
RICE UNIVERSITY

N-variant Hardware Design
by

Yousra Alkabani

A THESIS SUBMITTED

IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR· THE DEGREE

Doctor of Philosophy

ApPROVED, THESIS COMMITTEE:

ih.l C!,=
Keith D. Coop;;}chair
L. John & Ann H. Doerr Chair in
Computational Engineering; Professor of
Computer Science and Electrical and
Computer Engineering

Moshe Y. Vardi
Karen Ostrum George Professor in
Computer Engineering

Kartik 0 ram
Assistant rofessor of Electrical and
Computer Engineering and Computer
Science

Bart Sinclair
Associate Dean of Engineering; Lecturer
on Electrical and Computer Engineering

Houston, Texas

November, 2010

ADVISORS:

Keith D. Cooper

L. John & Ann H. Doerr Chair in Computational Engineering;

Professor of Computer Science and Electrical and Computer Engineering

Farinaz Koushanfar

Assistant Professor of Electrical and Computer Engineering;

Assistant Professor of Computer Science

ABSTRACT

N-variant Hardware Design

by

Yousra Alkabani

The emergence of lightweight embedded devices imposes stringent constraints on

the area and power of the circuits used to construct them. Meanwhile, many of

these embedded devices are used in applications that require diversity and flexibility

to make them secure and adaptable to the fluctuating workload or variable fabric.

While field programmable gate arrays (FPGAs) provide high flexibility, the use of

application specific integrated circuits (ASICs) to implement such devices is more

appealing because ASICs can currently provide an order of magnitude less area and

better performance in terms of power and speed. My proposed research introduces the

N-variant hardware design methodology that adds the sufficient flexibility needed by

such devices while preserving the performance and area advantages of using ASICs.

The N-variant hardware design embeds different variants of the design control

part on the same IC to provide diversity and flexibility. Because the control circuitry

usually represents a small fraction of the whole circuit, using multiple versions of the

control circuitry is expected to have a low overhead. The objective of my thesis is to

formulate a method that provides the following advantages: (i) ease of integration in

the current ASIC design flow, (ii) minimal impact on the performance and area of the

ASIC design, and (iii) providing a wide range of applications for hardware security

and tuning the performance of chips either statically (e.g., post-silicon optimization)

or dynamically (at runtime). This is achieved by adding diversity at two orthogonal

levels: (i) state space diversity, and (ii) scheduling diversity. State space diversity

expands the state space of the controller. Using state space diversity, we introduce

an authentication mechanism and the first active hardware metering schemes. On the

other hand, scheduling diversity is achieved by embedding different control schedules

in the same design. The scheduling diversity can be spatial, temporal, or a hybrid

of both methods. Spatial diversity is achieved by implementing multiple control

schedules that use various parts of the chip at different rates. Temporal diversity

provides variants of the controller that can operate at unequal speeds. A hybrid of

both spatial and temporal diversities can also be implemented. Scheduling diversity

is used to add the flexibility to tune the performance of the chip. An application

of the thermal management of the chip is demonstrated using scheduling diversity.

Experimental results show that the proposed method is easy to integrate in the current

ASIC flow, has a wide range of applications, and incurs low overhead.

IV

Acknow ledgment

First I would like to thank my advisor Professor Keith Cooper for the incredible sup­

port, help, and advice. I would also like to thank my committee members: Professor

Moshe Vardi, Professor Kartik Mohanram, and Professor Bart Sinclair for the great

insights they have given me to improve my work.

Professor Joe Warren, the chair of the computer science department has provided

me with great support as a student in the computer science department.

I would also like to thank all the professors who taught me classes at Rice univer­

sity and at Ain Shams university. I would like to specifically thank Professor Luay

N akhleh for being a great teacher.

I would like to thank all the staff in the computer science department. Darnell

Price has given me great support, and Bel Martinez has patiently helped me finish

all my paperwork.

I also highly appreciate all the help provided to me and all the Rice international

students by Dr. Adria Baker and the whole office of international students and

scholars (OISS) staff.

I would like to thank my family and friends for their unconditional love and

support. I would specially like to thank my mom and dad for giving me all the love,

care, and tenderness I needed to keep going through tough times.

At last, I would like to thank the co-authors of my papers for their valuable input

on my research during the past years.

Abstract

List of Illustrations

List of Tables

List of Abreviations .

Contents

ii

ix

xi

XlI

1 Introduction 1

1.1 Thesis . . . 3

1.2 Organization 6

2 N-Variant Ie Design: Methodology and Applications 9

2.1 Introduction.......... 10

2.1.1 Motivational example.

2.1.2 Paper organization

2.2 Background

2.2.1 FSM

2.2.2 N-variant method .

2.3 N -variant I C design

2.4 Application-specific management of the N-variants .

2.5 Experimental results

2.5.1 Implementation of the N-variant method

2.5.2 Embedded multimedia application.

2.6 Concluding remarks and future directions.

3 Active Hardware Metering for Intellectual Property Pro-

12

13

14

14

15

16

20

22

23

25

27

VI

tection and Security 30

3.1 Introduction . 31

3.2 Preliminaries 34

3.2.1 Background 34

3.2.2 Global flow 36

3.3 Related work ... 38

3.4 Active hardware metering 40

3.4.1 Method 41

3.4.2 Ensuring proper operation 43

3.5 Low overhead implementation and obfuscation . 45

3.5.1 RUB implementation . 46

3.5.2 BFSM implementation 47

3.6 Attack resiliency 51

3.6.1 Description of attacks 52

3.6.2 Counter measures . 54

3.7 Experimental evaluations . 60

3.7.1 Experiment setup . 60

3.7.2 Overhead of active hardware metering 61

3.7.3 Resiliency against the brute force attack 64

3.8 Potential applications . 67

3.9 Conclusion. 68

4 Remote Activation of ICs for Piracy Prevention and Dig-

ital Right Management 70

4.1 Introduction. 70

4.2 Related Work 73

4.3 Remote IC Activation 74

4.4 Attacks 77

4.5 Experimental results

4.5.1 Area, delay, and power overheads

4.5.2 Diversity of the keys

4.6 Conclusion..........

5 Active Control and Digital Rights Management of Inte-

grated Circuit IP Cores

5.1 Introduction .

5.2 Related Work

5.3 Flow of the Active Control for IP Cores .

5.4 IP Control Method

5.4.1 BFSMs.

5.4.2 CFSM

5.4.3 PDF.

5.5 Implementation

5.5.1 BFSM Implementation

5.5.2 PDF Implementations

5.5.3 CFSM Implementation

5.6 Attacks and Safeguards .

5.7 Experimental Results.

5.8 Applications .

5.9 Conclusion. .

Vll

77

77

79

80

81

82

85

86

88

88

89

90

91

91

92

94

94

96

98

100

6 N-Version Temperature-Aware Scheduling and Binding101

6.1 Introduction. 102

6.2 Related work

6.3 Flow

6.4 N-version scheduling / binding.

103

104

105

6.5 Rotational N-version method.

6.6 Experimental evaluations.

6.7 Conclusion .

7 Conclusion

7.1 Contributions

7.2 Future Directions

Bibliography

Vlll

106

108

111

114

114

116

118

Illustrations

1.1 An example of state space diversity.

1.2 An algorithm and its implementation in hardware ..

1.3 An example of spatial diversity. .

1.4 An example of temporal diversity.

2.1 A 4-variant Design

2.2 Design of an N-variant circuit.

2.3 Implementation choice for the experiments ..

2.4 Flow of MPEG video compression flow ..

3.1 Example of a 8TG with five states. The inputs required for

state-to-state transition are shown next to the edges. . ..

3.2 The global flow of the active hardware metering approach.

3.3 The boosted FSM (BFSM).

3.4 Illustration of steps for building a sparse 3-bit 8TG.

3.5 Obfuscation of the original STG.

3.6 Example of a black hole FSM.

3.7 A simplified SFFSM

3.8 Percentage of (a) power; and (b) area; overheads vs. size after adding

3

4

5

6

13

18

24

25

35

37

43

49

51

55

57

al 5 FFs 8TG. 64

4.1 F8M with a lock on the replicated state (82).. . • . • • • . •• 72

x

4.2 Close-up of the locking/unlocking mechanism. 72

4.3 A non-linear unclonable random unique block. 76

4.4 Area, delay, and power overhead for different numbers of extra states

for benchmark s298. 80

4.5 The average number of inputs producing unique output for 1,000

different RUBs. 80 .

5.1 A reuser's design including multiple IP cores. Each IP may be

locked/unlocked by the IP designer or the reuser, depending on the

application.

5.2 The flow of the active control for integrated circuits' IP cores.

5.3 PUF challenge/response pairs.

5.4 System block diagram.

5.5 Implementation of the BFSM.

5.6 Implementation of the PUF ..

5.7 Implementation of the CFSM.

5.8 The change of the overhead with increasing the number of IPs

sharing the PUF

84

87

90

91

91

93

94

99

6.1 Flow of the rotational N-version thermal-aware scheduling and binding. .. 104

Tables

1.1 List of included published work. .. 8

2.1 Area overhead of the N-variants implementation.. 26

2.2 Power and delay overheads of the N-variant implementation. 27

2.3 The overhead for 29-variants (m = 2), 218-variants (m = 4), and

236-variants (m = 8) DCT. 28

3.1 Area overhead of active metering for various benchmarks. 62

3.2 Delay and power overhead of active metering for various benchmarks. 63

3.3 Average number of attempts needed for the brute force attack to

unlock the added STG. 65

3.4 Percentage of area and power overheads after adding one blackhole. 67

4.1 Area overhead for adding six extra states for Random and Heuristic

state selection. 78

4.2 Delay and power overhead for Random and Heuristic selection methods. 79

5.1 The overhead of BFSM modifications for one IP. .

5.2 CFSM overhead for integration of five IPs

6.1 Max temp. improvement (min resources) ..

6.2 Max temp. improvement (add resources) ..

97

98

109

110

xii

6.3 Area overhead of the N-versions in Table 6.1. 111

xiii

Abreviations

• AFSM:, Authentication Finite State Machine

• ASIC: Application Specific Integrated Circuit

• BFS: Breadth-First Search

• BFSM: Boosted Finite State Machine

• BLIF: Berkeley Logic Interchange Format

• CA: Certification Authority

• CAR: Capture And Replay

• CDFG: Control DataFlow Graph

• CFSM: Control Finite state Machine

• DAG: Direct Acyclic Graph

• DFG: DataFlow Graph

• DRM: Digital Rights Management

• ECC: Error Correction Code

• FF: FlipFlop

• FM: Flexibility Metric

• FPGA: Field Programmable Gate Array

xiv

• FSM: Finite State Machine

• GD: Global Diversity

• HLS: High-Level Synthesis

• IC: Integrated Circuit

• IP: Intellectual Property

• LD: Local Diversity

• MV: Manufacturing Variability

• NMR: N-Modular Redundancy

• NVP: N-Version Programming

• NVS: N-Version Software

• NVX: N-version eXecution

• PKC: Public Key Cryptography

• PUF: Physically Unclonable Function

• RB: Recovery Block

• RFID: Radio-Frequency IDentification

• RTL: Register Thansfer Level

• STG: State Thansition Graph

1

Chapter 1

Introduction

Lightweight embedded devices have stringent area and power constraints. Such de­

vices need to be portable with long battery life. A designer can consider an ASIC or

an FPGA implementation for such devices. The power and area constraints make an

ASIC implementation of such devices the natural choice, especially when the mass

production of these devices is to be considered. On the other hand, FPGAs can be

economical when only a small quantity of the devices is to be manufactured.

Other issues that arise in the design and manufacture of these devices, however,

complicate the decision. In many applications, the device would benefit from flexi­

bility that is not available in ASICs derived from conventional designs. For example:

• After manufacturing, the designer might want to tweak the design to improve

the performance of an individual chip.

• The designer might also prefer to provide different implementations of the same

design that can operate at different points on the energy / performance curve.

• Functionality can be varied (for instance some features can be limited or dis­

abled) depending on the customer who buys the chip.

While an FPGA implementation can easily achieve these goals, it is more diffi­

cult to address these points using an ASIC implementation without incurring large

overheads. This thesis explores one option to address the problem: embed multiple

2

implementations of the control circuitry in the same design. We call this technique

N-variant hardware design.

This thesis explores the techniques required to implement N-variant design in

a standard ASIC design flow, a necessity if these techniques are to have practical

application. It demonstrates how to use N-variant design to achieve two distinct kinds

of diversity: state space diversity and schedule diversity. This diversity is useful in

its own right, as it allows an ASIC designer to achieve the goals that we laid out

earlier. Variants of the control circuitry can be designed to have identical or slightly

different functionalities depending on the target application. We can summarize the

objectives as follows.

1. Using the standard ASIC flow to implement N-variants gives the N-variant

methodology all the performance advantages of ASICs.

2. Embedding multiple variants of the control circuitry of the design on chip, either

by manipulating the state space of the design or by manipulating the schedule

of the design, can be used to make the chip more robust and resilient against

security attacks.

3. The N-variant methodology manipulates the control part of the circuit. Since

the control part represents a small fraction of the whole chip (about 1% [1]),

the overhead due to the added redundancy is expected to be low.

Given the basic tools for N-Variant Design, we can attack more complex design

problems. For example, we can use the tools of N-variant design to design ASICs

that have chip-specific locks to protect the IC or to protect individual IP cores on

the IC. These locks can be used to require a chip specific key that resets the chip's

initial state to an operable state, or to check continuously for the presence of a key

(a)FSM

--I
I
I

(b) Version 1 (e) Version 2

Figure 1.1 : An example of state space diversity.

3

and protect against unauthorized use. These locks exploit individual variation in the

ASIC coupled with multiple variant control circuits and circuit obfuscation to create

ASICs that require a unique key per manufactured chip to operate. The computation

of the key requires both knowledge of the individual chip, obtained from specific test

vectors, and knowledge of the obfuscated design, which the designer holds private.

1.1 Thesis

My thesis is that by intelligently embedding different implementations of a part of

the design in an Ie, one can achieve the flexibility and diversity needed to protect an

embedded device or tune its performance while maintaining low overhead and without

significantly changing the current design flow.

To support this thesis, we propose two different levels of adding diversity to a cir­

cuit: state space diversity, and scheduling diversity. State space diversity is achieved

by adding states to the finite state machine (FSM) representing the control part of a

system. Figure 1.1 (a) shows an example of adding state space diversity to an FSM

where we make a copy S~ (shown in black) of state So and all the transitions to and

from it (duplicated transitions are shown as dashed lines). Figures 1.1 (b) and (c)

show the two different versions of the FSM. In the first version we use states So,

a b

y

(a) Algorithm:
y=a+2b+c

(b) Implementation

Figure 1.2 : An algorithm and its implementation in hardware.

4

81 , and 82, and in the second version we use 8b, 81, and 82. While both versions

of the FSM are functionally equivalent, 8 0 and 8b are represented by different state

encodings. Thus, if the designer provides means of checking the state encoding at

runtime, and after the initial setting each customer (a chip used) is associated with

a version, traversing the edge from 8 1 to 80 or 8b can be used to verify the identity

of the chip running the design.

Variant FSMs can have different state encodings [2], have different extra FSM

parts added to them [3], or differ in a subset of the states and transitions [4]. We

show the application of state space diversity to active hardware metering and IP

rights protection in [2, 3, 4, 5].

Scheduling diversity is implemented by manipulating the scheduling and bind-

ing algorithms used for high-level synthesis of circuits. In high-level synthesis an

algorithm is compiled into a hardware circuit by converting it first into a control

dataflow graph (CDFG); then scheduling, allocating, and binding the CDFG, and

finally, converting the schedule into an FSM representing the controller and a data­

path containing the ALUs, memory and communication logic. Figure 1.2(a) shows

an example of a CDFG for a simple algorithm that computes y = a + 2b + c. Fig-

(a) Version 1

c1 : t=ADD1 (a,b)
w=ADD2 (b,c)

------------~~~
c2: y=ADD1 (t,W)

(b) Version 2

c 1 : t=ADD1 (a,b)
w=ADD2 (b,c)

c2: y=ADD1 (t,W)

Figure 1.3 : An example of spatial diversity.

5

ure 1.2(b) shows the hardware implementation of the algorithm using two hardware

adders ADDl and ADD2 and a controller. We manipulate the controller to generate

designs with different types of scheduling diversity: spatial and temporal.

Figure 1.3 shows how we can add spatial diversity to the implementation of the

simple algorithm described above. The control steps are shown as C l and C2 . For the

first version shown in Figure 1.3(a), the controller uses ADDl and ADD2 to compute

the intermediate results t and W respectively. Then it uses AD Dl in the second

control step to compute the final result y. This way ADD2 is only used in half the

control cycles in the first version. In the second version shown in Figure 1.3(b), the

controller uses AD D2 in the second control cycle to compute y. Thus, in the second

version AD Dl is used half the time and we have spatial diversity in the activities of

different modules on the chip.

Temporal diversity can be implemented in a similar way as spatial diversity. How-

ever, for temporal diversity the controller is manipulated to run at different control

steps to generate versions with different delays. Figure 1.4 shows an example for

temporal diversity. In the first version shown in Figure 1.4(a), the controller executes

the computation of y in two control steps. In the first step it computes t and w,

then in the second step it computes the final result y. In the second version shown in

Figure l.4(b), the controller does the computation in three steps. It computes t in the

(a) Version 1

c1 : t=ADD1 (a,b)
w=ADD2 (b/c)

------------~~~
c 2 : y=ADD1 (t/w)

(b) Version 2

c 1 : t=ADD1 (a,b)

c2 : w=ADD2 (b/c)

c 3 : y=ADD1 (t/w)

Figure 1.4 : An example of temporal diversity.

6

first step, w in the second step, and y in the third step. This way, the second version

takes an extra control step to compute the result. Temporal diversity can be used

in systems that require different deadlines for different tasks. For tasks that have a

longer time to execute, one can slow down the system and thus reduce the power con-

sumption by disabling the unused modules. For energy savings, the designer might

use the same adder in all three cycles of an operation, thus avoiding any energy cost

incurred by enabling and disabling the adders on different cycles. In this scheme, the

designer might provide two control FSMs, one that used AD Dl and the other that

used ADD2 • For heat distribution, the design could cycle between them.

1.2 Organization

The rest of this thesis is organized as follows. The use of the N-variant methodology to

add state space diversity is presented, along with potential applications, in Chapter 2.

That chapter shows a method that automatically replicates the state of a design by

duplicating a subset of the logic gates used to implement the design. This method

can be applied automatically to any synthesized design that includes an FSM.

Chapters 3 and 4 present two different methods to implement state space diversity.

In Chapter 3, we use replication to duplicate states in the controller of a design. The

7

method adds a large number of extra stages to the design by adding extra loops to the

original FSM. Manufacturing variability is used in conjunction with state replication

to illustrate how to take advantage of state diversity in active hardware metering of

ICs. Chapter 4 incorporates state diversity by duplicating a small subset of the states

and edges in the design, with remote activation of ICs as an illustrative application.

Chapter 5 shows how to use state diversity to provide a data rights management

platform for IP protection.

Chapter 6 illustrates the use of scheduling diversity to control peak temperature

of an IC during operation. Finally, Chapter 7 concludes the thesis and suggests future

work in this area.

Chapters 2 through 6 have already appeared in print. The content has been

reformatted to fit Rice University thesis form, but has not otherwise been changed*.

Table 1.1 shows the proper citations for those chapters, including the collaborators

who are co-authors on those papers.

*Because Chapters 2 through 6 reproduce published work, they appear unchanged. A careful

reader will note that the overall percentage improvements in those chapters are presented as the

average of the improvements. In other areas of Computer Science, these numbers might be computed

using the aggregate improvement or the geometric mean.

8

Table 1 1 . List of included published work.

Chapter Citation

Chapter 2 Y. Alkabani and F. Koushanfar, N-variant IC design: methodology and

applications, in Design Automation Conference (DAC), pp. 546-551,

2008.

Chapter 3 Y. Alkabani and F. Koushanfar, Active hardware metering for intellec-

tual property protection and security, in USENIX Security Symposium,

pp. 291-306, 2007.

Chapter 4 Y. Alkabani, F. Koushanfar, and M. Potkonjak, Remote activation of

ics for piracy prevention and digital right management, in IEEE/ ACM

International Conference on Computer Aided Design (ICCAD), pp. 674-

677, 2007.

Chapter 5 Y. Alkabani and F. Koushanfar,Y. Alkabani and F. Koushanfar, Active

control and digital rights management of integrated circuit IP cores, in

ACM/IEEE International Conference on Compilers, Architectures, and

Synthesis for Embedded Systems (CASES), pp. 227-234, 2008.

Chapter 6 Y. Alkabani, F. Koushanfar, and M. Potkonjak, N-version temperature-

aware scheduling and binding, in International Symposium on Low

Power Electronics and Designs (ISLPED), pp. 331-334, 2009.

Chapter 2

N-Variant Ie Design: Methodology and
Applicatipns*

Abstract

9

We propose the first method for designing N-variant sequential circuits. The flex­

ibility provided by the N-variants enables a number of important tasks, including

IP protection, IP metering, security, design optimization, self-adaptation and fault­

tolerance. The method is based on extending the finite state machine (FSM) of the

design to include multiple variants of the same design specification. The state transi­

tions are managed by added signals that may come from various triggers depending

on the target application. We devise an algorithm for implementing the N-variant

Ie design. We discuss the necessary manipulations of the added signals that would

facilitate the various tasks. The key advantage to integrating the heterogeneity in the

functional specification of the design is that we can configure the variant during or

post-manufacturing, but removal, extraction or deletion of the variants is not viable.

Experimental results on benchmark circuits demonstrate that the method can be au-

tomatically and efficiently implemented. Because of its lightweight, N-variant design

is particularly well-suited for securing embedded systems. As a proof-of-concept, we

implement the N-variant method for protection of content of portable media players,

e.g., iPod. We discuss how N-variant design methodology readily enables new digital

*This work is published in: Y. Alkabani and F. Koushanfar, N-variant IC design: methodology
and applications, in Design Automation Conference (DAC), pp. 546-551,2008.

10

rights management methods.

2.1 Introduction

N-variant design is the generation of N 2: 2 realizations of the same initial design

description. T1!e advantage of the technique is that it provides ~mproved flexibility,

robustness, attack resiliency, and design diversity. The strength and usefulness of

N-variant designs was previously demonstrated for programs [6], virtual machines

[7], and for achieving architectural heterogeneity [7]. While the method was initially

intended for providing fault-tolerance, recent applications in security of computer

systems, software and data has amplified its importance. Many attacks that take

advantage of the specific and stationary nature of the underlying platform, may be

eliminated by using N-variants [7, 6].

We propose the first methodology for designing N-variant IGs. The method works

at the functional specification level, or by scripts that automatically perform pre­

synthesis alterations. We construct a single hardware design consisting of multiple

variants that are planned to have several exploitation sets. Note that it is also possible

to do N-variant design post-synthesis. The drawback is that the design would become

vulnerable to removal attacks. The advantage of pre-synthesis alternation is that all

of the variants become an integral part of the functionality pertinent design, making

the removal attack detrimental to the whole structure.

N-variant Ie design has a number of important applications.

(i) Hardware IP protection and digital rights management: New semiconductor busi­

ness models can be enabled by the N-variant design, e.g., different versions of one

design can be sold to various vendors, enabling an automatic way to trace the IGs.

(ii) Usage and content metering: Alternation of the variants can be used for enumer-

11

ating the usage of IC components that run software/ media files, or in conjunction

with unclonable chip IDs for metering the usage of an ICs.

(iii) Security: There is a need to prevent the exploits that target a homogeneous

design from working on all the ICs [7]. Selection of different variants provides an

effective countermeasure against the attacks.

(iv) Post-silicon optimization: Because of the manufacturing variability, for each

IC, the designer can use the testing results to select the variant that has the best

power / delay characteristics.

(v) Self-adaptation: Due to the impact of variability in operational conditions, e.g.,

aging, the IC can be designed such that it can adapt its structure over time.

(vi) fault-tolerance: The inherent redundancy provided by N-variants enables fault­

tolerance.

Integration of N-variants at the functional level is done by altering the FSM and

adding several states to it. By managing (controlling) the inputs to state-transitions,

one would be able to select different variants of the design. The management inputs

may come from various triggers, that depend on the target task for the N-variant

design. We discuss in detail how the management may be altered for the various

applications that we are considering.

The key advantage of using FSM is that it is not extractable from the synthe­

sized design. Thus, even for a party who has access to the synthesized hardware

IP, changing the FSM or extracting the original single-variant design would need an

effort equivalent to redoing all the stages of design and implementation. For our

purposes, the FSM can be safely assumed inextricable. Another important benefit

of FSM is that certain aspects of FSM are inexpensively verifiable post-silicon. The

inextricability and verifiability properties of the FSM were previously used for water-

12

marking and for hiding information inside the design, and for remote activation and

disabling [8, 9, 4]. As it was shown in the context of watermarking and IC activa­

tion/ disabling, careful constraint manipulation and don't care planning can greatly

reduce the overhead of FSM modifications. The new method is particularly well­

suited for lightweight embedded systems applications. This is because the N-variant

design enables lightweight mechanisms for protection and security of IP, software

and content. The overhead of implementing traditional cryptographic protocols is

huge, often overwhelming the constrained resources of an embedded system [10]. As

a proof-of-concept, we demonstrate application of N-variant IC design for content us­

age metering of portable multimedia devices with an embedded MPEG compression

module.

2.1.1 Motivational example

Figure 2.1 illustrates a motivational example, where the FSM of the design is shown

by a state transition graph (STG) that has four states: So, SI, S2, and S3. This FSM

is the first variant. We replicate this design three times to have: s~, s~, s;, and s~ as

the first copy (the second variant), s~, s~ , s~, and s~ as the second copy (the third

variant), and S~/, S~/, S~/, and S~' as the third copy (the fourth variant). Thus, we

construct a 4-variant circuit. The different copies can share FFs at the synthesis step

to reduce the overhead. By careful state assignment, one can ensure that the FFs

needed for each variant to function properly are different in at least one FF. This way,

even if a FF is corrupted, there are still other copies that can function properly. In

Figure 2.1, we show an example of how the FFs can be shared between the different

variants. Assume that we implement the design using 4 FFs. The four FFs denoted

by Fl, F2 , F3 , and F4 are shown in front of each variant. The FFs in white affect

13

the functionality of the variant, while the FFs in gray do not affect the functionality

of the variant (although they can keep flipping all the time for obfuscation reasons

depending on the application). For instance, the first variant can use g, and F2

shown in white, while F3 , and F4 do not affect its functionality. However, the second

variant is affected by Fl and F4 • Thus, if F2 is corrupted, the first variant will not

function properly, but the second will. For the circuit to properly function, it is

enough to have one correctly functional variant selected. However, depending on the

application, we can choose to switch between different variants, or to prefer a variant

over the other based on their performances. Thus, the selection function shown in

Figure 2.1 is application dependent as discussed in Section 2.4.

Figure 2.1 : A 4-variant Design

2.1.2 Paper organization

In the next section, we discuss the background and related work along the lines of

FSM and the N-variant concept. In Section 2.3 we devise an algorithm for efficient in­

tegration of the N-variants. Section 2.4 demonstrates how the variant selection inputs

can be managed to facilitate various applications. Experimental results evaluating

14

the overhead of the method on standard benchmarks are presented in Section 6.6.

The proof-of-concept implementation for metering multimedia files is also reported.

Section 6.7 concludes the paper and outlines a number of future research directions.

2.2 Background

We describe the background and related literature in FSM and N-variant systems

that has influenced and inspired our work.

2.2.1 FSM

A FSM is a dynamic discrete system with limited number of states that maps input

sequences into output sequences. It can be used to represent a sequential function,

e.g., sequential circuits. A FSM is typically defined by a 6-tuple M=CE,tl,Q,qo,6,>.),

where

- ~ =1= 0 is a finite set of input alphabets;

- tl =1= 0 is a finite set of output alphabets;

- Q={ qo,qI, . .. }=I= 0 is a bounded set of states;

- qo c Q is the set of initial states;

- 6 (q, a) is transition function on input a and set Q x ~ ---+ Q;

- >. (q, a) is output function for input a and set Q x ~ ---+ tl;

The STG is used to represent the state transitions and input/output relations of

the FSM; nodes correspond to states and edges define the input/output conditions

for state transitions.

FSMs are used for information hiding and watermarking purposes. Oliveira pro-

poses to alter the STG such that a signature is mapped to a spacial topological

property in the sequence of states traversed by a sequence of inputs [8]. Yuan and Qu

15

exploit the existence of redundant transitions and manipulate them to hide informa­

tion inside the FSM without altering the minimized FSM [9]. Alkabani et al. use a

combination of physically unclonable functions and state replication to uniquely lock

each 10 [4]. The lock is interleaved with combinational and sequential transitions and

can be used for enabling/disabling of the 10. The unlocking is done by sequence of

inputs that can only be generated by knowing the FSM structure.

The classic way for fault-tolerance FSM design is triple modular redundancy

(TMR) , where three copies of FSM are concurrently run and the correct output

value is determined by voting [11]. Even though TMR may be viewed as a basic

N-variant design method, we emphasize that the new N-variant methodology is not a

simple replication of the FSMs. Instead, the variants are elegantly interwind within

the original design. N-variant design has applications that TMR or other traditional

fault-tolerant design methods do not support.

Our N-variant design algorithm is devised to have a low-overhead. A class of

methods that is relevant to our work is state assignment and state minimization of

large FSM networks [12, 13, 14, 15, 16]. The concepts and methods used in FSM

minimization may help to even lower the overhead of N-variant designs in the future.

2.2.2 N-variant method

N-version software development was introduced as early as 1968 [17]. The goal was to

achieve fault-tolerance [18, 19]. N-versioning collects N copies of the target software

written by different programmers and then runs them in parallel, using the redun­

dancy in the results to achieve fault-tolerance. N-versioning is different from N-variant

since N-variant systems include multiple copies within the same design that appear

different. So far, the main usage of N-variants has been for security purposes [7, 6].

16

The motivating idea is that most systems are homogeneous and the same exploit can

attack all instances of the system. The specific machine-level characteristics of the

attacked computer is used by the binary exploits, e.g, byte order, calling conventions,

program load addresses, etc. If the system is not exactly the same, the exploit would

not be able to adjust itself and the attack will be halted.

Achieving a heterogeneous computer system by using randomization was first

introduced by Forrest et al [20]. Cox et al. present an architectural framework that

systematically uses automated diversity that provides detection and disruption of a

large class of attacks [6]. Holland et al. extended the idea of achieving heterogeneity

by generating the architecture-dependent parts of kernel and standard C library from

machine description [7]. Their approach successfully suppresses the risks of code

injection attacks and state corruption attacks.

As we have mentioned in Section 2.1, N-variant IC design can enable many more

tasks than just security and attack resiliency. Perhaps the most interesting appli­

cations are in the domain of IP protection and enabling new business models, and

for post-silicon optimization and self-adaptations of the ICs. Furthermore, because

the N-variants are embedded into the hardware, the overhead is smaller than embed­

ding them into the virtual machine and/or the architecture. The low overhead of the

N-variant IC renders it suitable for embedded systems applications.

2.3 N-variant Ie design

In this section we discuss how the N-variant circuit can be designed. Figure 2.2

demonstrates the flow of our design. The implementation steps can be summarized

as follows:

1. A single copy of the FSM is implemented as a group of FFs connected to the

17

input and output through combinational circuits logicl and logic2 respectively,

as shown in Figure 2.2(a).

2. Modify the FSM as shown in Figure 2.2(b) as follows:

(a) Select the parameter m representing the number of replications of the FFs

in the circuit.

(b) Partition logicl into logicla and logiclb and replicate logicla for m times.

(c) Partition logic2 into logic2a and logi~b and replicate logicla for m times.

(d) Design the obfuscation logic and the selection logic to maintain the correct

circuit's functionality. The obfuscation logic is implemented at the input

side and is used to distinguish between different variants, and to generate

dummy values in the unused FFs. The selection logic is used at the output

side to select the output of the target variant. Note that when a variant

is not selected it does not have to generate correct outputs.

Selection of the number of replications and the way the combinational circuits are

partitioned yield the state-space of all possible implementations. Each choice requires

a minimal complexity of the obfuscation and selection logics. It is worth noting here

that the choice is also affected by the application targeted by the N-variant design

method.

It is clear that the overhead of the implementation varies greatly with the choice

of m, the partitioning of the combinational circuit, and the complexity of both the

obfuscation and selection logic blocks. The area and power overheads of the methods

are affected mainly by m, and by the partitioning of the combinational circuits. The

delay is only affected by the selection and obfuscation logic. At one extreme, one can

set m = N, logiCia = logiCi, and logiCib = 0, while implementing the selection logic as

logic,. + 1ogI -logic,

IogIcC'I ... copy of
logic

(a) Original FSM (b) N-varlant FSM

Figure 2.2 : Design of an N-variant circuit.

18

a multiplexer and discarding the obfuscation logic. This configuration produces the

highest area and power overheads, and the lowest delay. At the other extreme, one

can set m = 1, logic"a = 0, logic"b = logic". This leads to an obfuscated circuit, and

produces the lowest area and power overheads, and the highest delays. The potential

impact of each of the possible design parameters is as follows .

• FFs. The FFs represent the memory of the FSM, they can be replicated m times

where m ~ 1; m = 1 means the FFs are all shared and this removes a big part

of redundancy in our implementation. However, the method can still have multiple

variants by manipulating the logic blocks.

• Logicl. This circuit component represents the combinational part of the circuit at

the input side. It is divided into two parts: logicla and logic1b. Logic1a is to be

replicated m times, and logiclb is shared. Increasing the size of logicla leads to larger

19

area and power overheads. However, it does not affect the delay overhead. Despite

the introduction of more area and power overheads, it can be useful for applications

with timing constraint.

• Logic2' This circuit represents the combinational part of the circuit at the output of

the FFs. It is divided into two parts: logic2a and logic2b' Logic2a is to be replicated

m times, and logic2b is shared. Just like the case in logicla, increasing the size of

logic2a leads to larger area and power overheads and can be useful for applications

targeting performance improvement and fault-tolerance.

• Obfuscation logic. The obfuscation is used to adjust the inputs for different variants.

The more FFs are shared between variants, the more complex this part will be.

However, in cases where few FFs are shared, this part is used to generate dummy

values in the unused FFs. This can be useful for security applications.

• Selection logic. This block is responsible for ensuring that the correct output from

the target variant is selected. In case of many FF replications, it can be simply

implemented as a multiplexer. However, as the number of shared FFs increases, it

becomes increasingly important to interleave this block with the obfuscation logic to

guarantee that the correct outputs are obtained regardless of the selected variant.

The nature of the original circuit also affects the significance of the overhead.

For instance, if the combinational logic is very small in area, power, and delay, even

the slightest replications and the simplest obfuscation and selection logic will yield

a significant overhead compared to the original one. Note that the area and power

overhead of an FSM (representing the control part of a system) is extremely small

compared to the overall area and power overhead of the system.

20

2.4 Application-specific management of the N-variants

In this section, we describe a number of management methods that can enable each of

the applications described in Section 2.1. The variant selection contains the following

components and structures: • Trigger. A trigger prompts selection of a new variant.

It may come from various sources, including the clock signals, an internaLcounter, a

sequence of inputs, or an external signal.

• Storage. The memory can be used in case selection of a variant is dictated by a

stored key, or in case a counter should save its state in presence of rests. Also, many

binary attacks may exploit a fixed memory address. To defend against this attack,

all or some parts of the memory needs to by duplicated .

• Driver. The driver uploads the new variant in case a trigger is activated. A driver

may be as simple as a multiplexer uploading the variant selection key from a stored

location, or it may be a driver FSM, e.g., an obfuscated counter.

The above components can be used in various ways to manage the variant selection

suited for a particular application. A few examples are as follows.

(i) Hardware IP protection and digital rights management. An IC vendor could con­

figure its chips by using a fixed key specific to each customer. This provides a new

mechanism to trace back the ICs in the supply chain. Also, many existing hardware

IP protection methods can be readily used in N-variant settings. For example, the

sequence of traversal among a few variants or within a variant could be utilized as a

watermark or for hiding information [8, 9]. As another example, the N-variant struc­

ture could be integrated with the unique random number generated on each chip, for

fingerprinting or locking the state transitions by the manufacturer [4].

(ii) Usage and content metering. The N-variants can be used to enforce licensing

21

agreement for the hardware, software, or content usage. Once the license agreement

term is over, the IC would enter a nonfunctional state. The IP rights owner is the only

entity that can load a new functional variant if a new license is obtained. A trigger

by a clock or an internal counter can be used to save the number of uses or the

time constraints. In case a counter is used, the states should be saved in an on-chip

nonvolatile memory so the chip's reset would not affect the usage metering. Similar

triggers were used for licensing of FPGA IPs [21], where it was noted that the trigger is

vulnerable to memory reset/clock reset attacks. One possible countermeasure against

this attack is to randomize the counter, so that resetting to zero would not traverse

to the zero usage state. Many other counter obfuscation methods are possible. For

example, one may initialize the counter by using a PUF, so different configurations

will be needed depending on the unique IDs of each chip.

(iii) Security. The system could be made heterogeneous by frequently alternating the

FSM variant [7]. For example, in case of exploits that use a fixed memory address,

the memory can be duplicated creating a master and a slave copy. Every time a new

variant is selected, the master and the slave copies would switch. The slave would

copy its content from the master. If an attack exploits an address on the master copy,

it would halt once the master copy is altered.

(iv) Post-silicon optimization. Because of the variability in CMOS technology, the

variant with the best power or delay performance would be different on each IC. A

spectrum of new post-manufacturing optimizations can be enabled by using the test

data to determine the variant that has the best performance on each IC. For example,

one may design the chips to have the maximum possible frequency, by selecting low

feature sizes for the gates. Due to variability, some of the delays would be longer than

planned, slowing down a few critical paths.

22

(v) Self-adaptation. The variants could be strategically uploaded using an offline or

online monitoring method that manages the upload based on a certain target. For

example, to be resilient against aging, one can equalize the amount of usage of the

various components. Offline simulation of randomly selected variants can determine

which components are used more in one variant. The variants with the largest differ­

ence in their usage patterns may be periodically loaded to equalize the aging effect.

(vi) fault-tolerance. The flexibility and redundancy of the N-variant design can be

utilized for providing fault-tolerance. For example, if a FF is shown to be faulty during

the test phase, the configurations that do not use this FF will be uploaded. The fault­

tolerance can be implemented in more sophisticated ways, by adding a monitoring

mechanism. As an example, a BIST structure can be included which periodically

tests the circuit for faults due to aging, NBTI, or HCI effects. The correct variants

could be managed accordingly.

2.5 Experimental results

In this section, we implement the N-variant method described in section 2.3 on bench­

mark designs and evaluate its performance. A program is written in C to generate

N-variants for each design. The Berkeley SIS tool is used to simulate the results and

to estimate the overhead. In the first subsection, we show the experimental results

for applying the method on standard MCNC'91 benchmarks. In the second subsec­

tion, we demonstrate a DCT example as a proof-of-concept for applying the method

to embedded multimedia applications. All the resulting circuits are mapped to the

MCNC library.

23

2.5.1 Implementation of the N-variant method

Figure 2.3 shows an implementation of the N-variant method for m = 2. Our design

targets embedding at least one redundant component for each part, while maintaining

low area, power, and delay overheads. We present the results for m = 2 and m = 4

that translate to doubling and quadrupling the number of FFs respectively. . The

obfuscation logic is implemented as a block of XOR gates that place different values

in the unused FFs for each variant. The selection logic is implemented as a multiplexer

block. The number of variants generated by this implementation for a circuit with

k FFs is 2k for m = 2, and is 4k for m = 4. Our selection of each parameter of

the N-variant design (see Section 2.3) and the impact of the choice on the target

applications are as follows:

• FFs. We selected m = 2 and m = 4. Selecting m = 2 ensures that the scheme has

at least one spare FF for each variant; m = 4 provides more redundancy.

• Logicl. We selected Logicla = 0, and logiclb=logicl. The choices are made to reduce

the area and power overheads. However, fault-tolerance and post-silicon optimization

are now only dependent on FF redundancies.

• Logic2. We devised the following parameters: Logic2a = 0, and logic2b=logi~. The

selection is made to reduce the area and to reduce the delay and power overhead.

Again, fault-tolerance and post-silicon optimization are only dependent on FFs.

• Obfuscation logic. For m = 2 and m = 4, only a half, or a quarter of the FFs are

shared respectively. We select the obfuscation function to be a block of XOR gates

that generate dummy values in the unused FFs. We limit the maximum number of

variants to be 2k (for m = 2) and 4k (for m = 4) to keep the function simple and to

constrain the delay overhead. Note that some of the variants can be reserved as trap

24

non-functional FSMs for security and IP protection applications.

• Selection logic. This part is implemented as a multiplexer and is kept simple to

avoid large delay overheads.

Note that the parameter choices used in one implementation are driven by the

designer's target application. The real results may be affected by many factors such

as the original shape of the circuit, the gate library used, and different optimizations

done on the circuit after modification.

Figure 2.3 : Implementation choice for the experiments.

Tables 6.3 and 2.2 show the respective area, power, and delay overheads for m = 2

and m = 4. The evaluations on the used benchmarks show a maximum area and power

overheads of 20% and 19% respectively, while the delay overhead was at most 17%

for m = 2. The area and power overhead for m = 4 goes up to 48% and 62%, and

the maximum delay overhead is 21%. It should be noted that the benchmarks with

the highest overhead are very small. It is also interesting to note that sometimes the

overhead is negative (the circuit is improved) because the resulting circuit maps to

fewer gates in the MCNC library. The average area overhead is -0.65% and 12% for

m = 2 and m = 4. The average power overhead increased from -3% for m = 2 to 15%

25

when m = 4. As expected the average delay overhead did not change by increasing

m' it remained 10% in both cases for the evaluated benchmarks. All modifications ,

to the circuits are done on the netlist before mapping. The relative values are more

important than the absolute values as the values in the library can be scaled down.

It is worth noting here that the delay over head is the only important metric in real

designs. This is because the FSM which constitutes the control part of the design is

typically only a small part of the design, significantly less than 1% of the power/area

[1]. Thus, even if the FSM's area or power is doubled, it will not significantly affect

the overall design.

2.5.2 Embedded multimedia application

Figure 2.4 : Flow of MPEG video compression flow.

We report the results of implementing the N-variant method for content usage

metering for embedded multimedia applications. The key observation that facili­

tates ultra-low overhead implementation is that the N-variants do not need to be

instrumented in all parts of the design; only the critical parts of the design can be

strategically selected and augmented. In our multimedia example, we implement N-

26

Original m=2 m=4

BM PI PO FFs Area Area % Area %

dk16 2 3 5 461 482 4.6 535 16.1

keyb 7 2 5 461 490 6.3 535 16.1

planet 7 19 6 887 914 3.0 975 9.9

planet 1 7 19 6 887 914 3.0 975 9.9

pma 8 8 5 346 382 lOA 419 21.1

81488 8 19 6 880 915 4.0 973 10.6

8208 11 2 5 148 178 20.3 219 48.0

8420 19 2 5 148 151 2.0 191 29.1

8820 18 19 5 429 256 -40.3 296 -31.0

8832 18 19 5 427 271 -36.5 316 -26.0

8tyr 9 10 5 633 662 4.6 716 13.1

tma 7 6 5 287 318 10.8 362 26.1

Table 2.1 : Area overhead of the N-variants implementation.

variants in the DCT part of the design, the essential component for audio, image, and

video signal processing. Figure 204 shows a typical MPEG video compression flow

which contains both DCT and IDCT components.

Table 2.3 shows the results for applying the implementation described above to

the DCT control circuit. The original DCT circuit has 9 FFs. We evaluated N­

variant implementations with 29-variants (m = 2), 218-variants (m = 4), and 236_

variants (m = 8). The area, power, and delay overheads for m = 2 are 6%, 5% and

15.5%, respectively. Changing m and keeping the obfuscation and selection logic the

27

Original m=2 m=4

BM Power Delay Power % Delay % Power % Delay %

dk16 1649.8 97.7 1712 3.8 106.6 9.1 1935.1 17.3 107.6 10.1

keyb 1546.5 61.5 1635.5 5.8 67.6 9.9 1837.3 18.8 68.4 11.2

planet 3103.5 187.9 3156 1.7 219.4 16.8 3471.1 11.8 195.6 4.1

planet 1 3103.5 187.9 3156 1.7 219.4 16.8 3471.1 11.8 195.6 4.1

pma 1250.3 61 1309.8 4.8 67.9 11.3 1550.4 24.0 73.4 20.3

81488 3007.3 134.9 3088.7 2.7 152.7 13.2 3378.3 12.3 144.8 7.3

8208 480.4 25.4 573.6 19.4 26.9 5.9 779.1 62.2 30.9 21.7

8420 480.4 25.4 462.9 -3.6 26.9 5.9 667.1 38.9 30.5 20.1

8820 1423.9 33.7 790.7 -44.5 36 6.8 1007.9 -29.2 31.8 -5.6

8832 1445.1 33.6 855.4 -40.8 36.7 9.2 1089.9 -24.6 36.8 9.5

8tyr 2170.2 128.2 2272 4.7 144.9 13.0 2470.6 13.8 134.9 5.2

tma 989.3 64.8 1062.1 7.4 71.1 9.7 1287.9 30.2 72.7 12.2

Table 2.2 : Power and delay overheads of the N-variant implementation.

same, has a significant impact on the area and power overheads. For m = 4 the

area and power overheads increase to 16% and 18%, and for m = 8 the area and

power overheads reach 36% and 42%. However, the change in the delay overhead is

insignificant.

2.6 Concluding remarks and future directions

We introduce N-variant design methodology, a novel design method that creates N ~

2 copies of the same design. The strength and usefulness of N-variant design was

previously shown for systems, software, and architectural components. However, no

28

Orig. m=2 % m=4 % m=8 %

Area 821 871 6.1 955 16.3 1117 36.1

Power 2946 3084 4.7 3490 18.5 4198 42.5

Delay 123.8 143 15.5 140 13.1 139.7 12.8

Table 2.3 : The overhead for 29-variants (m = 2), 218-variants (m = 4), and 236_

variants (m = 8) DCT.

scheme for generation of N-variant designs was introduced, beyond simple replication

of the whole structure for fault-tolerance. We devise an algorithm for implementing

the N-variant design that works by extending the FSM such that it would include

multiple variants of the same design. We demonstrate how the scheme could be

utilized to enable a number of important applications, including hardware and content

IP protection, IP metering, security, design optimization, self-adaptation and fault-

tolerance. We also discuss how the input signals could be managed for enabling each of

the target applications. The experimental results on benchmark circuits demonstrate

the efficiency of the proposed algorithm in terms of area, power and delay. We

also present a proof-of-concept implementation of the method for N-veriant design of

MPEG decoders by only manipulating one of its circuit component, namely DCT.

Experimental evaluations shows the suitability of the method for embedded systems

applications.

The N-variant design methodology has a great potential to impact various ap-

plications and lays the ground for much more research. Potential future research

directions include implementation of the method on real lCs, careful development of

the digital rights management methods that exploit the N-variants as the underlying

mechanisms, finding more efficient methods for implementing the N-variants, devising

29

on-chip monitoring mechanisms so that the N-variants could be automatically used

for self-adaptation method, and design and implementation of post-silicon optimiza­

tion scheme that exploit the multiplicity of the variants. Last but not least, better

identification and classification of possible attacks against the introduced security

and protection mechanisms, particularly those for monitoring the vulnerability of the

system against the binary attacks must be performed.

Chapter 3

Active Hardware Metering for Intellectual
Property

Protection and Security*

Abstract

30

We introduce the first active hardware metering scheme that aims to protect inte-

grated circuits (IC) intellectual property (IP) against piracy and runtime tampering.

The novel metering method simultaneously employs inherent unclonable variability

in modern manufacturing technology, and functionality preserving alternations of the

structural IC specifications. Active metering works by enabling the designers to lock

each IC and to remotely disable it. The objectives are realized by adding new states

and transitions to the original finite state machine (FSM) to create boosted finite

state machines(BFSM) of the pertinent design. A unique and unpredictable ID gen-

erated by an IC is utilized to place an BFSM into the power-up state upon activation.

The designer, knowing the transition table, is the only one who can generate input

sequences required to bring the BFSM into the functional initial (reset) state. To

facilitate remote disabling of ICs, black hole states are integrated within the BFSM.

We introduce nine types of potential attacks against the proposed active metering

method. We further describe a number of counter measures that must be taken to

preserve the security of active metering against the potential attacks. The implemen-

*This work is published in: Y. Alkabani and F. Koushanfar, Active hardware metering for intel­
lectual property protection and security, in USENIX Security Symposium, pp. 291-306, 2007.

31

tation details of the method with the objectives of being low-overhead, unclonable,

obfuscated, stable, while having a diverse set of keys is presented. The active meter­

ing method was implemented, synthesized and mapped on the standard benchmark

circuits. Experimental evaluations illustrate that the method has a low-overhead in

terms of power, delay, and area, while it is extremely resilient against the considered

attacks.

3.1 Introduction

In the dominant horizontal semiconductor business model, piracy (illegal copying)

and tampering of hardware are omnipresent. In the horizontal business model, hard­

ware Ipt designed by the leading edge designers are mostly manufactured in untrusted

offshore countries with lower labor and operational cost. This places the designers

in an unusual asymmetric relationship: the designed IP is transparent to the manu­

facturers, but the fabrication process, quantity and added circuitry to the manufac­

tured integrated circuits (ICs) by the foundry are clandestine to the designers and IP

providers.

The security threat, financial loss and economic impacts of hardware piracy which

have received far less attention compared to software, is even more dramatic than

software [22, 23]. Software piracy has received more attention compared to hardware

also because it requires low-cost resources that are available to the general public.

Protection of hardware is also crucially important because the ICs are pervasively

used in almost all electronic devices and the potentially adversarial fabrication house

has the full control over the hardware resources being manufactured. It is estimated

tIn this paper, the term IP is used to refer to the integrated circuits design specifications that is

available to the fabrication house.

32

that the computer hardware, corn.puter peripherals, and embedded systems are the

dominant pirated IP components [22].

Several other issues make the IC protection problems truly challenging: (i) very

little is known about the current and potential IC tampering attacks; (ii) numer­

ous attacking strategies exist, since tampering can be conducted at many levels of

abstraction of the synthesis process; (iii) the most likely hardware adversaries are

financially strong foundries and foreign governments with large economic resources

and technological expertise; (iv) the adversary has full access to the structural spec­

ification of the design and most often also to the manufacturing test vectors; (v)

the internal part of manufactured ICs are intrinsically opaque. While it is possible

to tomographically scan an IC, the dense metal interconnect in 8 or more layers of

modern manufacturing technology greatly reduce the effectiveness of such expensive

inspections.

IC metering is a set of security protocols that enable the design house to gain post­

fabrication control by passive or active count of the produced ICs, their properties

and use, or by remote runtime disabling.

Our strategic goal is the development, implementation, and quantitative evaluation

of symmetric mechanisms and protocols for hardware protection procured by untrusted

synthesis, manufacturing, and/or testing facilities. The term symmetric emphasizes

that both the designers and the foundry will be protected by the new methods. The

symmetry is warranted by the unique variabilities and the key exchange mechanism

that is based on the agreement of both parties for unlocking each IC.

Hardware metering is important from both commercial and military point of views.

For example, without metering, a foundry can produce numerous copies of one design

without paying royalties, or, as another example, the sensitive defense designs may

33

become available to adversaries. The passive hardware metering schemes work by

giving a unique ID to each chip [24, 25, 26]. The first ever active hardware metering

method introduced in this paper, provides not just mechanisms for detection of illegal

copies, but more importantly, ensures that no manufactured Ie can be used without

the explicit consent of the designer.

The proposed methods employ two generic security mechanisms: (1) uniqueness

of each Ie due to manufacturing variability; and (2) structural manipulation of the

design specification while preserving behavioral specification. While the first mecha­

nism has been already proposed and used for unique Ie identification, the second is

novel. Even more novel is the integration of two mechanisms, a task that requires

a great deal of creativity and formation of solutions to a spectrum of challenging

technology, synthesis and optimization problems, with a greater impact than the sum

of the powers of the individual techniques.

The integration to the functionality is performed by interwinding the unique un­

clonable IDs for each chip into the FSM of the design. The integrated control part

is denoted by BFSM, and is built by adding new states and transitions to the orig­

inal FSM, while preserving the original functionality of the circuit. To bring the

BFSM into the functional initial (reset) state, knowledge of the transition table is

required. Since the designer is the only one who knows this information, no one else

can generate a key with a finite amount of resources to unlock the Ie. Using a combi­

nation of BFSM and newly added black hole states, remote disabling of the Ies can

be made possible. We outline several possible attacks against the introduced active

hardware metering method and provide mechanisms that neutralize the impact of

those attacks. For example, we show how addition of the black hole states disable

the random guessing attacks.

34

The remainder of the paper is as follows. After describing the background, flow

and the state-of-the-art in the next two sections, we represent the active metering

method in Section 5.4. In Section 5.5, we show a low-overhead implementation

and obfuscation of active metering. Section 5.6 introduces potential attacks and

the counter measures that needs to be taken to be resilient against the attacks. We

present experimental evaluation of the prototype implementation on several standard

design benchmarks in Section 3.7. We outline a number of potential applications in

Section 5.8 and conclude in Section 6.7.

3.2 Preliminaries

In this section, we describe the necessary background required for understanding the

active hardware metering approach. The aim is to make the paper self-contained

for the readers who are not familiar with the hardware design and synthesis process.

Next, we describe the global flow of the active hardware metering approach.

3.2.1 Background

Manufacturing variability (MV). The intense industrial miniaturization of CMOS

devices has been driven by the quest for increasing computational speed and device

density, while lowering cost-per-function, as predicted by Moore's law. CMOS varia­

tions result in high variability in the delay and the currents of the VLSI circuits. The

variations might be temporal or spatial. The temporal variations may occur across

nanoseconds to years [27]. Spatial variation is due to lateral and vertical differences

from intended polygon dimensions and film thicknesses. Spatial variation may be

intra-die, or inter-die [28]. Aside from device variations, the circuit response and

its variability are correlated with circuit topology. We will utilize the spatial varia-

35

tions in our benefit, while we address the problem of alleviating temporal variability.

Bernstein et al. provide a classification of device variations (beyond 65nm) [29].

Design descriptions. We consider the case in which the sequential design in ques­

tion represents a fully synchronous flow and that the description of its functionality

from an input/output (I/O) perspective is publicly available. We assume that the

functionality is fully fixed, in that the I/O behavior is fully specified. Therefore, we

utilize unique unclonable identification to embed a distinct mark in the functionality

of each Ie, without altering the functionality in terms of the normal I/O behavior of

the circuit. Our technique is applicable to the case where the piece of IP is available

in structural HDL description, or in form of a netlist that mayor may not be tech-

nology dependent. The description uniquely defines the sequential circuit's behavior

and the state transition graph (see the next subsection) of the design.

During the design flow, the user will take such a description and if required, will

map it to a specific technology. Typically, logic level optimizations such as retiming

are performed at this stage. Most often, the circuit is used as a part of a more complex

design.

Figure 3.1 : Example of a STG with five states.The inputs required for state-to-state
transition are shown next to the edges.

Finite state machine (FSM). FSM is a discrete dynamical structure that translates

sequences of input vectors into sequences of output vectors. FSM can represent

36

any regular sequential function. It appears in different forms, e.g. case statements

in VHDL and Verilog HDL. The FSM is defined by the tuple M=(E,D..,Q,qo,8,)..),

where E # 0 and D.. # 0 are a finite set of inputs and outputs symbols respectively;

Q={ qo,q}, . .. }# 0 is a finite set of states while qo is the "reset" state; and the transition

function is denoted as 8(q, a) on the input a and the set Q x E -+ Q, while the output

function is denoted as).. (q, a) on the set Q x E -+ D...

To represent the state transitions and output functions of the FSM, we use the

state transition graph (STG), with nodes corresponding to states and edges defining

the input/output conditions for a state-to-state transition. An example STG is shown

in Figure 3.1, where there are five states {qo, q}, q2, q3, q4}, qo is the reset state, and

there is a one-bit input controlling the state-to-state transitions. In the remainder of

the paper, we use the terms STG and FSM interchangeably to refer to the control

part of the design.

3.2.2 Global flow

As a motivational example for our problem, consider the scenario in which a given

hardware intellectual property (IP) that belongs to its legitimate owner (Alice) is

made available to a fabrication house (Bob). Alice pays for and demands N A ICs

implementing its design. Bob, utilizes the IP description to construct a mask that

implements the design. Bob employs the mask to make N A + N B copies of the

design, where the illegal N B copies do not encounter much additional cost due to the

availability of the mask. Bob may sell the N B illegal copies and make a lot of profit

with negligible additional overhead.

The novel active metering helps Alice to protect her design against piracy by

manipulating the STG of the original design, with the objective of creating a locked

37

Alice Bob

Figure 3.2 : The global flow of the active hardware metering approach.

state, that is unique for each of the les manufactured from the design with a very high

probability. Upon manufacturing by Bob, each device will be uniquely locked (i.e.,

rendered non-functional), unless Alice is contacted by Bob to provide the particular

key to unlock the Ie. The scheme gives the full control over the manufactured parts

and operational devices from the IP to Alice.

The global flow of the active hardware metering method is shown in Figure 6.1. We

now describe the figure step by step. Alice takes the high level design description and

synthesizes it to get the FSM of the design. Next, she constructs the BFSM by adding

extra states. After that, she sends the detailed manufacturable design specifications

to Bob who makes the mask and manufactures multiple les implementing the design.

The manufactured les are locked (nonfunctional) at this stage. For each Ie, Bob

reads out the values in its flip flops (FFs) and sends the values to Alice. FF values

can be read nondestructively, and the values are unique for each Ie. Alice, knowing

38

the BFSM structure, computes a specific key that can be used as input to that IC

for unlocking it. The key is then sent back to Bob who utilizes it to activate the IC.

3.3 Related work

We survey the related literature that has influenced and inspired this work along four

main lines of research: variability-based ID generation, authentication and security by

variability-based IDs, intellectual property protection of VLSI designs, and invasive

and noninvasive hardware attacks.

A number of authors have proposed and implemented the idea of addition of

circuitry that exploits manufacturing variability to generate unique random sequence

(ID) for each chip with the same mask [24, 26, 30]. The IDs are unclonable and

separated from the functionality and do not provide a measure of trust, as they are

easy to tamper and remove. Loftstrom et al. proposed a method for mismatching

the devices based on changing the threshold of the circuits by placing the impurity

of random dopant atoms [24]. Maeda et al. proposed implementing the random

IDs on poly-crystalline silicon thin film transistors [26]. The drawback of the two

described approaches is that they both need specialized process technology, and are

easily detectable. Very recently, Su et al. have proposed a technique to generate

random IDs by using the threshold mismatches of two NOR gates that are positively

feeding back each other [30]. We will exploit their technique for the random ID

generation.

A team of researchers has explored the idea of using variability-induced delays for

authentication and security [31, 32, 33]. They use Physically Unclonable Functions

(PUFs) that map a set of challenges to a set of responses, based on an intractably

complex physical system. PUFs are unique, since process variations cause significant

39

delay differences among ICs coming from the same mask. For each IC, a database of

challenge-response sets is needed. Authentication occurs when the IC correctly finds

the output of one or more challenge inputs. PUF-based methods solely utilize manu­

facturing variability as their security mechanism. In contrast, our proposed methods

introduce a paradigm shift in hardware security by adding new strong mechanisms:

integration into circuit functionality at the behavioral synthesis level. Further more,

even though the active metering methods can be utilized for authentication, its main

target is addressing the hardware piracy problem.

Koushanfar et al. have introduced the first hardware metering scheme that gives

unique IDs to each IC [34]. The scheme was to make a small part of the design

programmable so that one could upload different control paths post fabrication. They

further described how to generate numerous different instances of the same control

path with the same hardware [25]. They have also provided probabilistic proofs for the

number of identical copies and probability of fraud for the proposed metering schemes

[34, 25]. All metering schemes were passive. Indeed, no active metering scheme has

been proposed to date. The prior work in trusted IC domain also includes introduction

of several watermarking schemes that integrate watermarks to the functionality of the

design at the behavioral synthesis level [35, 36, 37, 8, 38, 39, 40, 41]. Watermarking

is a fundamentally different problem when compared to metering. It addresses the

problem of uniquely identifying each IP and not identifying each Ie, so the existence

of the same mask does not affect the watermarking results. Fingerprinting for unique

identification of programmable platforms has been proposed [42], but the techniques

are not applicable to application specific designs (ASICs) due to the existence of a

unique mask. Qu and Potkonjak provide a comprehensive survey of the watermarking,

fingerprinting and other hardware intellectual property protection methods [38].

40

Even though many strong cryptographical techniques are available in hardware

and software, their attack resiliency has been only verified by classical crypto-analysis

methods. A class of attacks that is very challenging to address consists of physical

techniques. Physical attacks take advantage of implementation-specific characteristics

of cryptographical devices to recover the secret parameters. Koeune and Standaert

provide a tutorial on physical security and side-channel effects [43]. The physical

attacks are divided into invasive and noninvasive [44]. Invasive attacks depackage

the chip to get direct access to its inside, e.g., probing. Noninvasive attacks rely on

outside measurements, e.g., from the pins or by X-raying the chip, without physically

tampering it.

There are multiple ways to attack an Ie, including probing, fault injection, timing,

power analysis, and electromagnetic analysis. Invasive attacks are typically more

expensive than the noninvasive ones, since they need individual probing of each Ie.

Note that, according to the well-established taxonomy of physical attacks, attacks by

the funded organizations (e.g., foundries) are the most severe ones, since they have

both the funding and technology resources [45, 46, 44].

3.4 Active hardware metering

In this section, we present the details of the active hardware metering approach. Ac­

tive metering is integrated into the standard synthesis flow, and is low overhead, gener­

alizable, and resilient against attacks. By generalizable, we mean that the lock can be

implemented on structures that are common to all designs. By attack-resiliency, we

mean the cryptographic notion of a lock: that an attacker that does not have infinite

computational power should not be able to unlock the Ie without the knowledge of

a key. To be generalizable, the method proposed here aims at protecting the design

41

by boosting the design's FSM (and creating a BFSM) common to the widely used

class of sequential designs. In this section, we describe the BFSM construction and

introduce the locking mechanism. Implementation details are discussed in the next

section.

3.4.1 Method

Random Unique Block (RUB). Perhaps the most important component of the

proposed security mechanism is the existence of the unclonable unique ID for each

IC. The IDs are a function of the variability present at each chip and are therefore,

specific to the chip. RUB is a small circuitry added to the design, whose function is to

generate the unique ID. It is desirable that the RUBs do not change and remain stable

over time. Recently, a few paradigms for designing unique identification circuitry was

proposed [24, 26, 30]. The resulting IDs are mostly stable, and we will later show how

to extract a nonvolatile ID from the RUB, even in presence of a few unstable bits.

Addition of the BFSM. The key idea underlying the proposed active metering

scheme can be described in a simple way. Assume that the original design contains

m distinct states. Further assume that the state of STG are stored in k, I-bit flip

flops (FFs). The FFs represent a total of 2k states, out of which m states correspond

to the original design and (2k - m) states are dont cares. The metering mechanism

adds an extra part to the FSM of the design. The added states are devised such that

there are a number of transitions from the states in the added STG to the reset state

qo of the original design.

In our scheme, the power-up state of each IC is built to be a function of the

manufacturing variability and thus, will be unique to each instance. Furthermore,

we select k such that 2k - m > > m. This selection ensures that when the circuit is

42

powered up, its initial state will be in one of the added states in BFSM. Assume that

the Ie is powered up in the added state qaO. During the standard testing phase, the

manufacturer can read the state ofthe design, e.g., by scanning and reading the FF's.

However, unless the foundry has the knowledge of the STG, finding the sequence of

inputs required for the correct transition from the state qaO to the reset state qo is a

problem of exponential complexity. Essentially, there will be no way of finding the

sequence other than trying all the possible combinations.

More formally, assume that the sequence of I primary inputs denoted as aI={ al,

a2, ... , aI} applied to the state qaO is one correct sequence of states that starts

from qaO traverses I states denoted by QI={qab qa2, ... , qa(I-l),qO}, i.e., qo=8(qao, a).

Assuming that the input is b bits and there are cycles in STG, finding the correct

input sequence that would result in I consecutive correct transitions is a problem

with exponential complexity with respect to b and is thus, intractable.

As an example, consider the STG shown in Figure 3.3(b) that consists of the

original STG that has five states ({ qO,qI,q2,q3,q4}) with augmentation of twenty seven

added states ({ q5 ,q6, . .. ,q3d)· Edges are incorporated to the added states to ensure

that there are paths from each of the added states to the reset state of the design.

The block shown in Figure 3.3(a) is a RUB.

The output of the RUB defines k random bits that will be loaded into the FF's of

the augmented STG upon start-up. Now, an uninformed user who does not have the

information about the transition table (e.g., foundry), can readout the data about the

initial added state qaO, but this information is not sufficient for finding the sequence of

primary input combinations to arrive at the reset state qo. However, the person who

has the information about the structure of the STG, upon receiving the correct state,

would exactly know how to traverse from this locked state to qo. In other words, the

43

(a) RUB initially loading the STG's FFs

(b) The original and enhanced STG

Figure 3.3: The boosted FSM (BFSM).

owner of the FSM description is the only entity who would have the key to unlock

the IC.

An interesting application of the proposed BFSM construction method is in re­

mote disabling. Alice will save the RUBs and the keys for all the ICs that she has

unlocked. Using the chip IDs that are integrated within the functionality, she can add

mechanisms that enable her to monitor the activities of the registered chips remotely,

for example, if they are connected to the Internet. She can further add transitions

from the original STG to untraversed states, to lock the IC in case it is needed. Re­

mote disabling has a lot of applications. For example, it can be used for selective

remote programming of the devices, and royalty enforcement.

3.4.2 Ensuring proper operation

The following issues and observations ensure proper operation and low-overhead of

active hw metering:

44

(i) Storing the input sequence (key) for traversal to the initial state qo·

During testing, once Bob scans out the FF values and sends them to Alice, she

provides the key to Bob. He includes both the original RUB and the key in the chip,

for example, in a nonvolatile memory. This data is utilized along with the unclonable

RUB circuit, for transition to the reset state. Since the power-up state is unique for

each IC, sequence of inputs (key) that traverse the power-up state to the reset state is

also specific to each IC. One needs to store the key which performs the traversal at the

power-up state on each chip. There are many ways to accomplish this. For example,

the designer could add a small programmable part to the design which needs to be

coded with the unique sequence (key) before each IC is in operation. Coding ensures

protection of keys against other software attacks. As an alternative, the sequence

might not be included in the memory and just used as a permanent password to the

IC.

(ii) Powering up in one of the added states. This condition can be easily

guaranteed by selecting a large enough k. Assuming that all the states have an equal

probability, the probability of starting in one of the added states is (2k - m) 12k. For

a given m, we select k such that the probability of not being in one of the added

states is smaller than a given probability. For example, for m = 100 and k = 30, the

probability of starting up in an original state is less than 10-7 .

(iii) Diversity of power-up states (unique IDs). k should also be selected so

that the probability of two ICs having the same ID becomes very low. Assume that

we need to have d distinct ICs each with a unique ID. Assuming that the IDs are

completely random and independent, we utilize the Birthday paradox to calculate

this probability and to make it low. Consider the probability PIC1D(k, d) that no two

45

ICs out of a group of d will have matching IDs out of 2k equally possible IDs. Start

with an arbitrary chip's ID. The probability that the second chip's ID is different is

(2k -1)/2k. Similarly, the probability that the third IC's ID is different from the first

two is [(2k - 1)/2k].[(2k - 2)/2k]. The same computation can be extended through

the 2k-th ID. More formally,

PICID(k, d)
2k -12k - 2

2k . 2k
2k!

(3.1)

Thus, knowing d, the number of required distinct copies, and setting a low value for

PIC/ D , we would be able to find k that satisfies the above equation.

(iv) Overhead of the added STG. The number of states increases exponentially

with adding each new bit, and thus, the scheme has a very low overhead. Note that, in

modern designs, the control path of the design (i.e., FSM) is less than 1% of the total

area and hence, adding a small overhead to the FSM does not significantly affect the

total area [47, 1]. In the next section, we will describe a low-overhead implementation

of the proposed method.

(v) Diversity of keys. There is a need to ensure that the keys are distinct in all

parts of their sequences, or there is a very small shared subsequence between different

keys. This is granted by making multiple paths on the graph from each of the states

to the reset state. We will elaborate more on this issue in the attack resiliency section.

3.5 Low overhead implementation and obfuscation

In this section, we discuss the implementation details of the RUB and the BFSM

that are the required building blocks for the active hardware metering approach. We

46

start by outlining the desired properties of each block, and then we delve into its

implementation details.

3.5.1 RUB implementation

A critical aspect of the proposed security and protection mechanisms is the generation

of random ID bits. There are a number of properties that the RUB implementation

has to satisfy, including:

• Low overhead. The added parts must not introduce a significant additional

overhead in terms of delay, power consumption and the area.

• Distribution of IDs and their correlations. To have the maximal difference

between any two ID numbers (the maximal Hamming distances) the ID bits must be

completely random. Thus, no correlation must be present among the ID bits on the

same die or across various dies.

• Indiscernibility. The IDs must be integrated within the design, such that they

cannot be discerned by studying the layout of the circuit. For example, the IDs

should not be placed in a memory-like array, where the regularity of the array and

its connections to the FFs could be easily detected.

• Stability. There is a need to stabilize the IDs over the lifetime of an IC. This

is particularly important since studies have shown the temporal changes in CMOS

process variations due to many environmental and aging effects including, residual

charges, self-heating, negative-bias temperature instability, and hot electron effects

[29].

For implementing the random IDs, we employed the recent novel approach pro­

posed by Su et al. [30]. They have designed and tested a new CMOS random ID

47

generation circuit that relies on digital latch threshold offset voltages. Using cross

coupling of gates, they report significant improvement in readout speed and power

consumption over the existing designs.

Each ID bit is generated by cross-coupled NOR gates. The latch sides are pulled

low initially. At the high to low clock transition, the state of each latch is determined

by the threshold voltage mismatch of the transistors. Essentially, the approach relies

on the positive feedback inherent in the latch configuration to amplify the mismatch.

This design removes the need for comparators, low offset amplifiers, or extra dopants

needed in previous random ID generation methods [24, 31]. The nominal overhead of

the above proposed approach is two NOR gates per bit. The authors have reported

96% stable IDs using this method, while using dummy latches to protect the IDs.

Even though we use the random bit architecture described above, our layout and

implementation of random bits are very different. To be indiscernible, we do not

place the coupled NOR gates in an array, and instead synthesize them with the rest

of the circuit and camouflage them within the sea of gates. based on invariability of

the ID bits for an Ie. In Subsection 3.6.2, we provide a mechanism that ensures the

occasional errors in ID bits do not affect the hardware metering approach.

3.5.2 BFSM implementation

The key design objectives and challenges of the BFSM are as follows:

• Low overhead. The addition of the states to the original FSM must have a low

overhead in terms of area, power, and delay. This is particularly challenging: as we

have computed in Subsection 3.4.2, even under the assumption of having RUBs with

Uniform distribution of random bits, the number of added states must be exponen­

tially high to ensure a proper operation.

48

• Traversal path. There must be a path on the BFSM, from each of the power-up

states (except for the black hole states that we will describe in Section 3.6.2) to the

reset state.

• States obfuscation. The states must be completely obfuscated and interchanged

to camouflage the added STG and the original STG. Another level of obfuscation is

disabling the observability of the FFs, so that similar states on two ICs do not exactly

have the same code scanned out from their FFs.

• Multiplicity of keys. It is highly desirable to construct the paths on the added

STG in such a way that there are multiple paths from each power-up state to the reset

state. This will ensure that there are multiple keys for traversal. Now, if the states

are obfuscated such that a similar state on two ICs has different codes, and each of

them gets a different key for traversal to the original STG, the state similarities will

not be apparent, even to a smart observer.

To achieve a low overhead, we have systematically designed STG blocks that are

capable of producing an exponential number of states with respect to their underlying

hardware resources. The blocks are designed such that there are multiple paths from

each of the added states to the reset state and thus, the mUltiplicity of the keys is

satisfied. Our first attempt was to synthesize the added blocks of STG and the original

STG together. However, because the synthesis software automatically optimizes the

interwoven architecture, it most often ended up with a combined STG that was

much larger than the sum of its components. Thus, we decided to first separately

synthesize the original and the added STG before we merge them. Next, we employed

obfuscation methods that constantly alter the values of the FFs, even those that are

not used in state assignment in the current STG. As we will see in attack resiliency

49

section, the introduced obfuscation method has the side-benefit that the adversary

cannot exactly distinguish a similar state on two different les.

The added STG can be designed to be low overhead; there are exponentially many

states for each added FF, ignoring the overhead of the STG edges. However, in real

situations, the transitions (edges) require logic. Thus, the added STG is constrained

to be sparse to satisfy a low overhead. We have built this block in a modular way.

We describe one of our modules here and then discuss systematically interconnecting

the modules to have a multi-bit added STG that has a low overhead.

(a) Ring counter (b) Reconnecting a state (e) Adding a few edges

Figure 3.4 : Illustration of steps for building a sparse 3-bit STG.

The first module is a 3-bit added STG. In Figure 3.4, we show three steps for

building this module. We start by a ring counter as shown in Graph 3.4(a). Next,

we pick a few states and reconnect them to break the regularity. A small example

is illustrated in Graph 3.4(b), where the state ql is reconnected, such that still there

will be a path from each state to any other state. Finally, we add a few transitions

(edges) to the STG, like the example shown in Graph 3.4(c); here the states ql and

q4 are reconnected, while the edges { q4 ~ ql, q7 ~ q3, q7 ~ q7, q2 ~ q2 } are added.

The example is just an illustration. Many other configurations are possible.

The various combinations have different post-synthesis overhead. To ensure a low­

overhead, we exhaustively searched the synthesized 3-bit structure with various sparse

edge configurations like the example above, and selected the configurations with the

50

lowest overhead as our 3-bit modules. As it is apparent from the structure, many

low-overhead configurations are possible and we do not need to use the same module

multiple times.

After that, we picked the low overhead modules and started to add edges to inter­

connect them, such that the connectivity property is satisfied, and the interconnected

configuration still has low overhead. Furthermore, we need multiple interconnecting

paths that can produce multiple keys. This is again done via a modular randomized

edge addition and searching the space of the synthesized circuits to find the best

multi-bit configurations. Note that, the synthesis program performs state-encoding

for the interconnected modules. We have noticed that the distance of the codes as­

signed to the states does not have a correlation with the proximity of the states.

Therefore, even for two RUBs that are only different in I-bit, typically the power-up

states are not close-by on the added STG.

In our experiment, we have tested our approach on 12, 15, and IS-bit added

STGs. Now, the original STG has to be glued to the added part. This is done by

an obfuscation scheme that ensures the states of FFs that are associated with the

original STG keep pseudorandomly changing, even when we traverse the states of the

added STGs. Thus, for an observer who studies the values of the interleaved FFs,

the activity study would not yield an informative conclusion that can help separating

the original and the added states. A simple example for this obfuscation is depicted

in Figure 3.5. In this figure, a small original STG with five states is presented. The

cloud shown below the original STG indicates the added states.

There are multiple state transitions from the added states to the original state.

However, we only show one arrow on the plot not to make it more crowded. In this

example, we use the three don't cares of the design for obfuscation purposes. There

51

Or~inal ST~ __ O~~t.S

q1 \,.\1

Figure 3.5 : Obfuscation of the original STG.

are 3 don't care states that we use to form three new dummy states q*5, q*6, and

Q*7, illustrated in grey color. The glue logic attaches the inputs and the states of the

added STG to the dummy STG. Thus, by carefully designing, one can alter the bits

on the dummy STG by changing the input and the states of the added STG without

touching the original FSM. If the design does not have sufficient don't cares, we can

add a couple of FFs for the dummy states and use the same paradigm. The important

requirement for the dummy states is that as a group they should present both 1 and

o digits in all FFs. The original STG is also connected to the dummy STG and can

utilize it as a black hole (described more thoroughly in Subsection 3.6.2), if there is

a need to halt the Ie.

3.6 Attack resiliency

This section first identifies several types of potential attacks on the active hardware

metering approach. Next, we outline a number of mechanisms that must be added to

the basic active metering scheme to ensure its resiliency against the suggested attacks.

The adversary (Bob) may attempt to perform a set of invasive or noninvasive

52

attacks on the proposed active metering scheme. Bob may do so by measuring and

probing one instance, or by statistically studying a collection of instances. In this

section, we first identify and describe the attacks. Next, we propose efficient counter

measures that can be taken to neutralize the effect of potential adversarial acts.

We assume that Bob knows all the concepts of the proposed hardware metering

scheme, has the complete knowledge of the design at all levels of abstraction provided

to the foundry (e.g., logic synthesis level net list , and physical design GDS-II file,

but no behavioral specification), can simultaneously observe all signals (data) on

all interconnects and flip-flops (FFs) , and can measure, with no error, all timing

characteristics of all gates in the ICs.

3.6.1 Description of attacks

The starting point for development and evaluation of the metering schemes is identi­

fication and specification of several types of potential attacks:

(i) Brute-force attack. Bob aims to place the pertinent IC into the initial state by

systematically applying the input sequences to the BFSM. The systematic application

may be a randomized strategy, or may be based on scanning the FFs. Brute-force

attack works by randomly changing the inputs in hope of arriving at the reset state.

Scanning works by reading out the FF values for a few ICs and storing them. The

FFs in the current IC are then monitored for the existence of a common state with

the stored ones. In case a state that was read in the previous ICs is reached, Bob

uses the same key for traversal to the reset state.

(ii) Reverse engineering of FSM. Bob may try to scan the FFs to extract the

STG. The attempt would be to remove the added STG from the BFSM, to separate

53

the original and the added states.

(iii) Combinational redundancy removal. Bob may use the combinational re­

dundancy removal, a procedure that attempts to remove the combinational logic that

is not necessary for the correct behavior of the circuit. The proposed techniques of

this class often take into account the set of reachable states of the FSM under ex­

amination [48]. Note that, the attacks that were described so far can greatly benefit

from the ability to simultaneously monitor the multitude of signals/values on the IC

using laser reading.

(iv) RUB emulation. The goal of this attack is to create a reconfigurable imple­

mentation capable of realizing hardware that has the identical functional and timing

characteristics to a RUB for which a legal key is already received.

(v) Initial power-up state capturing and replaying (CAR). Bob knows the

initial power-up state of an unlocked IC. He can use invasive methods to load the

FFs of other ICs to the same power-up state as the unlocked IC and then utilize the

same key to decode the new locks. Note that, unless invasive methods are used, the

only way for Bob to alter the values in the FFs is to change the states using the

input pins. Without the knowledge of the STG, the change of state can only be done

as described in the first attack. This attack and the next two belong to the class of

replay attacks.

(vi) Initial reset state CAR. Bob scans the FF of an unlocked IC and reads the

code of the reset state. Next, he employs invasive methods to load the FFs of other

ICs to unlock them.

(vii) Control signals CAR. In this attack, Bob attempts to bypass the FSM by

learning the control signals and attempting to emulate them. Bob may completely

54

bypass FSM by creating a new FSM that provides control signals to all functional

units, and control logic (e.g. MUX's and FFs) in the datapath.

(viii) Creation ofidentical ICs using selective IC release. Bob only releases the

ICs with similar characteristics to Alice in the hope of finding the keys by correlations.

This attack is probably the most expensive because it involves only a small percentage

of manufactured ICs by the untrusted foundry. Only the ICs that have similar RUBs

are reported. Hence, if the attack is successful, the design house supplies many keys

for ICs with similar RUBs; the birthday paradox shows that one of the keys with

relatively high likelihood can be used on the unreported ICs. Note that, the way

for Bob to determine closeness of characteristics is by looking at the distances of the

initial power-up states.

(ix) Differential FF activity measurement. Bob may start to investigate the

differential activities of the FFs of the unlocked designs for the same input, and then

try to eliminate the FFs that have different values.

3.6.2 Counter measures

We propose a number of mechanisms to augment the basic active metering scheme and

preserve its security against the above attacks. Two important observations are that

FSMs in modern industrial design are always a very small part the overall design, well

below 1%, and that STG recovery is a computationally intractable problem [47, 1, 8J:

• Creating black holes FSMs. Alice may create a black holes FSM inside the

BFSM that makes the exit impossible. Black holes are the states that cannot be exited

regardless of the used input sequence. Their design is very simple as shown in Figure

3.6, where the black states do not have a route back to the other states. Furthermore,

I Added I
STG

Figure 3.6 : Example of a black hole FSM.

55

a designer can plan the black hole states to be permanent if it is desirable: a small

part may be added, so that restarting the IC would not take it out of the black hole

states. This measure essentially eliminates the effectiveness of the first two attacks,

because no random input sequence leads to the initial state of the functional FSM:

once the black hole sub-FSM is entered, there is no way out. A special case is creation

of trapdoor black (gray) holes FSMs that are designed in such a way that only long

specific sequence of input signals known just to the designer can bring control out of

this FSM and into the initial functional state of the overall FSM. An issue that needs

to be carefully addressed here is preventing the IC from powering-up in one of the

black-hole states. This can be easily ensured by adding extra logic to the black hole

parts that would disconnect the black hole states from the power-up states.

• Merging the functional BFSM with the test and other FSMs, (e.g. ones

that can be used for debugging and authentication). In a typical design, the functional

control circuits are not the only FSMs around. Alice, with the the objective to make

identification of her functional FSM more difficult, can further intricate the BFSM

by co-synthesizing them with others. This augmentation makes the first two and

the three CAR attacks less effective. In particular, this merger would distract the

56

ability to simultaneously monitor the multitude of signals/values on the IC using laser

reading.

• Similar FF activity for the unlocked ICs. The designs would be made such

that once an IC exits the locked states and is in its functional states, all its FFs have a

deterministic behavior that is the same for all ICs. Thus, the differential FF activity

screening would not yield any useful information.

• Creation of specialized functional FSMs (SFFSMs). Alice can make the

security much tighter by integrating the RUBs not just to assign the initial power­

up state, but to alter the structure of the BFSM and make it a SFFSM. Using this

method, the reset state for FSM of each IC is a function of its RUB. Each SFFSM

operates correctly only if it received a specific stream of signals from the RUBs. Since

there are exponentially many states with respect to the number of FFs in FSM, we

map a set of blocks that share an identical subset of RUB outputs into a single

SFFSM. This counter measure makes the first two attacks (i.e., brute-force attack

and FSM reverse engineering) much more difficult and the first two CAR attacks

(i.e., initial control signal CAR and initial reset state CAR) almost impossible.

A simple example of this method is presented in Figure 3.7. On this figure, the

added STG is shown by the cloud on left, and the original STG is plotted in the

right cloud. The original STG has only 3 states: a reset state two other states. Here,

the original STG is replicated twice: One replication is denoted by SFFSM' and the

other one is denoted by SFFSM". The scheme adds logic to the added STG, so based

on the bits in the RUB, it will be categorized into three classes. Each of the classes

will transition to one of the reset states in one of the clouds: original FSM, SFFSM'

or SFFSM". This scheme will cause confusion in FFs scanning methods that aim

57

at loading the reset state of an unlocked IC in the FFs of a locked chip. Note that,

the replicated states need not all be unique, and maybe shared among the replicas to

reduce the overhead.

Figure 3.7 : A simplified SFFSM.

The example is very small, but one can add the RUB-dependent states at various

stages to ensure that the attacker is not able to break the system. A combination

of the SFFSM method and the state obfuscation and encoding would ensure a full

security of the design against the CAR attacks. Furthermore, using similar methods,

the RUBs can be also added to the obfuscation scheme based on the dummy variables

like the example presented in Figure 3.5, so that the same inputs would have different

random obfuscation patterns.

Another use of SFFSM is for addressing the effect of temporal changes in RUB.

Recall that the actual application of the new hardware metering scheme to industrial

designs requires mechanisms that ensure resiliency against time-dependent perma­

nent changes of transistors as well as gate-level and transient changes due to the

environmental conditions such as temperature and supply voltage fluctuations [29J.

The exact reconstruction of the first power-up state of Ie (the particular one for

58

which the designer released the key) for the purpose of defeating the variabilities is

trivial: Bob can just load the captured and saved outputs of the first power-up RUB

for which he has obtained the key. This mechanism makes the design susceptible to

reuse attacks, where Bob can reuse the key and the initial RUB for an unlocked IC

to decipher another locked IC. However, if Alice included SFFSM in her design, she

would be resilient against this attack. The only technical issue that remains to be

addressed is to ensure that the SFFSM receives the correct data from the physical

RUB, exactly the same as the one that was first received and for which the key is

available. Otherwise, the stored key will fail.

In presence of temporal variations, ensuring that each SFFSM receives the cor­

rect data from RUB requires error-correction mechanisms. One solution is to employ

standard error-correction codes (ECCs). An alternative hardware solution that en­

counters a lower overhead compared to ECC is to create the specifications of each

SFFSM in such a way that it transitions into the correct next states, even when one or

up to a specified number of the inputs from the RUB are altered by the environmen­

tal conditions. Using the hamming distances of the RUBs, we can group them into

similar SFFSMs and synthesize the results such that the error correction mechanisms

are inherently present. This mechanism is particularly effective for longer RUBs that

are required for present industrial designs. Note that, because the minterms for the

combinational logic that implements transitions are now not smaller than for non­

resilient versions of the SFFSM, the hardware overhead is often zero or negative at

the expense ofthe lower resiliency against brute force attacks [49]. However, since the

probability of brute force attack can be made arbitrarily small with very low overhead

(i.e., by using the black holes), this is a favorable trade-off.

• Resiliency against combinational redundancy removal. To overcome this

59

attack, Alice must ensure the inapplicability of the attack to typical large circuits

and the capability of this method to remove the added states. In general, computing

a set of reachable states, can only be done for relatively small circuits, even when

the implicit enumeration techniques are used. Thus, the method is only applicable

to small circuits of small sizes.

• Statistical characterization of gates. Alice can go one step further and at­

tempt to derive the gate-level characteristics of the manufactured ICs by measuring

the input/output signals and exploiting the controllability and observability into the

design. Essentially, knowing the circuit diagram, she would be able to write a linear

systems of equations that can be solved for obtaining the approximate gate-level delay

and power characteristics of the gates. She may even go further to use the extracted

data to find the distribution of variations across the different chips (e.g., by using

methods such as expectation maximization(EM)). Now, if the variations do not have

enough fluctuations, then she will get suspicious and can halt the unlocking. This

computation would ensure that the selective IC release would not be successful.

• Obfuscation of state activities and encodings. The implementation of the

BFSM presented in the previous section renders it impossible to tell the difference

between the original FSM FFs and the added states FFs. This is because all of the

FFs are changing all the time. Therefore, even though two states of BFSM in two

Ies might be identical, the attacks based on scanning the FFs would not notice that,

since a subset of the bits will be different. In other word, the FFs not used in the

added FSM are randomly changing. Another obfuscation method that has already

been implemented is that the states in the added STG are not in order and are coded

out of sequence by the synthesis tool. Thus, even though there might be a direct

60

transition (edge) between two states, the methods based on FFs readings would not

notice the proximity of the two states, since there code words are distant from each

other.

Note that, the attacks that were described earlier, even the ones that are compu­

tationally very expensive, will not be able to unlock the ICs, if the counter measures

described above are in place.

3.7 Experimental evaluations

To test the applicability of the method described earlier, we implemented the active

hardware metering on standard benchmark designs. In this section, we present the

experimental setup, followed by the overhead of implementing BFSM on the consid­

ered benchmarks. After that, we show quantitative analysis of the effectiveness of the

brute force attacks. We further show how the addition of black holes can make the

scheme resilient against this attack with a minimal overhead. Note that, many of the

attacks described earlier are assuming structural counter measures that are hard to

quantify and evaluate.

3.7.1 Experiment setup

We used extended set of sequential benchmarks from the ISCAS'89 to evaluate the

impact of the active hardware metering method [50]. Even though the ISCAS'89

benchmarks are the latest comprehensive set of the gate-level designs, they are dated

compared to the complex circuits in design, production and use today. Recall that

following the Moore's law, the size and complexity of the circuits doubles approxi­

matelyevery 18 months. We use the larger benchmarks from the set, and we project

the results to more complex circuits. Our projections show that the power, area, and

61

delay overheads diminish as we increase the size and complexity. Simultaneously, the

locking complexity and resiliency against the attacks exponentially improves, due the

multiplicity of states. We synthesize the benchmarks using the Berkeley SIS tool [51],

that given a STG or a logic-level description of a sequential circuit produces an op­

timized netlist in the target technology (cell library) while preserving the sequential

input-output behavior. We have written a C program that modifies the benchmarks

by adding the extra states. The program calls SIS to obtain the specifications of the

synthesized and mapped original and modified STGs. When evaluating the overhead

results, the important observation is that FSMs (i.e., the control circuitry) in modern

industrial design are always a very small part of the overall design, well bellow 1%

[47, 1]. Thus, even doubling the overhead, will have a minimal impact on the overall

circuit that is mostly occupied by memory, testing pins, and data path circuitry.

3.7.2 Overhead of active hardware metering

Our first set of experiments study the overhead of the introduced scheme in terms of

area, power, and delay. It is worth noting here that our ultimate goal is to integrate

the active hardware metering method in the design flow. Thus we have considered

testing the approach on manufactured ICs. However, the prohibitive cost of manufac­

turing a circuit in aggressive technologies (the quote we got for fabricating a circuit in

65nm was $500K) limits our experiments to synthesizing the benchmarks. Table 3.1

presents the results for the area overhead. Because of the relatively small size of the

circuits, we added STGs with 12 FFs and 15 FFs overhead to the original STGs.

The first column shows the name of the circuit from the ISCAS'89 benchmark. The

second column shows the number of inputs to the circuit. The third column shows

the number of outputs to the circuits. Both the number of inputs and the number

62

Original Details 12 FFs 15 FFs

Circuit In lOut FFs Area Area % Area %

s27 4 1 3 18 224 11.44 278 14.44

s298 3 6 14 244 454 0.86 508 1.08

s344 9 11 15 269 480 0.78 534 0.99

s444 3 6 21 352 554 0.57 609 0.73

s526 3 6 21 445 648 0.46 702 0.58

s641 35 23 17 539 743 0.38 797 0.48

s713 35 23 17 591 793 0.34 847 0.43

s953 16 23 29 743 947 0.27 1001 0.35

s832 18 19 5 769 971 0.26 1025 0.33

s1238 14 14 18 1041 1264 0.21 1318 0.27

s1423 17 5 74 1164 1382 0.19 1436 0.23

s9234 36 39 135 7971 8174 0.03 8228 0.03

s13207 31 121 453 11248 11450 0.02 11504 0.02

s38417 28 106 1463 32246 32448 0.01 32502 0.01

Table 3.1 : Area overhead of active metering for various benchmarks.

of outputs do not change after adding the extra states. The fourth column shows

the number of FFs in the original circuit. The fifth column shows the area of the

original circuit. Then we show both the new area and the percentage overhead after

adding 12 FFs and 15 FFs for the extra states. It can be seen that the percentage

area overhead is decreasing as the circuit size increases. Thus, for larger circuit sizes,

the area overhead will be even less insignificant.

Table 3.2 shows the delay and power overheads. The first column contains the

63

Original Datall. 12 FF. 15 FF8
Circuit Dalay Power Dalay I % Power I % Delay 1 % Power 1 %

827 6.60 134.00 14.40 1.18 1418.70 9.59 14.40 1.18 1696.70 11.66
8298 15.00 1167.20 15.00 0.00 2468.60 1.11 15.00 0.00 2746.60 1.35
.344 27.00 1030.00 27.00 0.00 2325.90 1.26 27.00 0.00 2603.90 1.53
&444 17.60 1550.80 17.60 0.00 2815.20 0.82 17.60 0.00 3152.30 1.03
.526 15.20 2065.70 15.20 0.00 3334.30 0.61 15.20 0.00 3664.70 0.77
8641 97.60 1560.60 97.60 0.00 2832.10 0.81 97.60 0.00 3162.40 1.03
8713 100.00 1670.70 100.00 0.00 2935.00 0.76 100.00 0.00 3265.40 0.95
.953 23.60 1816.50 23.60 0.00 3084.20 0.70 23.60 0.00 3414.60 0.88
8832 28.80 2849.60 28.80 0.00 4114.00 0.44 28.80 0.00 4444.40 0.56

81238 34.40 2709.40 34.40 0.00 4034.00 0.49 34.40 0.00 4312.00 0.59
81423 92.40 4882.70 92.40 0.00 6226.30 0.28 92.40 0.00 6504.30 0.33
85378 32.20 12459.40 32.20 0.00 13515.00 0.08 32.20 0.00 14057.50 0.13
.9234 75.80 19385.50 75.80 0.00 20653.30 0.07 75.80 0.00 20983.70 0.08

.13207 85.60 37874.00 85.60 0.00 39138.40 0.03 85.60 0.00 39402.00 0.04
838417 69.40 112706.80 69.40 0.00 113869.00 0.01 69.40 0.00 114147.00 0.01

Table 3.2 : Delay and power overhead of active metering for various benchmarks.

benchmark names. The second and third columns show the delay and power estimates

of the original circuits. These are followed by both the delay and the percentage delay

overhead, and the power and the percentage power overhead for adding both 12 FFs

and 15 FFs STGs respectively. The delay overheads are universally small. With the

exception of s27 that is too small to be considered practical, it is interesting to see that

even other small benchmarks encountered no delay overhead after the addition of the

new STG. For the small benchmarks that are not realistic compared to the current

complex designs, the power increases significantly. As the circuit size increases, the

percentage power overhead decreases.

Next, we make a small model of the percentage of area and power overhead versus

size of the circuit to extrapolate to more complex designs. The size of the added STG

is fixed to 15 FFs. Figures 3.8{a) and 3.8{b) show the overhead data vs. size along

with the fitted polynomial models, for power and area respectively. The plots suggest

that as the circuit size increases, the percentage of power and area overheads both

i 0.8
CJ)

-E
~ 0.6
o
~

~ 0.4
o • Q.
~0.2

• %power
- Fitted %power

%~--~·~·~·~==2====L3~J
Area x 104

(a) % Power overhead vs. size.

1

i 0.8
CJ)

-E
II) 0.6

~
~ 0.4
aI
~0.2

• %area

- Fitted %area

2
Area

(b) % Area overhead vs. size.

64

Figure 3.8 : Percentage of (a) power; and (b) area; overheads vs. size after adding al
5 FFs STG.

decrease. Note that, for more complex designs, it is required to add significantly more

than 15 FFs. Even if adding a STG with 100 FFs would add six times the overhead

of the 15 FFs case in absolute terms, the overhead would be negligible, while there

will be 285 extra states added to the design. Thus, for current and future circuit

technologies, the BFSM would have a minimal impact on the performance in terms

of power, area, and delay (i.e., it will most likely stay less than 1% of the overall

design).

3.7.3 Resiliency against the brute force attack

Most of the attacks described in Section 5.6 can be encountered by devising intelligent

design strategies, as described in Subsection 3.6.2. The only attack that we quan­

titatively study here is the brute force attack. We model this attack by randomly

guessing the values on the graph until arriving at the functional reset state of the

original FSM.

We simulated the brute force attack on BFSMs with 12, 15, and 18 FFs, varying

65

II 3

Number of inputs

4 I 5 I 6 I 7 8 bits

12 74385 82708 78939 83156 77028 82490

15 560976 610373 602157 557776 592681 596260

18 933680 932501 938583 918312 N/R N/R

12 + bh 998000 999000 N/R N/R N/R N/R

15 + bh N/R N/R N/R N/R N/R N/R

12 + 2 bh N/R N/R N/R N/R N/R N/R

12 + 2 bh N/R N/R N/R N/R N/R N/R

Table 3.3 : Average number of attempts needed for the brute force attack to unlock
the added STG.

the inputs from 3 to 8. In this experiment, we set an upper bound of 1,000,000 guesses;

if the reset state is not reached after this many trials, the original STG is considered

unreachable (denoted by N/R) and the brute force attack is reported unsuccessful.

Table 3.3 shows the average number of guesses needed to unlock the BFSM over

a 10,000 simulation runs. The first three rows show added STGs with 12, 15, and

18 FFs respectively. The next two rows show the results for STGs with 12 and 15

FFs, after adding 1 and 2 black holes respectively. Although the number of inputs

does not affect the overhead, it impacts the resiliency against the brute force attack:

the table illustrates that the brute force attacks are less successful if we use more

than 3 different inputs. Also, as the size of the added STG increases, more guesses

are necessary to unlock the circuit. By adding one black hole to the smaller FSMs,

they perform better than the larger FSMs. Adding one or two black holes makes

the original STG unreachable for the brute force attack. It is worth noting here that

66

STGs with 12 and 15 FFs are really small, as they have a total of 4,096 and 32,768

states respectively. If the active metering scheme was to be implemented on current

industrial strength designs, the added circuit would have at least a 100 FFs that

would create 2100
I'V 1030 states. It would be impossible for a brute force attack to

find a key. Furthermore, addition of a few black holes will further make the system

resilient against the brute force attack.

Table 3.4 shows area and power overheads for adding a black hole with 2 states

to added STGs with 12 and 15 FFs respectively. The overhead of adding a black

hole does not exceed 5% even for very small benchmarks. For larger circuits it is

unnoticeable. Note that, we often add more than one black hole to the design, to

warrant the impossibility of the brute force attacks.

To evaluate the diversity of keys, we studied the number of cycles in the added

STGs. For this STG, we form a new graph STG*, that has the same nodes as STG,

but reverses the edges. Note that, simultaneously reversing all the edges will not

affect the number of cycles in the graph. Since each state on STG has a path to

the reset state, the directed acyclic graph (DAG) rooted at the original reset state in

STG* will have a path to all states. We find a DAG of STG* by using the Dijkstra's

shortest path algorithm. Next, we add the STG* edges to the DAG and see if they

form a cycle and combine the cycles into one node; we iteratively continue until the

cycles are gone. This approximate method is used to count the number of cycles.

Using the method, we roughly guess that the STG with 12 FFs had more than 40

cycles that enables the use to build exponentially many keys for traversal from a

certain state. The large number of keys can be easily generated by a combination of

cycling and switching between the cycles of the STG.

67

12 FF8 15 FF8

Circuit % Area % Power % Area % Power

827 0.05 0.04 0.04 0.03

8298 0.02 0.02 0.02 0.02

8344 0.04 0.02 0.03 0.02

8444 0.03 0.02 0.02 0.02

8526 0.01 0.02 0.01 0.02

8641 0.02 0.02 0.02 0.02

8713 0.01 0.02 0.01 0.02

8953 0.02 0.02 0.02 0.02

8832 0.02 0.01 0.02 0.01

81238 0.01 0.01 0.01 0.01

81423 0.01 0.01 0.01 0.01

85378 0.00 0.00 0.00 0.00

89234 0.00 0.00 0.00 0.00

813207 0.00 0.00 0.00 0.00

838417 0.00 0.00 0.00 0.00

Table 3.4 : Percentage of area and power overheads after adding one blackhole.

3.8 Potential applications

Active hardware metering provides strong anti-piracy mechanisms for hardware IP

cores as well as remote-disabling mechanisms for the manufactured parts. Remote

disabling can be accomplished if a malicious activity is detected. For example, a

designer can add an extra part to the circuit that detects say, the brute force attack

where too many invalid inputs are being entered. As another example, the strange

68

activity patterns of the chip may be detected from a network. Upon detecting such a

situation, a built-in disabling function would be invoked that transitions the IC into

a non-functional state. If this state is a black hole, the Ie cannot be used.

Generally speaking, combinations of the two employed security mechanisms, variability­

based uniqueness of each IC, and structural manipulation of FSM while preserving

the original behavioral specification, provide powerful basis for creating many security

and DRM protocols. A few of the many possibilities are: (i) use of a combination of

unique functionality and RUB for remote authentication and disablement of smart

cards; (ii) certification that a computation was executed on a specified IC in a dis­

tributed environment; and (iii) creation of techniques to produce software than can

only run on a specific IC, thereby preventing software piracy.

Furthermore, the introduced method has the potential for a broad impact on the

IC industry and military use of hardware. As an example, new royalty enforcement

systems can be enabled: design reuse has emerged as a dominant strategy, where

different IP cores are often supplied by different vendors. The final integrator pays

each IP supplier royalties that are proportional to the number of manufactured ICs.

All that is needed for royalty enforcement is that each supplier uses its own active

metering scheme inside its IP.

3.9 Conclusion

We propose the first active hardware metering scheme that symmetrically protects

the IP designer and the foundry by providing a key-exchange mechanism. The active

metering method utilizes the unclonable variability-based ID of each silicon circuit

(RUB) to uniquely lock the IC at the fabrication house. The FSM of the design

is enhanced to include many added states, designed such that the RUB-based state

69

is one of the random states with a very high probability. The state addition was

done in such a way that it would not affect the functionality of the original design.

The key to the locked IC can only be provided by the designer who knows the state

transition graph of the design. We have illustrated the addition of black hole states

to the BFSM which can be utilized for remote control and disabling of the ICs.

Black hole states are also useful in making the protection scheme highly resilient

against the brute force attacks. We presented a low overhead implementation for the

hardware metering scheme, identified a comprehensive set of possible attacks, and

provided mechanisms that make the scheme much more resilient against the attacks.

Experimental evaluations of the proposed metering method on standard benchmark

circuits illustrate the low overhead and the applicability of the approach on industrial­

size designs and its resiliency against different attacks.

Chapter 4

Remote Activation of ICs for Piracy Prevention
and Digital Right Management*

Abstract

70

We introduce a remote activation scheme that aims to protect integrated circuits

(Ie) intellectual property (IP) against piracy. Remote activation enables designers

to lock each working Ie and to then remotely enable it. The new method exploits

inherent unclonable variability in modern manufacturing for unique identification (ID)

and integrate the IDs into the circuit functionality. The objectives are realized by

replication of a few states of the finite state machine (FSM) arid adding control to the

state transitions. On each chip, the added control signals are a function of the unique

IDs and are thus unclonable. On standard benchmark circuits, the experimental

results show that the novel activation method is stable, unclonable, attack-resilient,

while having a low overhead and a unique key for each Ie.

4.1 Introduction

The increasing manufacturing cost of Ies has bolstered the horizontal semiconductor

business model, in which design and manufacturing are done by different companies.

As a consequence, the sole asset of a design company is the hardware intellectual

"This work is published in: Y. Alkabani, F. Koushanfar, and M. Potkonjak, Remote activation
of ics for piracy prevention and digital right management, in IEEE/ ACM International Conference
on Computer Aided Design (ICCAD), pp. 674-677,2007.

71

property (IP), since designers typically do not control the number of ICs manufactured

from a design. Also, hardware piracy, the illegal manufacturing of ICs using IPs, is

omnipresent.

With the horizontal business model, digital rights management (DRM) is becom­

ing an increasingly challenging problem due to the following factors. (i) The designers

have no control over manufacturing of individual ICs from a unique mask. (ii) The

IC internals are intrinsically opaque, and hence there is limited controllability and

observability inside manufactured ICs. (iii) Hardware piracy of state-of-the-art IPs

may only be done at fabrication facilities (fabs), where there are large resources and

access to the most advanced tools and techniques. (iv) Finally, there is an asymmet­

ric relationship between the designer and the fab, since the fab has full access to the

design files, netlists and test vectors.

To overcome the hardware IP piracy problem, various watermarking [38] and me­

tering protocols have been proposed [34, 25, 3]. IC metering involves a set of security

protocols that enables the design house to gain post-fabrication control through pas­

sive or active counts of produced ICs, through the monitoring of IC properties and

use, and through remote runtime disabling. Note that, IP watermarking is not the

same as metering. A watermark uniquely identifies each IP, not each IC, and hence

the existence of the same mask does not affect the watermarked IP. With passive

metering, each IC is uniquely registered into a database, so a suspicious chip'S ID can

be authenticated against the database. In active metering, the IDs lock the chip's

functionality. Unless the corresponding key is provided, the chip will not be able to

operate properly. We propose a new IC activation scheme that works by not just

active metering of ICs during the chip activation, but by also remotely enabling the

chip's regular operation. We denote the diverse ID generation circuitry by a Diverse

72

Random Unique Block (RUB). For each IC, the block generates a unique RUB output

for each RUB input vector.

Figure 4.1 : F8M with a lock on the replicated state (82).

In Figure 5.1, we illustrate the new remote activation method. The F8M of a

design with 6 states 80 to 85 is shown, where one of the states (82) is replicated three

times: 8'2, 8" 2,8'" 2. Once the design reaches the state 811 it will transition to one of

the four replicated states, depending on the RUB output (which is a function of its

specific input selected by the control circuitry). Unless the correct key corresponding

to the diverse RUB is provided, the state cannot transition to 83 (hence it will be

locked).

1
1

1
o

Figure 4.2 : Close-up of the locking/unlocking mechanism.

Figure 4.2 shows a closer look into the locking/unlocking mechanism. Assume that

73

there is a two-bit input controlling the edge transitions of the F8M. Assume further

that upon reaching the state 811 some input key with the value 1110 is selected and

the corresponding RUB output of the 10 under test is 0011. The first two bits define

the transition to one of the next replicated states (82 in Figure 4.2). Now, unless the

next input is 01, the state cannot reach 83 and the circuit will be locked. To enable

the transition, the next two RUB outputs (11) should be XOR'd with a key that

can generate the 01 output (in this case 10 is the key). For each authorized chip, a

specific set of RUB inputs will be provided to the fab. Upon manufacturing, the fab

will test the output of the specific input set by scanning the FF chains and reporting

the stored values. The corresponding output set will be sent to the designer who

will provide the corresponding key to unlock the chip. The specific input sets and

corresponding unique keys will be stored on the chip to ensure proper operation. In

practice, longer inputs and more replicated states will be used to guarantee security.

4.2 Related Work

Manufacturing variability (MV) has been used for generation of unique on chip IDs

[24, 26, 30]; however, the IDs were not integrated into the functionality. The first

10 metering scheme was proposed in 2001 [34, 25], but the scheme was passive.

Variability-induced delays were used for authentication and security [31, 32, 33, 52].

The underlying mechanism was Physically Unclonable Functions (PUFs) that map

a set of challenges to a set of responses, based on an intractably complex physical

system. Because MV could cause delay differences among lOs made from the same

mask, PUFs would be unique. A database of challenge-response sets is formed for each

10. The chip is authenticated if it can retrieve the output of one or more challenge

inputs. Note that, PUFs were only used for authentication against a database, and

74

have not been an integral part of the control path like our scheme.

The first active metering was recently proposed [3]. The method added exponen­

tially many states to the original FSM of the design and exploited a static ID to lock

the initial state of each IC. The ICs are unlocked with a key that uses the structural

knowledge of the FSM graph to guide the transition from the unique start-up state

to the initial functional state. The difference between this work and [3] is that, here,

we do not add exponentially many states, but instead we replicate very few number

of states. Also, unlike [3], our IDs are not static, but instead are a set of diverse

unique IDs extracted from each chip. Perhaps most importantly, our scheme does

not just lock the initial reset state of a design, but it also ciphers the functional states

and their transitions. Thus, the diverse IDs are continuously checked against the

transitions.

4.3 Remote Ie Activation

Key exchange protocol. The remote activation protocol is designed to protect both

the designer and the fab by requiring a key exchange mechanism for IC activation.

It can be summarized using the following pseudocode.

1. The designer sends the design files to the fab, test vectors, and the number of

required copies to the fab.

2. The fab manufactures the required number of ICs, applies the test vectors and

sends the IC outputs to the designer.

3. The designer uses the values sent by the fab and computes a key to operate the

chip properly.

75

4. The fab stores the key on the chip and tests the chip in the operational mode.

The remote activation scheme works in the following way.

A. Modification of the FSM. To modify the FSM we replicate a few states a number

of times. For instance, if we have states So to Sn, we can pick state Si and replicate

it 4 times to get SL Sr, st, and st'. Note that adding one bit to the state will

exponentially increase the number of states making the process of adding states have

a low overhead. For each added state all the transitions to and from the replicated

state are connected and are a function of a subset of the bits coming from the RUB.

The transitions from the replicated states converge to the same state if they have

the correct inputs from the RUB. Half the bits responsible for the transitions to and

from the replicated states come directly from the RUB. The rest of the bits have to

be keyed to be set to the correct value as shown in Figure 4.2. To maintain proper

functionality when the circuit operates, the correct key value is used to cause the

transition from one of the copies of Si to the correct state.

B. The unclonable random unique blocks (RUBs). Lee et al.[32] designed a circuit that

generates many unique outputs using selector bits that select various path segments

and creates racing paths. We build upon this architecture by adding nonlinearity

to make the structure more secure and reverse engineering resilient compared to the

original circuit in [32]. The added nonlinearity is not only placed in the delayed paths

segments but is also used by the selectors. Figure 4.3 shows the block diagram of a

new RUB circuit. The circuit has nine inputs II to 19 and three outputs 0 1 to 0 3 ,

The main building blocks of the RUB are selector elements (Sel), delay elements (D),

and arbiters (A). A selector element has two input lines and one selection line. Based

on the value of the selection line the inputs either pass directly to the output or are

76

0,

0,

0,

Figure 4.3 : A non-linear unclonable random unique block.

switched. The arbiter gives an output that depends on the input that arrives first

(with the shortest delay) at power-up.

C. Input and key memory. The input to the RUB and the key are stored in memory to

maintain the proper operation of the circuit. At the initial stage the input memory is

loaded with different values to give read out data to the designer to compute the key.

Once the designer computes the key and gives it to the fab, the key in the memory

will be loaded to ensure that the transitions that occur as a function of the RUB occur

correctly and the chip is functional. Figure 4.2 shows the input and key memory and

how they are XOR'd with the output of the RUB for correct functionality.

D. Modification of the FSM control circuitry. The control circuitry of the FSM is

modified to ensure that the transitions to the replicated states are function of the

output coming directly from the RUB. The transitions from these states are functions

of the RUB and the key. For example, they can be combined using a simple XOR as

shown in Figure 4.2.

77

4.4 Attacks

In this section we discuss some of the potential attacks on the remote activation

scheme and how we address them.

(i) Brute-force attack. The application of random inputs is not a feasible attack

because of the exponentially low probability of -correct guessing.

(ii) Reverse engineering of FSM. This attack is infeasible because the extraction of

the corresponding state transition graph (STG) is a computationally intractable task.

(iii) Combinational redundancy removal. The attacker may use the combinational

redundancy removal, a procedure that attempts to remove the combinational logic

that is not necessary for the correct behavior of the circuit. The integration into the

functionality of the circuit makes this attack impossible.

(iv) RUB emulation. The goal of this attack is to create a reconfigurable imple­

mentation capable of realizing hardware that has the identical functional and timing

characteristics of a RUB for which a legal key is already received. However, the state

of technology prevents this type of attack.

4.5 Experimental results

We studied the area, delay, and power overheads and the diversity of the keys gen­

erated by the RUB. We used sequential benchmarks from the MCNC'91 set, and

Berkeley SIS for synthesis.

4.5.1 Area, delay, and power overheads

To modify the original FSM, a C program linked to SIS was written to manipulate

the FSM and replicate some states. The number of replicated states was set as a

78

Table 4.1 : Area overhead for adding six extra states for Random and Heuristic state
selection.

II Original II Random II Heurl8tlc I
BM PI atateB area area % area %

planet 7 48 888 1,373 54.62 1,191 34.12

8510 19 47 605 1,005 66.12 987 63.14

81494 8 48 859 2,655 209 1,276 48.54

81488 8 48 880 2,457 179 1,248 41.82

8298 3 135 2,951 5,924 101 3,769 27.72

dk16 2 27 460 964 109.6 898 95.22

8and II 32 1,092 3,851 253 1,634 49.63

8820 18 24 430 918 ll3.5 1,040 141.9

8832 18 24 425 927 ll8.1 1,135 167.1

8tyr 9 30 633 1,777 180.7 1,306 106.3

Avg " 10.3 I 46.3 I 922.3 " 2,185 I 138.4 " 1,448 I 77.54 I

parameter. We selected the states for replication using two methods,random selection

and by selecting the state with the least number of outgoing edges in original STG.

Table 4.1 shows the area overhead for the original FSM, the modified FSM with

random state selection Random, and the modified FSM with states with least edges

selected Heuristic. The first column shows the names of ten sequential benchmarks

from MCNC'91. The second, third, and fourth columns show the number of primary

inputs, the number of states, and the area of the original FSM after optimization

using SIS. The remainder of the columns shows the area and the percentage overhead

for adding six extra states using the Random and the Heuristic methods, respectively.

All the circuits are optimized using the same parameters. The average overhead is

138.4% and 77.5% for the Random and the Heuristic methods, respectively.

Table 4.2 demonstrates the delay and power overheads for the Random and Heuris-

tic methods compared to the original FSMs. It is interesting to note that in many

cases the delay overhead is negative. The average delay overhead is 3.7% and -11.4%

for the Random and Heuristic methods respectively, the power overhead is 148.9% and

79

Table 4.2 : Delay and power overhead for Random and Heuristic selection methods.
I II Original II Random II Heuristic I

BM del~ power del~ % power % del~ % power %

planet 186.2 3,087 93.90 -49.57 4,963 60.77 67.70 -63.64 4,374 41.68

.510 47.60 2,280 81.10 70.38 3,679 61.34 70.90 48.95 3,489 53.02

s1494 115.60 2,958 143.60 24.22 9,435 218.98 84.60 -26.82 4,560 54.15

sl488 134.9 3,011 91.40 -32.25 8,637 186.86 86.70 -35.73 4,450 47.81

.298 201.50 10,798 134.3 -33.35 26,005 140.81 182.60 -9.38 13,896 28.68

dk18 104.70 1,662 87.50 -16.43 3,595 116.32 74.70 _ -28.65 3,361 102.26

sand 74.80 3,917 88.80 18.72 14,312 265.37 61.50 -17.78 6,084 55.31

.820 36.30 1,430 54.70 50.69 3,054 113.49 47.30 30.30 3,729 160.71

.832 33.60 1,441 44.20 31.55 3,320 130.37 45.40 35.12 4,014 178.50

.tyr 128.20 2,170 93.40 -27.15 6,401 194.96 68.90 -46.26 4,718 117.40

Ava 106.34 3,276 91.29 3.68 8,340 148.93 79.03 -11.39 5,267 83.95

84%. The results show that the Heuristic method outperforms the Random method

on average by cutting the overheads into half. Using the Heuristic method the aver­

age area and power consumption of the modified circuit is less than the double of the

original circuit. Because the FSM is usually a very small part of the circuit, a larger

area and power overhead is not expected to affect the overall system area and power

on a chip.

Figure 4.4 shows the area, delay, and power overhead of adding different numbers

of extra states using the Heuristic method. It can be seen that the overheads are

nonlinear due to the optimization of the circuits during synthesis. Also it can be seen

that the delay overhead decreases as the number of the extra states increases.

4.5.2 Diversity of the keys

To study the diversity of the keys produced by the RUB, we simulate a four stages

RUB. The RUB has 12 input bits and 4 output bits. We randomly generated 1,000

RUBs and calculated the number of inputs generating different outputs for every

RUB. Figure 4.5 shows a histogram of the average number of inputs that have unique

80

~~-7--7-~.--~to~~t~2--~"--~t.--~ ..
Number of extra states

Figure 4.4 : Area, delay, and power overhead for different numbers of extra states for
benchmark s298.

~::
0140

I
i ,.
I
~

Figure 4.5 : The average number of inputs producing unique output for 1,000 different
RUBs.

outputs for the 1,000 simulated RUBs. The figure shows diversity in the keys gener-

ated by the different RUBs.

4.6 Conclusion

We have developed a new approach for remote enabling, disabling and metering of

integrated circuits. The approach leverages inherent manufacturing variability of

modern and pending Si technologies. The key conceptual novelty is that designers

can control ICs remotely continuously and concurrently with execution. The approach

is evaluated in terms of delay, power, and area overheads as well as in terms of the

achieved security.

81

Chapter 5

Active Control and Digital Rights Management of
Integrated Circuit IP Cores*

Abstract

We introduce the first approach that can actively control multiple hardware intellec-

tual property (IP) cores used in an integrated circuit (IC). The IP rights owner(s) can

remotely monitor, control, enable, or disable each individual IP on each chip. The

approach introduces a paradigm shift in the microelectronic business model, nurtur-

ing smaller businesses, and supporting the design-reuse paradigm. The IPs can be

controlled by the original designer or by the designers who reuse them. Each IP has

a built-in functional lock that pertains to the unique unclonable ID of the chip. A

control structure that coordinates the locking and unlocking of the IPs is embedded

within the IC. We introduce a trusted third party approach for issuing certificates

of authenticity, in case it is required for the applications. We present methods for

safeguarding the approach against two attack sources: the foundry (fab) , and the

reuser. Experimental results show that our approach can be implemented with low

area, power, and delay overheads making it suitable for embedded systems. The

introduced control method is also low overhead in terms of the added steps to the

current design and manufacturing flow.

*This work is published in:Y. Alkabani and F. Koushanfar, Active control and digital rights
management of integrated circuit IP cores, in ACM/IEEE International Conference on Compilers,
Architectures, and Synthesis for Embedded Systems (CASES), pp. 227-234, 2008.

82

5.1 Introduction

The state-of-the-art digital ICs are increasingly complex. The progressive demand

for multiple applications, performance, and functionality for integrated circuits has

resulted in extreme CMOS miniaturization that add to the complexity. Building,

operating, maintaining and upgrading silicon fabs for the complex designs is pnr

hibitively expensive, e.g., upgrade to the current technology, 45nm, costs about $4bn

[23]. The leading edge design companies are fabless. Even the large semiconductor

companies including Texas Instruments (TI) and Freescale that had in-house manu­

facturing recently started to outsource their fabrication.

Because of the complexity, adapting the design reuse paradigm is the key to ad­

dress constraints such as low-power, real-time budgets, silicon efficiency, time-to­

market, and low cost [53]. A consequence of the current shift towards the fabless

business model and design reuse is increased horizontalization of the microelectronic

industry. Integration of multiple functionalities, applications, and design techniques

has lead to modularity and specialization of design houses.

Many fabless design companies, particularly the specialized IP core designers are

small. Their major investment is the technical and engineering staff and human

resources who work together to produce the IP product. If the IP is ever exploited

the company loses its capital investment. It is also likely that the IPs accidentally

or through negligence are misused. For example, a design engineer (who we call a

"reuser") may not take the time to check each core's license agreement. The IP-core

design companies only receive revenue when their core is licensed to reusers, regardless

of the volume and profit of the end product(s) that typically include multiple IPs.

The presence of smaller companies is essential for a competitive market, but those

companies endanger consolidation in the current business model.

83

We propose a novel approach that allows the IP core providers to gain post­

fabrication control over their IPs on each chip. The approach introduces a paradigm

shift in the digital rights management (DRM) of integrated circuits IP cores for

vendors, designers and foundries. Depending on the application, the method may be

used to control the number of chips that implement the IP, to remotely and actively

enable or disable the usage. The misuse of the IP products is not only detected,

but also prevented. The method works by uniquely locking the functionality of the

IP core embedded in the manufactured chips, such that the rights owner is the only

entity who can provide the key to unlock it. Our contributions include:

• Introduction of the first architecture and implementation for individual control of

each IP core, in a multi-IP design.

• Integration of locking into each IP's functionality and coordinating the IPs by the

reuser's control core.

• Control of the IP cores that may be done by the original core provider, the IP

reuser, or both.

• Successful integration of the method within the standard synthesis flow, with a

minimal addition of steps.

• Low-overhead and efficient implementation of the approach on chips containing

multiple industrial benchmark IP cores.

• Ensuring trustworthiness of the key-exchange protocol by introducing a trusted

third party providing certificate of authenticity.

• Discussion of attacks and providing safeguards.

• Introduction of a number of possible applications that are enabled by the new

multi-IP protection method.

84

Motivational Example: Figure 5.1 presents a reuser's design which contains multi­

ple IP cores. The cores denoted by IP1 , IP2 , ... , to IPK are the protected ones. The

functional control unit of each IP is represented by a finite state machine (FSM). The

circuit designer (reuser) includes two new modules in her design. One added part is

an identification (ID) circuitry that extracts the unique identification bits for the chip

using the silicon variability [54, 55, 56]. The other addition is a control module that

is embedded within the central controller of the chip. Each protected IP is directly

connected to the the ID circuitry. Each of the protected IPs contains a lock within

their functional states.

- ID: Unique Idenfier
for the circuit

- Cont: Reusers
ltrol module

- liP designers'
lock and key

A: IC designer's
lock and k~

Figure 5.1 : A reuser's design including multiple IP cores. Each IP may be
locked/unlocked by the IP designer or the reuser, depending on the application.

The remote enabling/disabling provides two sets of locks and keys, one for the

designer and one for the reuser. The locks are embedded within the control structure

of each IP that can be represented by a finite state machine (FSM) [4]. There are two

major advantages for the selected locking/unlocking mechanism: (i) the IDs come

from the variations of the physical structure of silicon and are therefore random and

unclonable, and (ii) the locks are integrated within the functional control structure,

so removing or tampering the lock would tamper the functionality, rendering the IP

unusable. Furthermore, as we will show, modifying the FSM does not result in a

85

significant overhead.

Many protection, security, and DRM protocols can be enabled by the new IP lock­

ing/unlocking method. For example, the core providers can protect their IPs against

overbuilding a licensed product, since each IP would be locked upon manufacturing.

As another example, the reuser who has another set of locks/keys on the IP can select

which IPs (or even features) are activated on the chip, e.g., for charging the customers

who are willing to pay for added features. In the remainder of the paper we show the

details of the new approach, implementation, experiments, and applications.

5.2 Related Work

Methods for digital design reuse and intellectual property trading are emerging [57,

58, 53, 3, 4, 2]. Protection of IPs in the reuse-based design flow is of paramount

importance, but the prior work on individual IP protection has been limited. Most

of the effort has been focused on FPGA soft IP core protection [59, 60]. A number

of watermarking methods for IP identification have been proposed, but unlike our

method that is active and uniquely locks each chip, a watermark is passive and is the

same on all the chips implementing the same design [8, 38, 9]. A watermark can only

be used to solve disputes about illegal usage of a design. It cannot identify, activate

or disable individual ICs or IPs.

The inherent and unclonable silicon manufacturing variability has been used to

uniquely identify each chip [24, 2]. Delay-based physically unclonable functions

(PUFs) were constructed to extract the variability in circuit timing as a function

of input (challenge) bits, generating a unique output (response) that can be used

for identification and security [61, 55, 56]. PUFs were implemented in both ASICs

and FPGAs [32, 62]. Several applications of PUFs are emerging, including RFID,

86

proof of execution on a specific processor, securing processors, and active metering

[54, 61, 62, 4, 63].

Recently, securing IPs in an ASIC design by individually tagging each core was

proposed [64]. Since the tags are separated from the functionality, they are subject to

removal attacks by both the reusers and the foundry. Note that approaches that use

traditional implementations of cryptography protocols for securing at the low level

are both high overhead and non-secure [65, 66], since the digitally stored keys are

subject to physical and side-channel attacks [44].

Our new approach adapts the mechanism in [4], who integrated the unique iden­

tifiers of the chip into its control structure. The approach presented here includes

several new aspects: First, multiple IP cores are controlled, not just one. Second, we

consider interactions among the IP core designers, reusers, and the foundry, whereas

the previous work only considered the designer-foundry relation. Third, unlike the

previous work that only developed a control mechanism, we create a system-level

secure IP integration solution and discuss the supply chain interactions. Fourth, we

introduce the role of trusted integrator who will be useful for a secure design flow.

Fifth, the reuser's role and possibilities of attacks are discussed for the first time.

Lastly, the new approach directly applies to a number of novel system-level security,

protection, and DRM methods that can be very useful for embedded systems (Section

5.8).

5.3 Flow of the Active Control for IP Cores

Figure 5.2 shows the overall flow of the new IP protection approach. There are four

main entities involved: (i) IP rights owners (IP designers) who design, format and sell

the individual IPs, (ii) IC rights owner (reuser) who integrates multiple IPs, including

87

the open IPs and I/O interfaces, into one IC, (iii) The fabrication plant (fab), and (iv)

an authorized system verifier; who we call a certificate authority (CA). This entity

ensures the trust between hardware IP providers, reusers, and the fab.

Figure 5.2 : The flow of the active control for integrated circuits' IP cores.

While the first three components are commonly present in the IC design cycle, the

last component is new. CA is the trusted third party component for many asymmetric

cryptography protocols, including several public key infrastructure (PKI) schemes.

The new model is an asymmetric security scheme based on the keys provided by the

IP designers and system designer. The CA provides trust by authorizing the parties;

preventing possible breaches.

The flow can be described as follows. The IP designer forms the FSM of the

design by using the high level design description. Then, the lock(s) are strategically

embedded in the FSM. The modified finite state machine is called the boosted finite

state machine (BFSM). The reuser may integrate multiple locked IPs, in addition to

other components, including her own designs, unlocked IPs, I/O peripherals, memory,

and the master identification/control parts. The master identification/control consists

88

of a controlling finite state machine (CFSM) and a PUF. The CFSM interacts and

controls the various IPs; it can enable/disable the other components. The PUF

provides a mean for identifying each IC implementing the design in a unique and

unclonable way. The ready-to-fab designs are shipped to the CA who certifies the

IP cores and the reuser. The material is then sent to the fab who makes the masks

and produces a number of ICs as specified by the contract. The operations described

so far are shown by solid arrows on the figure. The dashed arrows present the steps

required for key exchange transactions.

The fabricated ICs are nonfunctional and have locks on the CFSM and on the

protected IPs from the providers. For each IC, the fab tests the PUF input and

runs it through the flip flops (FFs) scan chain. The state of the IC will be read out

from the FFs and sent to the CA who will in turn supply the state of each chip to

the authorized reusers and IP providers. Each of the contacted parties will produce

the specific keys to unlock the component. Also, the IP provider computes the error

correcting code (ECC) for the lock, to mask the possible few changes caused by the

fluctuations in the PUF identifiers. The keys are then sent back to the CA, who

certifies the consent of the rights owners before sending them to the fab.

5.4 IP Control Method

In this section, we present the main modifications made to a multi-IP design to apply

the method.

5.4.1 BFSMs

Each of the IP designers need to modify the FSM of their designed IP such that

they embed a lock in it. The modified control structure is the BFSM. The BFSM is

89

designed such that both its states and transitions are a function of the unique chip

identifiers. The BFSM attempts to form a unique control path on each of the chips,

while all the chips are from the same mask [4].

The BFSM of an IP core should satisfy the following properties.

• It must have incorrect functionality (locked) as long as the key is not provided.

• The key can be easily computed by the party who knows the BFSM structure

and difficult to find otherwise.

• Knowing the key for one Ie must not help in finding the key for another Ie of

the same design.

• Once the key is provided, the IP would function correctly.

Note that unlike symmetric cryptography where the keys are used to reverse a

trap-door function and revealing the keys tampers the security, the keys here do not

convey significant information about the lock. This is because the lock is in the

structure of the state transition graph that is only known to the designer.

The same BFSM structure can be exploited to disable the chip during its oper­

ation. All what is needed is to modify the locks. For example, changing the PUF

challenges will ensure that the functionality is trapped in a locked state.

5.4.2 CFSM

The overall FSM of the design that is devised by the reuse designer is also manipulated

such that it embeds locks that allow the chip designer to lock/unlock her designed

parts. Next, some states for controlling the other IPs are also included by the Ie

designer. We refer to these added IP control signals as CFSM. The CFSM gives the

90

chip designer a level of control over the several IPs that are included in the design.

For example, the CFSM receives signals from the IP cores about their locked/unlock

status. The CFSM can also generate control signals that can enable or disable various

IPs on the chip. There are many applications that can benefit from the CFSM (see

Section 5.8).

5.4.3 PDF

Figure 5.3 : PUF challenge/response pairs.

PUF is the circuitry which generates random unique values per chip. Figure 5.3

demonstrates the high level block diagram of a PUF [54]. The PUF circuit generates

a unique response (output) for each input vector (challenge) that is applied to it.

Even though the response varies from one chip to the next, the response to the same

challenge remains the same over time.

PUF has a much larger overhead compared with BFSM and CFSM. Thus, we

share it among the IPs to reduce the overhead. There is a need to ensure that the

PUF is properly connected to the IPs so that the IP rights owner receives her proper

royalties. The trusted third party (authorized system verifier) ensures the proper

interface of PUF to the BFSMs before sending the design files to the fab.

91

Figure 5.4 : System block diagram.

5.5 Implementation

Figure 5.4 shows the block diagram of the system components described earlier. Let

us assume that we have three IPs denoted by IP1 , IP2 , and IP3 . The response of the

PDF is connected to the IPs' BFSM, and the CFSM communicates with the BFSMs

to control (lock/unlock) them. We outline the implementation of the BFSM, PDF,

and CFSM.

5.5.1 BFSM Implementation

PI
... PO

key

Figure 5.5 : Implementation of the BFSM.

The implementation of BFSM is inspired by [4] but the BFSM was further adapted

and modified to include more states and communications with the CFSM. Figure 5.5

shows a part of a BFSM on a sample IP core where a state Si is replicated twice

92

as S'i and S" i. The transitions to Si from Si-l are copied to its replicated states

such that based on the PDF response, either Si or one of its replica is reached. The

reached state is only a function of the PDF response. However, the transitions from

the replicated states to Si+l are a function of both the PDF response and the key.

The key and the response are XOR'd; if the output is correct, the valid state Si+l

will be reached. Otherwise, a wrong transition (not shown on the figure) will be

taken. PI/PO represent the set of primary inputs/outputs to the BFSM. Whenever

a wrong transition is taken, the flag signal from the IP's BFSM is set to 1 to inform

the CFSM that the BFSM is still unlocked. The flag value is 0 otherwise. The BFSM

implementation steps can be summarized as follows:

1. The n states with the least number of outgoing edges are selected for replication.

2. Each selected state is replicated m times.

3. Transitions to the replicated states are a function of the PDF response and are

thus unique to each chip.

4. Transitions from the replicated states are a function of the PDF response and

the key. Correct transitions are only taken if the key is properly set. Incorrect

random added transitions are taken when the key is wrong.

5.5.2 PUF Implementations

We implement the delay-based PDF introduced in [61]. The response is found by

comparing the delay of two parallel paths that must be the same, but vary because of

manufacturing fluctuations. The signal starts at the common starting point of the two

paths on the left and ends at an arbiter which is inserted at the right end of the two

parallel lines. If the signal on the top path arrived earlier, the arbiter output will be

93

L--cI=I:1 r[2]

s'[1] s'[2]

r[1]

Figure 5.6 : Implementation of the PUF.

zero; otherwise, its output would be one. The parallel paths are divided into multiple

segments, such that each segment is controlled by a switch. Different combinations

of the path segments are selected by the switches, causing the racing path pair and

also the arbiter output (response bit) to change.

The above PUF is vulnerable to modeling attacks because of its linear structure.

Feedforward arbiters are used to alleviate this problem [32]. The added arbiters

compare the delays of two partial path pairs and use the arbiter output as the selector

line for a forward switch in the circuit. Figure 5.6 shows an example of a two bit

output delay-based PUF with random feedforward arbiters which may also connect

different path pairs. Switches s[l] to s[n] represent the cascade of switches for the first

output, and s'[l] to s'[n] are the switches for the second output. From each path pair,

we randomly select the output of a few switches and connect them to arbiters, then

connect the output of these arbiters to selection lines of other switches constructing

a feedforward connection. The selection lines of switches that are not connected in a

feedforward (not shown in the figure) represent the challenge to the PUF, while r[l]

and r[2] represent the response of the PUF.

94

cs
CFSM

Figure 5.7 : Implementation of the CFSM.

5.5.3 CFSM Implementation

The CFSM is implemented as a finite state machine that is embedded and hidden

inside the main FSM (BFSM) of the IC. A block diagram of the CFSM control signals

is shown in Figure 5.7. The CFSM inputs can be divided into two groups: (1) inputs

coming from the IP cores' BFSMs (ll:n), and (2) external inputs (CS) that can be

used to control the IC and enable/disable the IPs remotely. h:n signals from BFSMs

inform the CFSM if an IP is locked. The CS signals are used to upload the main

key that determines which features (IPs) can be activated on a particular IC. Note

that setting this key will not unlock the IPs, however, it will only help preventing the

CFSM from disabling the whole chip when the IPs are locked. The output signals

from the CFSM are d1:n that represent the disabling signals for the BFSMs in the

IC. The CFSM continuously monitors all the BFSMs and if a BFSM that is supposed

to be enabled is locked, the CFSM disables all the enabled IPs to detect and fix the

control FSM.

5.6 Attacks and Safeguards

We envision two categories of attacks on the proposed method: foundry level attacks

and IC designer level attacks. The IC designer (reuser) and the foundry do not

95

have the same knowledge about the design and do not share the same objectives. For

example, the reuser may tamper with the communicated signals to the IPs to overrule

the owners' rights. The foundry may also overlook the rights of the IC designer.

Foundry level attacks and countermeasures are:

• Brute-force attack. This attack can be performed by continuously applying

random inputs to each IP until the correct value of the key is found. This attack

is not feasible for one IP because the probability of guessing the correct key is

extremely low [3]. Having more than one IP locked in addition to the main

design renders the attack even more infeasible.

• Reverse engineering of the BFSMs and the CFSM. One might try to

reverse engineer the BFSM and the CFSM by STG extration. However, the

computation of the STG is a computationally intractable task especially that

the BFSMs are enlarged versions of the FSMs of the IPs in the system, and the

CFSM is obfuscated by hiding its states within the large state-space of the IC's

main FSM [8].

• PUF emulation. This attack attempts to emulate- the behavior of the PUF of

one unlocked IC and replicate it on the others. However, this attack is infeasible

in the state-of-the-art manufacturing and software emulation is much slower and

can be detected [55, 56].

• Combinational redundancy removal. Using a combinational redundancy

removal software, one can try to remove all the extra states added to the different

parts of the design. However, since all the modifications are integrated within

the functionality of the different IPs, they are not redundant and this attack

will not be successful.

IC designer level attacks and countermeasures are:

96

• Bypassing the PUF. The adversarial reuser may try to bypass the PDF

interface to the other IPs so that only one key is needed to unlock different IPs,

maintaining only the connections of the PDF to the main BFSM to keep the

reuser rights. However, it is the responsibility of the CA to check the interfaces

and ensure that the PDF is properly connected to the IPs.

• Tampering with the PUF. The designer can tamper with the PDF such

that one of the racing paths is much longer than the other. This can cancel out

the effect of MV and produce deterministic output for all the ICs. However,

the trusted system verifier should also test and certify the PDF's randomness

[55, 56].

5.7 Experimental Results

The proposed method is implemented and evaluated using the Berkeley SIS synthesis

tool. All the programs are written in C. MCNC'91 sequential benchmarks are used

to represent FSMs of different IPs. It should be noted that the FSM that contains

the control part of any IP represents a very small fraction of the overall size of the

design [1]. Thus, even tripling the overall area or power of these FSMs will not

significantly affect the overall area and power of the IP. However, the delay of the

FSM can affect the speed of the IP and thus, delay is the most important design

metric in our implementation.

We show the overhead for using one and five IPs. Table 5.1 demonstrates the over­

head when applying the metering method on one IP. The overhead number includes

the overhead due to both the BFSM and the CFSM. The first column represents the

benchmark number (C#) which will be used to refer to the benchmark in this section.

The second column represents the name of the benchmark circuit. The third column

97

c# circuit PI states area delay power area % delay % power %

1 planet 7 48 888 186.2 3,087 1752 97 70.2 -62.3 6428 108.2

2 s510 19 47 605 47.6 2,280 1426 136 49.9 4.8 4555.8 99.8

3 s1494 8 48 859 115.6 2,958 1746 103 65.8 -43.1 5178.8 75.1

4 81488 8 48 880 134.9 3,011 2045 132 68.1 -49.5 6008.8 99.6

5 s298 3 135 2,951 201.5 10,798 5960 102 136.8 -32.1 22358.8 107.1

6 dk16 2 27 460 104.7 1,662 1970 328 49.3 -52.9 5886.8 254.2

7 sand 11 32 1,092 74.8 3,917 1092 0 59.6 -20.3 8584.8 119.2

8 styr 9 30 633 128.2 2,170 2180 244 52.7 -58.9 6218.8 186.6

Mean 2271 143 69 -39 8,153 131

Table 5.1 : The overhead of BFSM modifications for one IP.

shows the number of primary inputs (PIs) of the benchmark before modification.

The fourth, fifth, and sixth column show the area, delay, and power overheads of the

original benchmark. The rest of the columns show the area, delay and power of the

modified IP and the percentage overhead of each parameter. It can be seen that the

area and power overheads are on the average 143% and 131% respectively. Also, the

delay overhead is low and is not affected by the number of IPs on the ICs. Thus, we

do not report the delay overheads in our subsequent evaluations.

Next, we add a 16 stage random feedforward PUF with 64 cascaded switches per

stage. The PUF has a total of 64 challenge bits and 16 response bits since we share

the selector inputs that are below each other to keep the number of circuit inputs low.

If we include the PUF in the overhead calculation, the overhead would be large. Note

that the MCNC benchmarks are only control circuits and they do not include memory

and I/O periphery/interfaces that are the area/power consuming components. Thus,

the percentage of the added circuitry's overhead is much smaller than demonstrated.

Table 5.2 shows the overhead for integrating five benchmark circuits randomly

selected from Table 5.1. It can be seen that the overheads without adding the PUF

are almost constant. However, since the PUF's overhead is much larger than the

FSM's overhead, adding the value of the overhead of the PUF to the system causes

98

c# area % power %

7,4,1,5,8 13,281 106 50,702 121

2,2,4,2,7 7,611 101 29,129 112

3,7,8,1,8 9,161 123 33,545 135

3,5,8,6,1 13,858 139 47,135 128

2,5,6,6,5 17,573 137 62,276 129

6,7,1,2,3 8,187 110 31,528 127

7,2,5,3,8 12,650 106 47,970 117

8,5,1,3,2 13,309 124 45,789 115

mean 11,954 118 43,509 123

Table 5.2 : CFSM overhead for integration of five IPs.

the overhead to decrease as we increase the number of the IPs sharing the PUF.

Figure 5.8 shows the decrease of the overhead as we increase the number of IPs

sharing the PUF.

5.8 Applications

The ability to uniquely identify each copy of an IP in a design-reuse paradigm enables

a range of new applications, inluding:

Protection against foundry overbuilding. The IP control and CFSM control

methods eliminate the possibility of overbuilding and hence prevent piracy by requir­

ing the consent of the original designer and IP providers for enabling/disabling of

their cores.

Protection against licensed designers' overuse. A reuser may utilize a singly

licensed core in multiple designs. Detection of misused IP cores in a large design is

200·~---~----'--;:=::;::========il

m .s::.
~ 1000

'$.

500

~L----2~--~3---~4--~5

The number of IPs

99

Figure 5.8 : The change of the overhead with increasing the number of IPs sharing
the PUF.

a very hard problem. With the new method, no IP will be activated without the

consent of its original designer.

Interval licensing by remote enabling/disabling of IPs. Runtime disabling/enabling

of IPs can be done since the chips that contain the IPs are identified and can be de-

tected online. A possible application is interval licensing, where the product royalty

must be frequently paid for continuous usage of the IP; otherwise, the IP is disabled.

Software/content metering. The unique IP identifiers can be further exploited

for controlling the software and content running on the hardware.

Ownership proof. The original key for operating an IP core is given only for one

set of PUF responses. A way to prove the ownership of the Ie is to change the

challenge inputs and then ask the designer to provide a new key which renders this

device operational. The designer who has the full information of the STG can easily

provide the new key, but other entities cannot. Thus, the IP rights owners can assert

their ownership by online checking and authentication.

Multiple levels of protection. The approach introduces symmetry to the current

100

asymmetric business model. Not only the reuser, but also the IP designer and the fab

are protected by the symmetry. In addition to preventing piracy, the false accusations

of overbuilding or overuse are prevented.

Enabling pay-as-you-configure method for the reuser. The chip designer em­

beds its locks in the functionality of the IP cores. The reuser can design its chips such

that the IPs that provide additional functionality are disabled. Only the customers

who pay the proper fees may enable those IPs.

Support for the design reuse paradigm. One of the greatest challenges in reuse­

based design is protection of the rights of the IP owners. Since the proposed method

targets digital rights management of IPs, it supports the design reuse paradigm that is

essential to the development and evolvement of the modern designs and semiconductor

industry [67].

5.9 Conclusion

We introduced the first approach, architecture and implementation for actively and

uniquely controlling the functionality of each IP, in a multi IP core design and reuse

paradigm. The approach protects the rights of the IP core owners, reusers, and the

foundry by introducing a key exchange mechanism. The Ie and each of its embedded

IP cores are uniquely locked upon manufacturing. The method enables the design­

ers and reusers to actively and remotely lock/unlock their IPs on each of the ICs

post-manufacturing. We discussed a number of possible attacks, and provided coun­

termeasures against them. Experimental evaluations on standard benchmark circuits

demonstrate the low overhead and the applicability of the approach on industrial­

strength designs. We introduced a number of newly enabled applications in protec­

tion, DRM, and security of the IP cores.

Chapter 6

N-Version Temperature-Aware Scheduling and
Bindtng*

Abstract

101

Technology scaling to nanometer nodes causes growing increase in power density and

especially leakage that in turn result in locally hot regions on the chip. In this paper,

we introduce a novel methodology for temperature-aware design. The methodol-

ogy embeds N-versions of the scheduler and binder such that the thermal profiles

of the versions are distant from each other. Next, instead of using only one version

of the scheduler and binder, a rotation of N-versions of the scheduler and binder is

constructed for balancing the thermal profile of the chip. We propose a linear pro-

gramming framework that takes the multiple versions as the input, and constructs

the thermal-aware rotational scheduling and binding by selecting the N most efficient

versions and by determining the duration of each version. Our experimental evalua-

tion shows a very low overhead and an average 5% decrease in the steady-state peak

temperature produced on the benchmark designs compared to using a schedule that

balances the amount of usage of different modules.

"This work is published in: Y. Alkabani, F. Koushanfar, and M. Potkonjak, N-version
temperature-aware scheduling and binding, in International Symposium on Low Power Electron­
ics and Designs (ISLPED), pp. 331-334,2009.

102

6.1 Introduction

The intense feature scaling of CMOS has been driven by the growing application

demands and pursuit of improved performance, as envisioned by Moore's law. Ag­

gressive scaling lowers the cost-per-function, but it simultaneously escalates the device

density and computational speed. The power density (i.e., power consumption per

unit area) is also growing. The increased power generates heat on the chip. Since

the heat propagation is slow compared with the switching activity of the IC, the

heat would be concentrated at local regions, or so called hotspots [68, 69, 70]. The

heat gradient increase would result in thermal stress that can speed up chip aging

due to negative bias temperature instability, electromigration, or gradual dielectric

breakdown. Therefore, circuit reliability would degrade.

The excessive increase in design complexity, power density, heat gradient, and

unreliability of the scaled CMOS devices, has made thermal-aware design and op­

timization a strong research focus. In the ASICs domain, several solutions at dif­

ferent levels of design abstraction including scheduling, resource allocation, binding,

floorplanning, and placement were developed [71, 72, 73, 74, 75, 76]. The common

denominator for the existing work is that by assuming a certain model, they perform

optimization (often iterative ones) that finds one optimized solution at the target

level of the design abstraction.

In this paper, we introduce a paradigm shift by devising a flexible synthesis

methodology that forms N-versions of the scheduling and binding solution each with

unique thermal characteristics. The N-versions are simultaneously embedded into one

design. During the operation, the versions would rotate such that each version would

be used for a predefined time duration.

Our contributions are (1) Introduction of the concept of using rotational N-version

103

scheduler and binder. (2) Designing an algorithm for finding the N-versions. (3)

Methodology for construction and low-overhead implementation of the N-versions.

(4) Development of a linear program that uses the thermal properties of each version

to find the length and duration of N-versions. (5) Evaluation of the new method by

comparison of the most balanced scheduler and binder.

6.2 Related work

In the past few years, a number of new approaches for thermal effect modeling and

thermal-aware design has emerged. Banerjee et al. introduced a method for designing

temperature and reliability aware cost trade-off with respect to power, performance

and cooling [70]. Efficient modeling of the chip level and architecture level thermal

characteristics have been proposed [68, 69]. The impact of thermal energy on power

consumption was also studied [77]. Energy minimization has been addressed for

a variety of systems including real-time [78], and under impact of manufacturing

variability [63].

Chu and Wong proposed thermal-aware placement using a matrix synthesis method

[71]. Tsai and Kang devised a standard cell placement tool for balancing the chip

thermal distribution [72]. HotFloorplan is a floorplanning tool that manages the chip

lateral heat propagation [73].

Mukherjee and Memik proposed a multistage integrated temperature optimiza­

tion at the architectural synthesis levels [74]. They develop an iterative optimization

method for scheduling and binding that gets feedback the post-floorplan thermal sim­

ulations. Ni and Memik studied thermal-induced leakage power optimization by re­

dundant resource allocation [75]. Lim and Kim formulated the thermal-aware binding

problem into a problem of repeated utilization of network flow method [76]. Shang et

104

al. explain the challenges the power and temperature optimization pose for high-level

synthesis researchers and summarizes the research progress in the field [79]. Zhang

and Chatha present approximation algorithms for temperature-aware scheduling; for

a set of periodic tasks executing on a processor the latency is minimized subject to

thermal constraints [80]. Note that there is also a vast body of literature for thermal-

aware design for MPSoC and programmable devices that are outside the scope of this

paper. To the best of our knowledge, this is the first work that considers combining

multiple schedules and allocation for efficient thermal management at the high level

synthesis.

6.3 Flow

Linear Program

The final rotating
N-version schedule

Figure 6.1 : Flow of the rotational N-version thermal-aware scheduling and binding.

Figure 6.1 presents the rotational N-version thermal-aware scheduling and binding

flow. The initial scheduling and binding is performed by list scheduling with a fixed

timing constraint that minimizes the number of resources. A force-directed floor-

planner is used after resource selection such that the similar resources are placed far

from each other. This is to maximize the number of alternatives for a resource such

that the temperature increase is independent among the alternatives. Finally, the

maximally constrained minimally constraining rule is adopted for creation of many

105

versions of the scheduler and binder. Next, the linear programming method finds N

out of the several available scheduling and resource binding versions and their run­

ning durations, such that the selected versions have the smallest peak thermal energy

dissipation.

6.4 N-version scheduling / binding

In this section, we describe how we generate the Multi-version schedules. Algorithm 1

shows the main steps for generating the N'-versions (N' ~ N). The inputs to the

Algorithm are G the CDFG of the circuit, and N' the number of generated versions.

The output is the N' versions of the scheduling and binding method.

The first few steps generate a layout for different resources on a grid. In Step 2,

we find the lower bound on each resource type denoted by R4b using list scheduling.

We do not change the critical path timing because in many of the DSP applications

that we target, the throughput must remain constant. Next we choose the number

of resources to be used for each module type (denoted by Rt in Step 3). Rt must

be greater than or equal R4b to guarantee that we do not alter the timing. In Step

4, we generate a force directed layout that ensures that resources of the same type

are placed furthest away from each other. Finally, in Step 5, for each resource we

determine its coordinates on the grid.

The remainder of the steps of the Algorithm 1 form N' versions of the scheduler

and binder. For each version, we do both scheduling and binding using a maximally

constrained minimally constraining heuristic described as follows. In Step 8, we select

a center resource for each module type that is the most frequently used resource in

the pertinent version. In line 10, we compute a priority pair (Pr, nr) for each module.

Pr is proportional to the distance from the center resource and nr is the number of

106

neighbors on the grid. The center resource of each type gets the highest priority

(Pr = 1) to be used in a control step (maximally constrained). Further resources with

larger number of neighbors have lower priority. We bind the operations to resources

in order of priority. To break the ties among the resources with the same pr value, we

use the number of neighbors of the resource nr, where the resource with the smaller

value of nr has a higher priority (minimally constraining).

6.5 Rotational N-version method

Thermal model. The compact thermal model that we use to predict the temper­

ature rise due to using a certain version. The thermal energy of each module can

be estimated by considering three different parameters: the power consumed at that

module, the activity of the module in the schedule, and the exchange of energy with

each of its neighboring modules.

We model the stationary state of the IC, where its produced thermal energy is

equal to the energy that it transfers to the environment. The two key assumptions

are: (i) the chip is small relative to the environment and therefore, the environment

does not change its temperature due to the heat conducted by the IC; and (ii) the

rate of thermal change is much slower than the chip'S clock frequency Ie and thus,

one can consider the usage rate of one module in a certain scheduling round to be a

good approximation of the cumulative impact of that module on the temperature.

The compact model is based on the Fourier conduction equations with constant

thermal properties that is known to be a linear elliptic boundary value problem.

Elliptic boundary value problems are a class of problems which do not involve the

time variable, and instead only depend on space variables [81]. The thermal energy

of the module at coordinate (i,j) is denoted by Qi,j respectively. Based on the Fourier

107

conduction equations, the Thermal energy (Qi,;) of the module (i,j) can be written

as:

Qi,; - kSi/env * ASi/env * (Ti,; - Tenv) (6.1)

+ k Si/ Si * A Si/ Si * (Ti,; - Ti,;-l)

+ k Si/ Si * A Si/ Si * (Ti,; -Ti,;+!)

+ k Si/ Si * A Si/ Si * (Ti,; -Ti-l,;)

+ k Si/ Si * A Si/ Si * (Ti,; -Ti+!,;).

Linear program for selection of the N-versions and their durations. We

describe how we generate the rotational schedule using a linear program. The linear

program takes as input the N'-versions that are constructed in the previous section.

Next it selects the N-versions out of N' for embedding in the chip. The linear program

also assigns a duration to each of the N selected final schedules.

The linear program is shown in Algorithm 2. The objective function (shown

in Step 1) is to minimize the maximum temperature on the chip. This is followed

by four types of constraints. Step 2 shows the first constraint type that represents

local Newton heat laws. Qi,; and Ti,; are variables representing the thermal energy

generated by and the temperature of the resource at the coordinate (i,j) respectively.

The second type of constraints are shown in Step 3. This constraint represents

the local thermal energy generation which is a function of the schedules. Pk,i,; is a

constant representing the average power generated by the resource at (i,j) in version k.

Pk is a variable denoting the fraction of time this schedule is to be used. Step 4 shows

the global constraints for the maximum temperature on the grid, where each resource

temperature must not exceed the maximum temperature. Finally step 5, shows the

total activity constraint that sets the sum of all the fractions Pk to 1. To have a

lOS

low-overhead implementation for the rotational N-version method, we construct the

FSM (Fr) of the rotational schedule from the FSM (FI) of one of the versions. Fr

has logN extra inputs added to FI that are used as the key to select a version (Ikey).

The number of outputs of Fr are the same as the number of outputs of Fl. The

construction is done similar to the method described in [S2].

6.6 Experimental evaluations

We evaluate the rotational N-version method on different benchmarks from HYPER

extracted from [S3]. The benchmark names are shown in the second column of Ta­

ble 6.1. The benchmarks lee, arai, and dir are S point fast discrete cosine algorithms

with sharply different structures. Specifically, lee is Lee's recursive sparse matrix

factorization algorithm, arai is Arai-Agui-Nakajima algorithm, and dir is the direct

generic definition of DCT-I algorithm. feig is Feig's fast 2D SxS DCT with prov­

ably minimal number of multiplications. The benchmarks aircraft and honda are two

industrial strength mechanical controllers.

The CDFG of the benchmarks are extracted in graphviz format. Matlab is used

to read the CDFG, implement the multiple-version scheduling and binding and for

the LP problem formulation and solving. We also generate HotSpot floorplan and

power trace files of the schedules to evaluate the temperatures. We use the default

values in HotSpot.

Table 6.1 shows the improvement in the maximum temperature when we use the

minimum resources computed by the list scheduler. The comparison is made to the

scheduling and binding method that most balances the usage of the modules. This

balanced version is found by giving equal priorities to all the modules in Algorithm

1. The first column in the table represent the benchmark name. The second and

109

third columns show the number of ALU operations (aop) Multiplication operations

(mop) in the CDFG of the benchmark. The fourth and fifth columns demonstrate

the lower bound on the number of ALUs (A#) and Multipliers (M#). The number

of schedules selected by the linear program (N#) is shown in the sixth column. The

maximum temperature for the balanced scheduling and binding method (Tb) , the

maximum temperature in the rotational N-version (Tr) method (both in °C), as well

as percentage improvement (1) in the Temperature are presented in the last three

columns respectively. Temperatures are computed using HotSpot. The maximum

improvement is above 11.7% and on the average the improvement is 4.9%.

Table 6.1 : Max temp. improvement (min resources).

Name aop mop A# M# N# Tb(C) Tr(C) 1%

arai 39 5 8 1 2 69.52 61.41 11.7

lee 37 20 4 4 2 64.99 62.57 3.7

honda 70 34 12 8 2 67.56 66.22 2.0

dir 77 47 11 11 3 64.22 61.45 4.3

aircraft 147 127 15 16 4 65.67 60.73 7.5

feig_dct 505 78 48 18 8 74.75 71.67 4.1

We next evaluate the performance of the rotational N-version method compared

with the balanced version by adding resources. Table 6.2 shows the maximum tem­

perature improvement when we use 10% extra resources. The first column shows

the benchmark name. The second and third columns show the number of ALUs and

Multipliers used in each benchmark. The fourth column shows the number of sched­

ules produced by the linear program. The last three columns show the maximum

temperatures in the balanced schedule and the rotational schedule in degree Celsius

110

and the percentage improvement. The maximum improvement is about 19%, while

the average is 7.4%.

Table 6.2 : Max temp. improvement (add resources).

Name A# M# N# Tb(C) Tr(C) 1(%)

arai 9 2 2 69.61 61.4 11.8

lee 5 5 3 63.57 61.22 3.7

honda 14 9 3 67.73 61.62 9.0

dir 13 13 2 68.25 62.05 9.1

aircraft 17 18 6 71.48 57.9 19.0

feig_dct 53 20 3 74.32 72.27 2.8

To study the overhead of embedding multiple schedules, we use ABC synthesis

tool to estimate the area overhead of a single schedule and the rotational schedule.

The area overhead for Table 6.1 is shown in Table 6.3. The first column shows the

benchmark name. The second column shows the area in terms of the number of literals

for the chip using a single schedule denoted by orig. The third column represents the

area for the new schedule denoted by new. The maximum overhead is less than 5%.

Note that benchmark 9 has zero overhead because it uses only one schedule. On the

average the overhead is 1.3%. This shows the very low overhead of rotating among

the versions. Note that the power overhead of the N-version method is proportional

to its area overhead. The timing overhead is zero since all of the versions satisfy the

timing constraint.

111

Table 6.3 : Area overhead of the N-versions in Table 6.lo

Name Orig (lit) New (lit) %

arai 99738 99738 0.2

lee 83369 83519 0.2

honda 211627 213597 0.9

dir 229201 239662 0.6

aircraft 322173 338011 4.9

feig_dct 712040 738329 3.7

6.7 Conclusion

We introduced a new temperature-aware scheduling and resource allocation method

that combines N different versions of scheduling and binding. The combination was

done by rotating between the N versions and by running each of the versions for a

certain duration of time. Maximally constrained minimally constraining scheduling

method was used for the efficient design and implementation of the multiple versions.

We presented a linear programming formulation of the scheduling rotation that selects

N out of many versions and determines the duration of each version. Evaluation of

the method on standard benchmarks showed the low overhead of implementing the

multiple versions in one design, and selection of the best value for N. Our experimental

results shows that using the new method, an average of about 5% reduction in the

peak temperature is obtained on the benchmarks in comparison with the scheduling

and binding method where the usage of all resources are balanced.

Algorithm 1 Generation of N'-versions of the schedules.

Input: CDFG, N'

Output: S~

Ibegin

2 Compute Rlbr using list scheduling;

3 Choose Rt such that Rt >= Rlbt ;

4 Generate layout grid for Rt;

5 Compute co-ordinates (Xt, Yt) for Rt on the grid;

6 for k = 1: N'

7 for each resource type t;

8 Choose a center resource net;

9 for each resource r E Rt;

10 compute the priority pair (Pr, nr)

11 time = 1;

12 ready = operations without predecessors;

13 while There exists an unscheduled operation;

14 begin

15 Schedule a maximum subset of ready

Operations with least mobility are scheduled,

Resources with min (Pi, ni) are bound;

16 time = time + 1;

17 Add operations whose predecessors

are done to ready;

18 end

19 end

112

Algorithm 2 The linear program to generate the rotational schedule.

Input: grid, N'-versions

Output: Sr

1 Objective function

min Tmax;

2 Constraint type 1

for each resource ri,j on grid

Satisfy equation 6.1;

3 Constraint type 2

for each resource ri,j on grid

Qi,j = PIP1,i,j + P2P2,i,j + ... + PNPNI,i,j;

4 Constraint type 3

for each resource ri,j on grid

Ti,j <= Tmax;

5 Constraint type 4

PI + P2 + ... + PN = 1;

113

114

Chapter 7

Conclusion

In this thesis we have presented the N-variant hardware design methodology. The

methodology works by embedding multiple variants of parts of the same design in

one IC. The variants are designed to add diversity and flexibility to the otherwise

inflexible ASIC. The variants are generated using two different methods: state space

and scheduling diversity. Both methods manipulate the control part of the design.

The techniques take advantage of the low overhead of the control circuit of modern

designs and thus provide diversity while incuring low area and power overheads by

manipulating just the control parts. They can be easily integrated in the current tool

flow. Moreover, all the transformations presented can be implemented automatically

with minimal input from the designer, while fabrication of the resulting designs is

identical to the fabrication of standard ASICs. Thus, these techniques are both

inexpensive and easy to implement and do not require a high learning curve to use.

These properties make them extremely practical. In what follows, we summarize our

contributions and then we present possible future directions for research in this area.

7.1 Contributions

The contributions can be summarized as follows:

• N-variant hardware design methodology : We introduced the idea of N­

variant hardware design and presented different ways of implementing it. The

115

practicality and usefulness of the methodology was highlighted by illustrat­

ing different applications of the method. Proof-of-concept implementations on

standard benchmarks showed the method to be not only easy to implement

and integrate in the ASIC design flow, but also indicated low overhead of the

method in terms of area, power, and delay .

• Active hardware metering for Ie protection: We presented the first active

hardware metering method for IC protection. The method adjusts the asym­

metry in the relationship between the IC designer and the fabrication facility

by giving the designer control over her chips once fabricated. Taking advantage

of manufacturing variability, each IC is uniquely locked and only the designer

can compute the key to unlock it. In this application, state space diversity

was implemented by adding exponentially many states and generating variants

with different starting states on the state transition graph of the design. The

overhead of the design was estimated on standard benchmarks and was shown

to be low in terms of area, power, and delay.

• Active hardware metering for IP protection: In this application, we pre­

sented a hierarchical organization that takes advantage of the N-variant method­

ology to protect not only the IC design owner, but also the IP owners whose

IPs are reused by the IC designer. Thus, the method facilitates design reuse

of hardware IPs. In this application state space diversity was implemented by

replicating a few states and transitions of the design FSM. Each variant used

a different subset of the states and transitions. Implementation on standard

benchmarks showed the method to have low overhead. We also discussed the

security of the method in terms of attacks and countermeasures.

116

• Temperature control using N-variant Design: This application used schedul­

ing diversity to implement different variants of the controller. Rotation between

different variants was used to control the peak temperature of the Ie. Simu­

lations showed that we could tune the peak temperature and reduce it using

the rotational schedule. In addition, estimates of the area, power, and delay

overheads on standard benchmarks are shown to be low.

7.2 Future Directions

• Applications: The applications of the N-variant hardware design methodology

are endless. N-variant designs could be used for power tuning, post-silicon

optimization, and fault tolerance. In addition, practical implementation of the

method on real applications instead of standard benchmarks is important to

validate the method.

• Methods for adding diversity: More methods for adding diversity should

be explored. At a low level, a new diversity dimension could use different types

of gates for different variants, while at a high level different algorithms can be

explored to implement different variants.

• Software: All the methods dealt only with hardware. However, it would be

interesting to study the applicability of these methods on software or a combi­

nation of hardware/software.

• Variant control: All the applications presented used a static hardware-based

method for variant control. However, varying the mechanism for controlling the

variants may open up the scope for more interesting applications. For instance,

variants could be controlled by software, or dynamically using feedback from

117

sensors. This should enable new methods for the adaptive control and tuning

of computer systems.

118

Bibliography

[1] J. Hennessy and D. Patterson, Computer architecture: a quantitative approach.

Morgan Kaufmann Publishers, 1996.

[2] Y. Alkabani and F. Koushanfar, "N-variant Ie design: methodology and appli­

cations," in Design Automation Conference (DAC), pp. 546-551,2008.

[3] Y. Alkabani and F. Koushanfar, "Active hardware metering for intellectual prop­

erty protection and security," in USENIX Security Symposium, pp. 291-306,

2007.

[4] Y. Alkabani, F. Koushanfar, and M. Potkonjak, "Remote activation of ics for

piracy prevention and digital right management," in IEEE/ACM International

Conference on Computer Aided Design (ICCAD), 2007.

[5] Y. Alkabani and F. Koushanfar, "Active control and digital rights management

of integrated circuit IP cores," in ACM/IEEE International Conference on Com­

pilers, Architectures, and Synthesis for Embedded Systems (CASES), 2008.

[6] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J. Knight,

A. Nguyen-Thong, and J. Hiser, "N-variant systems: A secret less framework

for security through diversity," in USENIX Security Symposium, pp. 105-120,

2007.

[7] D. Holland, A. Lim, and M. Seltzer, "An architecture a day keeps the hacker

119

away," SIGARCH Computer Architecture News, vol. 33, no. 1, pp. 34-41, 2005.

[8] A. Oliveira, "Techniques for the creation of digital watermarks in sequential

circuit designs," IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 20, no. 9, pp. 1101-1117,2001.

[9] L. Yuan and G. Qu, "Information hiding in finite state machine," in Information

Hiding Conference (IH) , pp. 340-354, 2004.

[10] S. Ravi, A. Raghunathan, P. Kocher, and S. Hattangady, "Security in embed­

ded systems: Design challenges," ACM Transactions on Embedded Computing

Systems, vol. 3, no. 3, pp. 461-491, 2004.

[11] S. Pontarelli, G. Cardarilli, A. Malvoni, M. Ottavi, M. Re, and A. Sal­

sano, "System-on-chip oriented fault-tolerant sequential systemsimplementation

methodology," in Symposium on Defect and Fault Tolerance in VLSI Systems

(DFT) , pp. 455-460, 2001.

[12] J. Kim and M. Newborn, "The simplification of sequential machines with input

restrictions," IEEE Trans. on Computers, vol. 21, no. 12, pp. 1440-1443, 1972.

[13] S. Devadas, "Design automation conference (dac)," in DAC, pp. 270-276, 1989.

[14] Y. Watanabe and R. Brayton, "The maximum set of permissible behaviors for

FSM networks," in ICCAD, pp. 316-320, 1993.

[15] T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli, "A fully im­

plicit algorithm for exact state minimization," in Design Automation Conference

(DAC), pp. 684-690, 1994.

120

[16] J. Rho, G. Hachtel, F. Somenzi, and R. Jacoby, "Exact and heuristic algorithms

for the minimization of incompletelyspecified state machines," IEEE Trans. on

CAD, vol. 13, no. 2, pp. 167-177, 1994.

[17] K. Knowlton, "A combination hardware-software debugging system," IEEE

Transactions on Computers, vol. 17, no. 1, pp. 81-86, 1968.

[18] B. Randell, "System structure for software fault tolerance," Software Engineer­

ing, vol. 1, no. 2, pp. 221-232, 1975.

[19] A. Avizienis, "The N-version approach to fault-tolerant software," IEEE Trans­

actions on Software Engineering, vol. 11, no. 12, pp. 1491-1501, 1985.

[20] S. Forrest, A. Somayaji, and D. Ackley, "Building diverse computer systems," in

Hot Topics in Operating Systems (HotOS) , p. 67, 1997.

[21] N. Couture and K. Kent, "Periodic licensing of FPGA based intellectual prop­

erty," in Field Programmable Technology (FPT), pp. 357-360, 2006.

[22] VSI Report, "Vsi alliance - intellectual property protection development work­

ing group, "white paper: The value and management of intellectual assets".

http://vsi.org/ documents/ datasheets/tocJ.ppwp210. pdf," 2002.

[23] DSB Report, "Defense science board (DSB) study on high perfor­

mance microchip supply. http://www.acq.osd.mil/dsb/reports/2005-02-

hpmsJeportJinal.pdf," 2005.

[24] K. Lofstrom, W. Daasch, and D. Taylor, "Ie identification circuits using device

mismatch," in International Solid State Circuits Conference (ISSCC), pp. 372-

373,2000.

121

[25] F. Koushanfar, G. Qu, and M. Potkonjak, "Intellectual property metering," in

Information Hiding Workshop (IHW), pp. 81-95, 2001.

[26] S. Maeda, H. Kuriyama, T. Ipposhi, S. Maegawa, Y. Inoue, M. Inuishi, N. Kotani,

and T. Nishimura, "An artificial fingerprint device (AFD): a study of identifi­

cation number applications utilizing characteristics variation of polycrystalline

silicon TFTs," IEEE Trans. Electron Devices, vol. 50, no. 6, pp. 1451-1458,

2003.

[27] S. Roy and A. Asenov, "Where do the dopants go?," Science, vol. 309, no. 5733,

pp. 388-390, 2005.

[28] A. Srivastava, D. Sylvester, and D. Blaauw, Statistical Analysis and Optimiza­

tion for VLSI: Timing and Power. Series on Integrated Circuits and Systems,

Springer, 2005.

[29] K. Bernstein, D. Frank, A. Gattiker, W. Haensch, B. Ji, S. Nassif, E. Nowak,

D. Pearson, and N. Rohrer, "High-performance CMOS variability in the 65-nm

regime and beyond," IBM Journal of Research and Development, vol. 50, no. 4/5,

pp. 433-450, 2006.

[30] Y. Su, J. Holleman, and B. Otis, "A 1.6J /bit stable chip ID generating cir­

cuit using process variations," in International Solid State Circuits Conference

(ISSCC) , pp. 406-411, 2007.

[31] B. Gassend, D. Lim, D. Clarke, M. van Dijk, and S. Devadas, Concurrency and

Computation: Practice and Experience, vol. 16, ch. Identification and authenti­

cation of integrated circuits, pp. 1077-1098. John Wiley & Sons, 2004.

122

[32] J. Lee, L. Daihyun, B. Gassend, G. Suh, M. van Dijk, and S. Devadas, "A

technique to build a secret key in integrated circuits for identification and au­

thentication applications," in Symposium of VLSI Circuits, pp. 176-179, 2004.

[33] G. Suh, C. O'Donnell, I. Sachdev, and S. Devadas, "Design and implementation

of the aegis single-chip secure processor using physical random functions," in

International Symposium on Computer Architecture (ISCA) , pp. 25-36, 2005.

[34] F. Koushanfar and G. Qu, "Hardware metering," in Design Automation Confer­

ence (DAC), pp. 490-493, 2001.

[35] D. Kirovski, Y.-Y. Hwang, M. Potkonjak, and J. Cong, "Intellectual property

protection by watermarking combinational logic synthesis solutions," in Interna­

tional Conference on Computer Aided Design (ICCAD), pp. 194-198, 1998.

[36] A. Kahng, J. Lach, W. Mangione-Smith, S. Mantik, I. Markov, M. Potkonjak,

P. 'lUcker, H. Wang, and G. Wolfe, "Watermarking techniques for intellectual

property protection," in Design Automation Conference (DAC), pp. 776-781,

1998.

[37] I. Torunoglu and E. Charbon, "Watermarking-based copyright protection of se­

quential functions," IEEE Journal of Solid-State Circuits (JSSC) , vol. 35, no. 3,

pp. 434-440, 2000.

[38] G. Qu and M. Potkonjak, Intellectual Property Protection m VLSI Design.

Kluwer, 2003.

[39] D. Kirovski and M. Potkonjak, "Local watermarks: Methodology and applica­

tion on behavioral synthesis," IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 22, no. 9, pp. 1277-1283, 2003.

123

[40] J. Wong, R. Majumdar, and M. Potkonjak, "Fair watermarking using combi­

natorial isolation lemmas," IEEE Trans. CAD, vol. 23, no. 11, pp. 1566-1574,

2004.

[41] F. Koushanfar, I. Hong, and M. Potkonjak, "Behavioral synthesis techniques for

intellectual property protection," ACM Trans. Design Automation of Electronic

Systems, vol. 10, no. 3, pp. 523-545, 2005.

[42] J. Lach, W. Mangione-Smith, and M. Potkonjak, "Fingerprinting digital circuits

on programmable hardware," in Information Hiding Workshop (IHW), pp. 16-

32, 1998.

[43] F. Koeune and F. Standaert, "A tutorial on physical security and side-channel

attacks," in Foundations of Security Analysis and Design (FOSAD), pp. 78-108,

2004.

[44] R. Anderson, Security Engineering: A guide to building dependable distributed

systems. John Wiley and Sons, 2001.

[45] D. Abraham, G. Dolan, G. Double, and J. Stevens, "Transaction security sys­

tem," IBM Systems Journal, vol. 30, no. 2, pp. 206-229, 1991.

[46] R. Anderson and M. Kuhn, "Tamper resistance - a cautionary note," in USENIX

Workshop on Electronic Commerce, pp. 1-11, 1996.

[47] A. Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey, and R. Brodersen, "Op­

timizing power using transformations," IEEE Trans. CAD of Integrated Circuits

and Systems, vol. 14, no. 1, pp. 12-31, 1995.

124

[48] H. Savoj and R. Brayton, "On the optimization power of retiming and resynthesis

transformations," in Design Automation Conference (DAC), pp. 297-301, 1990.

[49] R. Brayton, G. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli, Logic

Minimization Algorithms for VLSI Synthesis. Kluwer Academic Publishers,

1984.

[50] F. Brgles, D. Bryan, and K. Kozminski, "Combinational profiles of sequen­

tial benchmark circuits," in International Symposium of Circuits and Systems,

pp. 1929-1934, 1989.

[51] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj,

P. Stephan, R. Brayton, and A. Sangiovanni-Vincentelli, "SIS: A system for

sequential circuit synthesis," Tech. Rep. UCB/ERL M92/41, EECS Department,

University of California, Berkeley, 1992.

[52] F. Koushanfar and M. Potkonjak, "CAD-based security, cryptography, and dig­

ital rights management," in Design Automation Conference (DAC), 2007.

[53] M. Jacome and H. Peixoto, "A survey of digital design reuse," IEEE Design and

Test of Computers, vol. 18, no. 3, pp. 98-107, 2001.

[54] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, "Silicon physical ran­

dom functions," in Computer and Communications Security (CCS), pp. 148-160,

2002.

[55] M. Majzoobi, F. Koushanfar, and M. Potkonjak, "Testing techniques for hard­

ware security," in International Test Conference (ITC) , p. in press, 2008.

125

[56] M. Majzoobi, F. Koushanfar, and M. Potkonjak, "Lightweight secure PUF," in

International conference on computer-aided design (ICCAD), 2008.

[57] ''''Design and reuse website", http://www.us.design-reuse.comj. ..

[58] J. Rowson and A. Sangiovanni-Vincentelli, "Interface-based design," in Design

Automation Conference (DAC), pp. 178-183, 1997.

[59] T. Wollinger, J. Guajardo, and C. Paar, "Security on FPGAs: State-of-the-art

implementations and attacks," IEEE Trans. on Embedded Computing Systems,

vol. 3, no. 3, pp. 534-574, 2004.

[60] S. Trimberger, "Trusted design in FPGAs," in Design Automation Conference,

pp. 5-8, 2007.

[61] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, "Delay-based circuit

authentication and applications," in ACM symposium on Applied computing,

pp. 294-301, 2003.

[62] J. Guajardo, S. Kumar, G. Schrijen, and P. Thyls,· "FPGA intrinsic PUFs

and their use for IP protection," in Workshop on Cryptographic Hardware and

Embedded Systems (CHES), 2007.

[63] Y. Alkabani, F. Koushanfar, N. Kiyavash, and M. Potkonjak, "Trusted inte­

grated circuits: A nondestructive hidden characteristics extraction approach,"

in Information Hiding Conference (IH), 2008.

[64] C. Marsh and T. Kean, "A security tagging scheme for asic designs and intellec­

tual property cores," Design f3 Reuse, January 2007.

126

[65] J. Roy, F. Koushanfar, and I. Markov, "EPIC: Ending piracy of integrated

circuits," in Design Automation and Test in Europe (DATE), 2008.

[66] Certicom Report, .. http://www.certicom.com/index. php /protect-your-silicon­

ip-from-the-gray-market? action=sol,silicon," 2008.

[67] ""The international technology roadmap for semiconductors (itrs)" ,

http://www.itrs.netj.''

[68] Y. Cheng, P. Raha, C. Teng, E. Rosenbaum, and S. Kang, "ILLIADS-T: an

electrothermal timing simulator for temperature-sensitive reliability diagnosis of

CMOS VLSI chips," IEEE Trans. on CAD, vol. 17, no. 8, pp. 668-681, 1998.

[69] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron, and

M. Stan, "HotSpot: a compact thermal modeling methodology for early-stage

VLSI design," IEEE Trans. on VLSI, vol. 14, no. 5, pp. 501-513, 2006.

[70] K. Banerjee, S.-C. Lin, and V. Wason, "Leakage and variation aware thermal

management of nanometer scale ICs," in IMAPS- Workshop, 2004.

[71] C. Chu and D. Wong, "A matrix synthesis approach to thermal placement," in

ISPD, pp. 163-168, 1997.

[72] C. Tsai and S. Kang, "Standard cell placement for even on-chip thermal distri­

bution," in ISPD, pp. 179-184, 1999.

[73] K. Sankaranarayanan, S. Velusamy, M. Stan, and K. Skadron, "A case

for thermal-aware floorplanning at the microarchitectural level," Journal of

Instruction-Level Parallelism, no. 7, 2005.

127

[74] R. Mukherjee and S. Memik, "An integrated approach to thermal management

in high-level synthesis," IEEE Trans. on VLSI, vol. 14, no. 11, pp. 1165-1174,

2006.

[75] M. Ni and S. Memik, "Thermal-induced leakage power optimization by redun­

dant resource allocation," in ICCAD, pp. 297-302, 2006.

[76] P. Lim and T. Kim, "Thermal-aware high-level synthesis based on network flow

method," in CODES+ISSS, pp. 124-129,2006.

[77] W. Liao, L. He, and K. Lepak, "Temperature and supply voltage aware perfor­

mance and power modeling at microarchitecture level," IEEE Trans. on CAD,

vol. 24, no. 7, pp. 1042-1053,2005.

[78] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. Srivastava, "Power opti­

mization of variable-voltage core-based systems," IEEE Trans. on of Integrated

Circuits and Systems, vol. 18, no. 12, pp. 1702-1714, 1999.

[79] 1. Shang, R. Dick, and N. Jha, High-Level Synthesis Algorithms, ch. High-Level

Synthesis Algorithms for Power and Temperature Minimization, pp. 285-297.

Springer, 2008.

[80] S. Zhang and K. Chatha, "Approximation algorithm for the temperature-aware

scheduling problem," in ICCAD, pp. 281-288, 2007.

[81] L. Evans, Partial Differential Equations. American Mathematical Society, 1998.

[82] Y. Alkabani and F. Koushanfar, "N-variant Ie design: Methodology and appli­

cations," in Design Automation Conference (DAC), pp. 546-551, 2008.

[83] K. Rao and P. Yip, Discrete Cosine Transform. Academic Press, 1990.

