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Abstract. We provide a new upper bound for the α-domination number in terms of a parameter
α, 0 < α ≤ 1, and graph vertex degrees. This result generalises the well-known Caro-Roditty
bound for the domination number of a graph. The same probabilistic construction is used to
generalise another well-known upper bound for the classical domination in graphs. Using a
different probabilistic construction, we prove similar upper bounds for the α-rate domination
number, which combines the concepts of α-domination and k-tuple domination.
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1. Introduction

Domination is one of the fundamental concepts in graph theory with various applications
to ad hoc networks, biological networks, distributed computing, social networks and web
graphs [1,5,7,12]. Dominating sets in graphs are natural models for facility location prob-
lems in operational research. An important role is played by multiple domination. For
example, k-dominating sets can be used for balancing efficiency and fault tolerance [7].

We consider undirected simple finite graphs. If G is a graph of order n, then V (G) =
{v1, v2, ..., vn} is the set of vertices of G, di denotes the degree of vi, i = 1, 2, . . . , n, and
dv stands for the degree of a vertex v ∈ V (G). Let N(v) denote the neighbourhood of a
vertex v in G, and N [v] = N(v)∪{v} be the closed neighbourhood of v. A set X ⊆ V (G)
is called a dominating set if every vertex not in X is adjacent to at least one vertex in
X. The minimum cardinality of a dominating set of G is the domination number γ(G).
A set X is called a k-dominating set if every vertex not in X has at least k neighbours
in X. The minimum cardinality of a k-dominating set of G is the k-domination number
γk(G). A set X is called a k-tuple dominating set of G if for every vertex v ∈ V (G),
|N [v] ∩X| ≥ k. The minimum cardinality of a k-tuple dominating set of G is the k-tuple
domination number γ×k(G). The k-tuple domination number is only defined for graphs
with δ ≥ k − 1. A number of upper bounds for these two multiple domination numbers
can be found in [4,9–11,16].

Let α be a real number satisfying 0 < α ≤ 1. A set X ⊆ V (G) is called an α-dominating
set of G if for every vertex v ∈ V (G)−X, |N(v)∩X| ≥ αdv, i.e. v is adjacent to at least
dαdve vertices of X. The minimum cardinality of an α-dominating set of G is called the
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α-domination number γα(G). The α-domination was introduced by Dunbar et al. [8]. It
is easy to see that γ(G) ≤ γα(G), and γα1(G) ≤ γα2(G) for α1 < α2. Also, γ(G) = γα(G)
if α is sufficiently close to 0.

For an arbitrary graph G with n vertices and m edges, denote by δ = δ(G) and
∆ = ∆(G) the minimum and maximum vertex degrees of G, respectively. The following
results are proved in [8]:

αδn

∆+ αδ
≤ γα(G) ≤ ∆n

∆+ (1− α)δ
(1)

and
2αm

(1 + α)∆
≤ γα(G) ≤ (2− α)∆n− (2− 2α)m

(2− α)∆
. (2)

Interesting results on α-domination perfect graphs can be found in [6]. The problem
of deciding whether γα(G) ≤ k for a positive integer k is known to be NP -complete
[8]. Therefore, it is important to have good upper bounds for the α-domination number
and efficient approximation, randomized and heuristic algorithms for finding ‘small’ α-
dominating sets.

For 0 < α ≤ 1, the α-degree of a graph G is defined as follows:

d̂α = d̂α(G) =
1

n

n∑
i=1

(
di

dαdie − 1

)
.

In this paper, we use a probabilistic approach to prove that

γα(G) ≤

1− δ̂

(1 + δ̂)
1+1/δ̂

d̂
1/δ̂
α

n,
where δ̂ = bδ(1 − α)c + 1. This result generalises the well-known upper bound of Caro
and Roditty ([12], p. 48). Using the same probabilistic construction, we also show that

γα(G) ≤ ln(δ̂ + 1) + ln d̂α + 1

δ̂ + 1
n,

which generalises another well-known upper bound of Alon and Spencer [2], Arnautov [3],
Lovász [14] and Payan [15]. Finally, we introduce the α-rate domination number, which
combines together the concepts of α-domination and k-tuple domination, and show that
the α-rate domination number satisfies two similar upper bounds. The random construc-
tions used in this paper also imply randomized algorithms to find α-dominating and α-rate
dominating sets satisfying corresponding bounds.

2. New Upper Bounds for the α-Domination Number

One of the strongest known upper bounds for the domination number is due to Caro and
Roditty:

Theorem 1. (Caro and Roditty [12], p. 48) For any graph G with δ ≥ 1,

γ(G) ≤
(

1− δ

(1 + δ)1+1/δ

)
n. (3)
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The upper bound (3) is generalised for the α-domination number in Theorem 2. Indeed,
if di are fixed for all i = 1, 2, . . . , n, and α is sufficiently close to 0, then δ̂ = δ (provided
δ ≥ 1) and d̂α = 1.

Theorem 2. For any graph G,

γα(G) ≤

1− δ̂

(1 + δ̂)
1+1/δ̂

d̂
1/δ̂
α

n, (4)

where δ̂ = bδ(1− α)c+ 1.

Proof. Let A be a set formed by an independent choice of vertices of G, where each vertex
is selected with probability

p = 1−
(

1

(1 + δ̂)d̂α

)1/δ̂

. (5)

We denote
B = {vi ∈ V (G)− A : |N(vi) ∩ A| ≤ dαdie − 1}.

It is obvious that the set D = A ∪B is an α-dominating set. The expectation of |D| is

E(|D|) = E(|A|) + E(|B|)

=
n∑
i=1

P (vi ∈ A) +
n∑
i=1

P (vi ∈ B)

= pn+
n∑
i=1

dαdie−1∑
r=0

(
di
r

)
pr(1− p)di−r+1.

It is easy to see that, for 0 ≤ r ≤ dαdie − 1,(
di
r

)
≤
(

di
dαdie − 1

)( dαdie − 1
r

)
.

Also,
di − dαdie ≥ bδ(1− α)c.

Therefore,

E(|D|) ≤ pn+
n∑
i=1

(
di

dαdie − 1

)
(1− p)di−dαdie+2

dαdie−1∑
r=0

( dαdie − 1
r

)
pr(1− p)dαdie−1−r

= pn+
n∑
i=1

(
di

dαdie − 1

)
(1− p)di−dαdie+2

≤ pn+ (1− p)bδ(1−α)c+2d̂αn

= pn+ (1− p)δ̂+1d̂αn (6)

=

1− δ̂

(1 + δ̂)
1+1/δ̂

d̂
1/δ̂
α

n.
Note that the value of p in (5) is chosen to minimize the expression in line (6). Since
the expectation is an average value, there exists a particular α-dominating set of order at
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most

(
1− δ̂

(1+δ̂)
1+1/̂δ

d̂
1/̂δ
α

)
n, as required. The proof of the theorem is complete.

Notice that in some cases Theorem 2 provides a much better bound than the upper
bound in (1). For example, if G is a 1000-regular graph, then Theorem 2 gives γ0.1(G) <
0.305n, while (1) yields only γ0.1(G) < 0.527n.

Corollary 1. For any graph G,

γα(G) ≤ ln(δ̂ + 1) + ln d̂α + 1

δ̂ + 1
n. (7)

Proof. We put

p = min

{
1,

ln(δ̂ + 1) + ln d̂α

δ̂ + 1

}
.

Using the inequality 1− p ≤ e−p, we can estimate the expression in (6) as follows:

E(|D|) ≤ pn+ e−p(δ̂+1)d̂αn.

If p = 1, then the result easily follows. If p = ln(δ̂+1)+ln d̂α

δ̂+1
, then

E(|D|) ≤ ln(δ̂ + 1) + ln d̂α + 1

δ̂ + 1
n,

as required.
Corollary 1 generalises the following well-known upper bound independently proved

by several authors [2,3,14,15]:

γ(G) ≤ ln(δ + 1) + 1

δ + 1
n. (8)

3. α-Rate Domination

Define a set X ⊆ V (G) to be an α-rate dominating set of G if for any vertex v ∈ V (G),

|N [v] ∩X| ≥ αdv.

We call the minimum cardinality of an α-rate dominating set of G the α-rate domination
number γ×α(G). It is easy to see that γα(G) ≤ γ×α(G). The concept of α-rate domination is
similar to the well-known k-tuple domination (for example, see [11,13,16]). For 0 < α ≤ 1,
the closed α-degree of a graph G is defined as follows:

d̃α = d̃α(G) =
1

n

n∑
i=1

(
di + 1
dαdie − 1

)
.

In fact, the only difference between the α-degree and the closed α-degree is that to compute
the latter we choose from di + 1 vertices instead of di, i.e. from the closed neighbourhood
N [vi] of vi instead of N(vi).

The following theorem provides an analogue of the Caro-Roditty bound (Theorem 1)
for the α-rate domination number:
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Theorem 3. For any graph G and 0 < α ≤ 1,

γ×α(G) ≤

1− δ̂

(1 + δ̂)
1+1/δ̂

d̃
1/δ̂
α

n, (9)

where δ̂ = bδ(1− α)c+ 1.

Proof. Let A be a set formed by an independent choice of vertices of G, where each vertex
is selected with probability p, 0 ≤ p ≤ 1. For m ≥ 0, denote by Bm the set of vertices
v ∈ V (G) dominated by exactly m vertices of A and such that |N [v] ∩ A| < αdv, i.e.

|N [v] ∩ A| = m ≤ dαdve − 1.

Note that each vertex v ∈ V (G) is in at most one of the sets Bm and 0 ≤ m ≤ dαdve− 1.
We form a set B in the following way: for each vertex v ∈ Bm, select dαdve −m vertices
from N(v) that are not in A and add them to B. Consider the set D = A ∪B. It is easy
to see that D is an α-rate dominating set. The expectation of |D| is:

E(|D|) ≤ E(|A|) + E(|B|)

≤
n∑
i=1

P (vi ∈ A) +
n∑
i=1

dαdie−1∑
m=0

(dαdie −m)P (vi ∈ Bm)

= pn+
n∑
i=1

dαdie−1∑
m=0

(dαdie −m)
(
di + 1
m

)
pm(1− p)di+1−m

≤ pn+
n∑
i=1

dαdie−1∑
m=0

(
di + 1
dαdie − 1

)( dαdie − 1
m

)
pm(1− p)di+1−m

= pn+
n∑
i=1

(
di + 1
dαdie − 1

)
(1− p)di−dαdie+2

dαdie−1∑
m=0

( dαdie − 1
m

)
pm(1− p)dαdie−1−m

= pn+
n∑
i=1

(
di + 1
dαdie − 1

)
(1− p)di−dαdie+2

≤ pn+ (1− p)bδ(1−α)c+2
n∑
i=1

(
di + 1
dαdie − 1

)
= pn+ (1− p)δ̂+1d̃αn,

since

(dαdie −m)
(
di + 1
m

)
≤
(

di + 1
dαdie − 1

)( dαdie − 1
m

)
.

Thus,

E(|D|) ≤ pn+ (1− p)δ̂+1d̃αn. (10)

Minimizing the expression (10) with respect to p, we obtain

E(|D|) ≤

1− δ̂

(1 + δ̂)
1+1/δ̂

d̃
1/δ̂
α

n,
as required. The proof of Theorem 3 is complete.
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Corollary 2. For any graph G,

γ×α(G) ≤ ln(δ̂ + 1) + ln d̃α + 1

δ̂ + 1
n. (11)

Proof. Using an approach similar to that in the proof of Corollary 1, the result follows if
we put

p = min

{
1,

ln(δ̂ + 1) + ln d̃α

δ̂ + 1

}
and use the inequality 1− p ≤ e−p to estimate the expression (10) as follows:

E(|D|) ≤ pn+ e−p(δ̂+1)d̃αn.

Note that, similar to Corollary 1, the bound of Corollary 2 also generalises the classical
upper bound (8). However, the probabilistic construction used to obtain the bounds (9)
and (11) is different from that to obtain the bounds (4) and (7).

4. Final Remarks and Open Problems

Notice that the concept of the α-rate domination number γ×α(G) is ‘opposite’ to the
α-independent α-domination number iα(G) as defined in [6]. It would be interesting to
use a probabilistic construction to obtain an upper bound for iα(G).

Also, the random constructions used to obtain the upper bounds (4), (7), (9) and (11)
imply randomized algorithms to find corresponding dominating sets in a given graph G.
It would be interesting to derandomize these algorithms or to obtain independent deter-
ministic algorithms to find corresponding dominating sets satisfying the upper bounds
(4), (7), (9) and (11). Algorithms approximating the α- and α-rate domination numbers
up to a certain degree of precision would be interesting too. For the k-tuple domination
number, an interesting approximation algorithm was found by Klasing and Laforest [13].
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