1,402 research outputs found

    Taylor expansion in linear logic is invertible

    Full text link
    Each Multiplicative Exponential Linear Logic (MELL) proof-net can be expanded into a differential net, which is its Taylor expansion. We prove that two different MELL proof-nets have two different Taylor expansions. As a corollary, we prove a completeness result for MELL: We show that the relational model is injective for MELL proof-nets, i.e. the equality between MELL proof-nets in the relational model is exactly axiomatized by cut-elimination

    Geometry of language and linguistic circuitry

    Get PDF
    We illustrate the potential for geometry of language and linguistic circuitry under the rendering of the syntactic structures of Lambek categorial grammar as proof nets. This empirical application sees sentences as proof nets and words as partial proof nets, and well-formedness/meaningfulness as a global harmony of categorial syntactic connection. The global cohesion coincides with a dynamic connectivity remaniscent of circuits, but whereas circuits are just generalisations of formulas, our syntactic structures are much more sublime objects: proofs.Postprint (published version

    The relational model is injective for Multiplicative Exponential Linear Logic

    Get PDF
    We prove a completeness result for Multiplicative Exponential Linear Logic (MELL): we show that the relational model is injective for MELL proof-nets, i.e. the equality between MELL proof-nets in the relational model is exactly axiomatized by cut-elimination.Comment: 33 page

    Bipolar Proof Nets for MALL

    Full text link
    In this work we present a computation paradigm based on a concurrent and incremental construction of proof nets (de-sequentialized or graphical proofs) of the pure multiplicative and additive fragment of Linear Logic, a resources conscious refinement of Classical Logic. Moreover, we set a correspon- dence between this paradigm and those more pragmatic ones inspired to transactional or distributed systems. In particular we show that the construction of additive proof nets can be interpreted as a model for super-ACID (or co-operative) transactions over distributed transactional systems (typi- cally, multi-databases).Comment: Proceedings of the "Proof, Computation, Complexity" International Workshop, 17-18 August 2012, University of Copenhagen, Denmar

    Sublogarithmic uniform Boolean proof nets

    Full text link
    Using a proofs-as-programs correspondence, Terui was able to compare two models of parallel computation: Boolean circuits and proof nets for multiplicative linear logic. Mogbil et. al. gave a logspace translation allowing us to compare their computational power as uniform complexity classes. This paper presents a novel translation in AC0 and focuses on a simpler restricted notion of uniform Boolean proof nets. We can then encode constant-depth circuits and compare complexity classes below logspace, which were out of reach with the previous translations.Comment: In Proceedings DICE 2011, arXiv:1201.034

    Multiplicative-Additive Focusing for Parsing as Deduction

    Full text link
    Spurious ambiguity is the phenomenon whereby distinct derivations in grammar may assign the same structural reading, resulting in redundancy in the parse search space and inefficiency in parsing. Understanding the problem depends on identifying the essential mathematical structure of derivations. This is trivial in the case of context free grammar, where the parse structures are ordered trees; in the case of categorial grammar, the parse structures are proof nets. However, with respect to multiplicatives intrinsic proof nets have not yet been given for displacement calculus, and proof nets for additives, which have applications to polymorphism, are involved. Here we approach multiplicative-additive spurious ambiguity by means of the proof-theoretic technique of focalisation.Comment: In Proceedings WoF'15, arXiv:1511.0252

    From Proof Nets to the Free *-Autonomous Category

    Get PDF
    In the first part of this paper we present a theory of proof nets for full multiplicative linear logic, including the two units. It naturally extends the well-known theory of unit-free multiplicative proof nets. A linking is no longer a set of axiom links but a tree in which the axiom links are subtrees. These trees will be identified according to an equivalence relation based on a simple form of graph rewriting. We show the standard results of sequentialization and strong normalization of cut elimination. In the second part of the paper we show that the identifications enforced on proofs are such that the class of two-conclusion proof nets defines the free *-autonomous category.Comment: LaTeX, 44 pages, final version for LMCS; v2: updated bibliograph
    • …
    corecore