Geometry of language and linguistic circuitry™

Glyn Morrill
Departament de Llenguatges 1 Sistemes Informatics,
Universitat Politecnica de Catalunya,
Modul C 5 - Campus Nord,
Jordi Girona Salgado 1-3,
E-08034 Barcelona.

March 25, 2003

Abstract

We illustrate the potential for geometry of language and linguistic circuitry under
the rendering of the syntactic structures of Lambek categorial grammar as proof
nets. This empirical application sees sentences as proof nets and words as partial
proof nets, and well-formedness/meaningfulness as a global harmony of categorial
syntactic connection. The global cohesion coincides with a dynamic connectivity
remaniscent of circuits, but whereas circuits are just generalisations of formulas, our
syntactic structures are much more sublime objects: proofs.

*Thanks to the audiences at EACL, Bergen (Morrill 1999), the workshop on Linear Logic and Appli-
cations, Dagstuhl, August 1999, and the workshop on Grammar and Logic, Rennes, April 2000, and to
Mario Fadda and Oriol Valenti for many related conversations. All errors are my own. Work supported
by CICYT projects PB98-0937-C03-03 and TIC2002-04019—C03-01. E-mail: morrill@lsi.upc.es, http:
//www-lsi.upc.es/ “morrill/.

The proof nets introduced by Girard (1987) for linear logic not only appear to be
optimally parsimoneous, but reduce Cut-elimination to local graph transformations. This
paper continues the line of Roorda (1991) and others propounding the use of proof nets for
Lambek categorial grammar, in what might be put under the slogan ‘syntactic structures
as proof nets’.

On this view, words are partial proof nets, which are called modules, and Lecomte
and Retoré (1995) advocate ‘words as modules’. De Groote and Retoré (1996) show how
semantics as well as syntax can be represented in the same formalism of proof nets. Mor-
rill (1999) observes that within this general arrangement, much Cut-elimination between
syntax and semantics can be preevaluated in a partial execution of the lexicon.

The present paper attempts to spell out and illustrate these possibilities. Section 1 de-
fines Basic Type Logical Grammar and section 2 defines nets for Basic TLG and illustrates
the lexical preevaluation. Section 3 illustrates lexical words as modules and section 4, the
syntactic structures of sentences as proof nets.

1 Basic TLG

Let there be a set C' of prosodic constants. Then the set A of prosodic forms is defined
by:

(1) A == C|A+A
A prosodic structure is a monoid (L, +,0), i.e. an algebra of arity (2, 0) such that:
(2) s1+(sz+s3) = (s1+82)+s3 + is associative

0O+s = s = s+0 0 is an identity element for +

A prosodic interpretation comprises a prosodic structure (L, +,0) and a valuation v map-
ping from A into L. Then the prosodic object [a], denoted by a prosodic form « with
respect to a prosodic interpretation with valuation v is defined by:

(3) [a]s = w(a) for prosodic constant a

[a+0], [a]y+[Bl.

Prosodic forms « and 8 are equivalent, « = 3, if and only if [a], = [8], in every prosodic
interpretation. Clearly:

(4) a+(B+7) = (a+B8)+y

So we can drop parentheses in prosodic forms.
The set 7 of semantic types is defined by:

(5) T u= e|o|T>T|T&T

Let there be a set V; of semantic variables and a set C'; of semantic constants for each
semantic type 7 including the logical semantic constants:

(6) MWMOe Co
- € Coso
ANV, =€ C10—>(O—>O)
=c C'e—>(e—>0)
V.de C(e—>0)—>0

Then the set . x of semantic terms of type T with free variables X for each semantic
type 7 and set X of semantic variables is defined by:

(1) .0 = O
@, vy =V
¢r,xuy = (Prnrx Orvy)
<I)7',)(H= qu)T&T’,X | 7T2<I)T’&T,X
<I)7'—>7",X = AVT(I)T’,XU{V}
<I)7'&7",XUY o= (q)T,Xa <I)7",Y)

An occurrence of a variable x in a semantic term is free if and only if it does not fall
within any subterm of the form Az¢; otherwise it is bound. A semantic form is a semantic
term containing no free variables, i.e. a semantic term of @, y.

The application to a semantic term ¢ of the substitution of the semantic variable x (of
semantic type 7) by the semantic term ¢ (of semantic type 7), ¢{p/x}, is the result of
replacing by 1 every free occurrence of z in ¢; there is accidental capture in the application
of a substitution to a semantic term if and only if some variable becomes bound in the
process of replacement.

A semantic structure is a T-indexed family of sets {D,},¢7 where:

(8) De is a non-empty set F of entities
Do is the powerset of a non-empty set W of worlds
Dygr = D})x D
DT—H” = DT/TI

A semantic interpretation comprises a semantic structure, an assignment g mapping V;
into D, and a valuation f mapping C; into D, such that:

(9) = W

0

= mem
= m—=(m —=mnm)

m— (m' = muUm)

m = (m' = m" Um')

m = (m' — (W if m=m' else §}))
m > (e min')

m = Upieg m(m’)

zzl0m
|

14

>

3
1l

W <C ||
1l

e
|

[P G L G U G L QA gL L g

The semantic object [(b]? denoted by a semantic term ¢ with respect to a semantic

interpretation with valuation f and assignment g is defined by:

(10) [} = f(e) for semantic constant ¢
[a:]? = g(z) for semantic variable x
(e 0))7 = [#F([¥]})
[mg]; = fst([¢]])
[m2¢]; = snd([¢])
[Al‘QS]? DT 3mi— [¢]§tg—{(x,g(x))})u{(x,m)} for = c VT
(&, 0))7 = ([o]F: [¥]$)

Semantic terms ¢ and @ are equivalent, ¢ = 1, if and only if [a]? = [ﬁ]? in every semantic

interpretation. We have:

(11) Arg = Ay(e{y/z}) a-conversion
provided y is not free in ¢ and there is no accidental capture in ¢{y/a}
Azg) = ¢{v/x} (3-conversion
provided there is no accidental capture in ¢{¢/x}
(s, %) = ¢ m(d,) = ¢
Az(gp) = ¢ n-conversion
provided x is not free in ¢
(m1¢,m20) = ¢
We also have semantic equivalences arising in virtue of the logical semantic constants, for
example:
(12) (=¢)9) = W
(ho)®) = ¢
(FAz((A @) (= 2) ¥))) = ¢{¥/x} provided there is no accidental capture in ¢{¢/x}

Let there be a set A of atomic syntactic types. Then the set F of syntactic types is
defined by:

(13) F u= A|F-F|F\F|F/F

Let there be a basic type map t mapping A into 7. This induces the type map T from F
into 7 such that:

(14) T(P) = t(P) for atomic syntactic type P
T(A1B) = T(ANT(B)
T(A\C) = T(A) = T(C)
T(C/B) = T(B)—=T(C)

A syntactic interpretation comprises a prosodic structure (L, +, 0), a semantic structure
{D};e7, and a valuation F' sending each P € A into a subset of L x Dyp). Then the
value [A] of a syntactic type with respect to a syntactic interpretation is defined by:

(15) [P] = F(P) for atomic syntactic type P
[A-B] = {(s3,(m1,m2))| Hs1,m1) € [A], (52, m2) € [B], 53 = s1+s2}
[A\NC] = {({s2,m2)| ¥(s1,m1) € [A], (s1+52, m2(m1) € [C]))
[C/B] = {(s1,m)| ¥(s2,m2) € [B], (s1+s2, m1(m2) € [C]))

A type assignment statement a—¢: A comprises a syntactic type A, a prosodic form
«, and a semantic form ¢ of semantic type T(A4). A prosodic, semantic and syntactic
interpretation is a model of a type assignment statement a—¢: A if and only if {[a], [¢]) €
[A]; it is a model of a set ¥ of type assignment statements if and only if it is a model of
every type assignment statement o € X.

A set X of type assignment statements entails a type assignment statement o, ¥ = o,
if and only if every model of X is also a model of 0. A lexicon is a set of type assignment
statements. The language L(Lex) defined by a lexicon Lex is the set of type assignment
statements that it entails:

(16) L(Lex) = {a—¢: A| Lex |E a—¢: A}

For example, let there be the following lexicon:

(17) bagt+end — b

= N

frodo - f
= N

in — in
= (S\S)/N

inhabits — AzAy((in z) (live y))
= (N\S)/N

lives — live
:= N\S

Then the language defined includes the following type assignment statements:

(18) a. frodo+livest+in+bag+end—((in b) (live f)): S
b. frodo+inhabits+bag+end—((in b) (live f)): S

2 Nets for BTLG

2.1 Prosodic nets

A label is a syntactic type together with a polarity input (*) or output (°). Where p is a
polarity, p is the opposite polarity. Labels A? and AP are complementary. A literal is a
label the type of which is atomic.

An identity link is of the form:

(19)

A logical link is one of the forms:

20
20) A i B* B i A°
~N ~ 7
A-B* A-B°
A° i ce o c i A
~N 7 ~N
A\C* A\C®

[+ [+

c* 1 B B* ? C
C/B* C/B°

A prosodic tree is a tree the leaves of which are literals and each local tree of which

is a logical link. Fach label is the root of a unique prosodic tree, which is the result of

unfolding the label upwards according to the logical links. For example, the prosodic tree
for (CN\CN)/(S/N)* is:
(21)
N° i CN* N° ? Se
CN\CN®* ii S/N°

\

(CNACN)/(S/N)*

C

A prosodic frame is a cyclic list of prosodic trees exactly one of which has an output
root. For example, the following is a prosodic frame:

(22)
S° 1 S*
N
N° i g S\S* i N°
~N ~~
go N* N\S‘ (S\S)/N. N*

A prosodic net is the result of connecting by an identity link every leaf in a prosodic
frame with a complementary leaf such that:

(23) acyclicity Every cycle crosses both edges of some i-link.
planarity The identity links are planar in the cyclic ordering.

For example, the following is a prosodic net:

(24)

\

} |

: o : 5° i 5 I
| I | | \ / I ‘
| \ Ne° it Qe S\S* i Ne° !
qo N* N\S‘ (S\S)/N. N*

Then we have the following:

(25) Claim (Correctness of prosodic nets for BTLG).
There is a prosodic net with roots Ag°, 41%,...,4,* if and only if
{ag: Ay, .o an: Ap} Ear+---+ag: Ao for all ay, ..., .

2.2 Semantic nets

A contraction link is of the form:

(26)
A

[} i A.
\ /
A.

A Cut link is of the form:

A semantic tree is a tree the leaves of which are literals and each local tree of which is a

logical link or a contraction link. Note that prosodic trees are semantic trees — without
contraction links. A semantic frame is a bag of semantic trees exactly one of which has
an output root. Note that prosodic frames are semantic frames when we forget about
the cyclic order. A semantic module is the result of i) possibly connecting in a semantic
frame some leaves with a complementary leaf by an identity link and some roots with a
complementary root by a Cut link, and ii) associating semantic constants to every open
input root, such that:

(28) acyclicity Every cycle crosses both edges of some i-link.

A semantic net is a semantic module with no open leaves. For example, the following is

10

a semantic net:

NSNS NS
NN

The semantic trip of a semantic net is the trip which starts upwards at the unique
open output root and generates a semantic form proceeding as follows and bouncing with
the associated semantic form at input roots:

(30)
At A
NV
(31)
A -~ B* B°* 0 A°

\:\\ Z //W:/ \\N77/
\a-BY/

11

A diC* o iy A
: SN
A\C NA\C°

B* iy C°
~ - (IO %]
Nc/B*/ c/B°/
The semantic trip ends when it returns to the unique open output root. The reading ¢

of a semantic net II is the semantic term generated by its semantic trip. For example, the
semantic reading of (29) is

(34) AxAy((in =) (live y))

Then we have the following:
(35) Claim.
The readings of the semantic nets are the semantics forms.

The following conversions on semantic nets preserve equivalence of readings:

12

AP n B4 BP 3—n AT AP B? BP A7
\ / \ / ‘ ‘ [[
cr cr = ==t
\ |
\ \ | |
(37)
o 7} }7 o
\ \
AP AP AP = AP AP AP AP = AP
\ \
\ \

2.3 Syntactic nets

A syntactic module is a bag of semantic modules with no open output root and with a
strict ordering on their open leaves. A syntactic frame is a cyclic list of syntactic modules
and exactly one output prosodic tree. A syntactic net is the result of connecting by an
identity link every leaf in a syntactic frame with a complementary leaf such that:

(38) acyclicity Every cycle crosses both edges of some i-link.
planarity The identity links added are planar in the cyclic ordering.

Let an nitial module for a lexical assignment a—¢: A be a syntactic module which
results from connecting by a Cut link the prosodic tree of A with a semantic net the
reading of which is ¢.

13

Then we have the following:
(39) Claim (Correctness of syntactic nets for BTLG).

There is a syntactic net with reading ¢ on the syntactic frame comprising
the prosodic tree of Ag° and initial modules for ay—¢1: A, ..., an—¢n: A, if
and only if {a1—d¢1: A1,...,an—¢n: An} |E a1+ -+a,—¢": Ap for all ¢’ =
¢7a17"'7an7¢17"'7¢n-

A lexical module for a lexical assignment a—¢: A is a result of normalizing according
to (36) an initial module for a—¢: A.
For example, for frodo—f N we have the initial module:

(40)

I

f‘ c‘> Ne
I
I I

Whixh simplifies to the lexical module:

(41)
NO
f

Similarly, for bag+end—b: N we obtain the lexical module:
(42)

N.
b

For lives—live: N\S we have the initial module, preevaluation and lexical module:

14

(43)

“““

(44)

15

(46)

Ne° i 5¢
~N

live®

Similarly, for in—in: (S\S)/N we obtain:

(47)
Se 17 Se
N
S\S° 17 Ne°
N e
(S\S)/N¢*

For inhabits—AxAy((in #) (live y)): (N\S)/N we have the initial module, preevaluation

and lexical module:

(48)

16

“““

“““““

“““

17

“““““

(51)

(52)

18

(53)

| |
N° 1 / . : 1 S
\live' \ ¢ / u N°
\m./
For Frodo lives in Bag End we have the syntactic frame:

(54)

Se ¥ S*
N
N S\s* i /N°
~
v Y Nt S9N

And the syntactic net:

19

\
l |

: o : 5° u S* o
| | | | \ / | |
| | N°\ i /S‘ S\S* - i o Ne :

\ ‘ ‘
§° 1\}. live® (S\S%/N' b.

For Frodo inhabits Bag End we have the syntactic frame (56) and hence the same syntactic
net (55).

(56)

| |
N° 1 l “’ 1 S*
N7 NS
live® ¢ \ ¥ /N°
in®

The semantic reading of (55) is ((in b) (live f)).

NO

o N°*
g

b

20

