if we use several charge transfer 

interconnects.  Another solution is to build a router into the converter to distribute the 

energy. This idea is from the routers in the FPGA distributing the tasks [69].  

It is impossible to design a commercial energy harvesting system or an energy storage 

system without referring to specification of the load applications and considering the energy 

efficient as well as the capital cost. We believe that research in these areas not only enhance the 
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user experience with embedded devices but also help conserve the resource and improve the 

living environment. 
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