643 research outputs found

    Upper bounds for alpha-domination parameters

    Get PDF
    In this paper, we provide a new upper bound for the alpha-domination number. This result generalises the well-known Caro-Roditty bound for the domination number of a graph. The same probabilistic construction is used to generalise another well-known upper bound for the classical domination in graphs. We also prove similar upper bounds for the alpha-rate domination number, which combines the concepts of alpha-domination and k-tuple domination.Comment: 7 pages; Presented at the 4th East Coast Combinatorial Conference, Antigonish (Nova Scotia, Canada), May 1-2, 200

    3-Factor-criticality in double domination edge critical graphs

    Full text link
    A vertex subset SS of a graph GG is a double dominating set of GG if ∣N[v]∩S∣≥2|N[v]\cap S|\geq 2 for each vertex vv of GG, where N[v]N[v] is the set of the vertex vv and vertices adjacent to vv. The double domination number of GG, denoted by γ×2(G)\gamma_{\times 2}(G), is the cardinality of a smallest double dominating set of GG. A graph GG is said to be double domination edge critical if γ×2(G+e)<γ×2(G)\gamma_{\times 2}(G+e)<\gamma_{\times 2}(G) for any edge e∉Ee \notin E. A double domination edge critical graph GG with γ×2(G)=k\gamma_{\times 2}(G)=k is called kk-γ×2(G)\gamma_{\times 2}(G)-critical. A graph GG is rr-factor-critical if G−SG-S has a perfect matching for each set SS of rr vertices in GG. In this paper we show that GG is 3-factor-critical if GG is a 3-connected claw-free 44-γ×2(G)\gamma_{\times 2}(G)-critical graph of odd order with minimum degree at least 4 except a family of graphs.Comment: 14 page

    Locating and Total Dominating Sets of Direct Products of Complete Graphs

    Get PDF
    A set S of vertices in a graph G = (V,E) is a metric-locating-total dominating set of G if every vertex of V is adjacent to a vertex in S and for every u ≠ v in V there is a vertex x in S such that d(u,x) ≠ d(v,x). The metric-location-total domination number \gamma^M_t(G) of G is the minimum cardinality of a metric-locating-total dominating set in G. For graphs G and H, the direct product G × H is the graph with vertex set V(G) × V(H) where two vertices (x,y) and (v,w) are adjacent if and only if xv in E(G) and yw in E(H). In this paper, we determine the lower bound of the metric-location-total domination number of the direct products of complete graphs. We also determine some exact values for some direct products of two complete graphs

    The k-tuple domination number revisited

    Get PDF
    The following fundamental result for the domination number γ (G) of a graph G was proved by Alon and Spencer, Arnautov, Lovász and Payan: γ (G) ≤ frac(ln (δ + 1) + 1, δ + 1) n, where n is the order and δ is the minimum degree of vertices of G. A similar upper bound for the double domination number was found by Harant and Henning [J. Harant, M.A. Henning, On double domination in graphs, Discuss. Math. Graph Theory 25 (2005) 29-34], and for the triple domination number by Rautenbach and Volkmann [D. Rautenbach, L. Volkmann, New bounds on the k-domination number and the k-tuple domination number, Appl. Math. Lett. 20 (2007) 98-102], who also posed the interesting conjecture on the k-tuple domination number: for any graph G with δ ≥ k - 1, γ× k (G) ≤ frac(ln (δ - k + 2) + ln (over(d, ̂)k - 1 + over(d, ̂)k - 2) + 1, δ - k + 2) n, where over(d, ̂)m = ∑i = 1n ((di; m)) / n is the m-degree of G. This conjecture, if true, would generalize all the mentioned upper bounds and improve an upper bound proved in [A. Gagarin, V. Zverovich, A generalised upper bound for the k-tuple domination number, Discrete Math. (2007), in press (doi:10.1016/j.disc.2007.07.033)]. In this paper, we prove the Rautenbach-Volkmann conjecture. © 2007 Elsevier Ltd. All rights reserved
    • …
    corecore