195 research outputs found

    Improved Hardness of Approximating Chromatic Number

    Full text link
    We prove that for sufficiently large K, it is NP-hard to color K-colorable graphs with less than 2^{K^{1/3}} colors. This improves the previous result of K versus K^{O(log K)} in Khot [14]

    On the Power of Many One-Bit Provers

    Full text link
    We study the class of languages, denoted by \MIP[k, 1-\epsilon, s], which have kk-prover games where each prover just sends a \emph{single} bit, with completeness 1ϵ1-\epsilon and soundness error ss. For the case that k=1k=1 (i.e., for the case of interactive proofs), Goldreich, Vadhan and Wigderson ({\em Computational Complexity'02}) demonstrate that \SZK exactly characterizes languages having 1-bit proof systems with"non-trivial" soundness (i.e., 1/2<s12ϵ1/2 < s \leq 1-2\epsilon). We demonstrate that for the case that k2k\geq 2, 1-bit kk-prover games exhibit a significantly richer structure: + (Folklore) When s12kϵs \leq \frac{1}{2^k} - \epsilon, \MIP[k, 1-\epsilon, s] = \BPP; + When 12k+ϵs<22kϵ\frac{1}{2^k} + \epsilon \leq s < \frac{2}{2^k}-\epsilon, \MIP[k, 1-\epsilon, s] = \SZK; + When s22k+ϵs \ge \frac{2}{2^k} + \epsilon, \AM \subseteq \MIP[k, 1-\epsilon, s]; + For s0.62k/2ks \le 0.62 k/2^k and sufficiently large kk, \MIP[k, 1-\epsilon, s] \subseteq \EXP; + For s2k/2ks \ge 2k/2^{k}, \MIP[k, 1, 1-\epsilon, s] = \NEXP. As such, 1-bit kk-prover games yield a natural "quantitative" approach to relating complexity classes such as \BPP,\SZK,\AM, \EXP, and \NEXP. We leave open the question of whether a more fine-grained hierarchy (between \AM and \NEXP) can be established for the case when s22k+ϵs \geq \frac{2}{2^k} + \epsilon

    Gap Amplification for Small-Set Expansion via Random Walks

    Get PDF
    In this work, we achieve gap amplification for the Small-Set Expansion problem. Specifically, we show that an instance of the Small-Set Expansion Problem with completeness ϵ\epsilon and soundness 12\frac{1}{2} is at least as difficult as Small-Set Expansion with completeness ϵ\epsilon and soundness f(ϵ)f(\epsilon), for any function f(ϵ)f(\epsilon) which grows faster than ϵ\sqrt{\epsilon}. We achieve this amplification via random walks -- our gadget is the graph with adjacency matrix corresponding to a random walk on the original graph. An interesting feature of our reduction is that unlike gap amplification via parallel repetition, the size of the instances (number of vertices) produced by the reduction remains the same

    Credimus

    Full text link
    We believe that economic design and computational complexity---while already important to each other---should become even more important to each other with each passing year. But for that to happen, experts in on the one hand such areas as social choice, economics, and political science and on the other hand computational complexity will have to better understand each other's worldviews. This article, written by two complexity theorists who also work in computational social choice theory, focuses on one direction of that process by presenting a brief overview of how most computational complexity theorists view the world. Although our immediate motivation is to make the lens through which complexity theorists see the world be better understood by those in the social sciences, we also feel that even within computer science it is very important for nontheoreticians to understand how theoreticians think, just as it is equally important within computer science for theoreticians to understand how nontheoreticians think

    Characterization of Binary Constraint System Games

    Full text link
    We consider a class of nonlocal games that are related to binary constraint systems (BCSs) in a manner similar to the games implicit in the work of Mermin [N.D. Mermin, "Simple unified form for the major no-hidden-variables theorems," Phys. Rev. Lett., 65(27):3373-3376, 1990], but generalized to n binary variables and m constraints. We show that, whenever there is a perfect entangled protocol for such a game, there exists a set of binary observables with commutations and products similar to those exhibited by Mermin. We also show how to derive upper bounds strictly below 1 for the the maximum entangled success probability of some BCS games. These results are partial progress towards a larger project to determine the computational complexity of deciding whether a given instance of a BCS game admits a perfect entangled strategy or not.Comment: Revised version corrects an error in the previous version of the proof of Theorem 1 that arises in the case of POVM measurement

    The computational complexity of density functional theory

    Full text link
    Density functional theory is a successful branch of numerical simulations of quantum systems. While the foundations are rigorously defined, the universal functional must be approximated resulting in a `semi'-ab initio approach. The search for improved functionals has resulted in hundreds of functionals and remains an active research area. This chapter is concerned with understanding fundamental limitations of any algorithmic approach to approximating the universal functional. The results based on Hamiltonian complexity presented here are largely based on \cite{Schuch09}. In this chapter, we explain the computational complexity of DFT and any other approach to solving electronic structure Hamiltonians. The proof relies on perturbative gadgets widely used in Hamiltonian complexity and we provide an introduction to these techniques using the Schrieffer-Wolff method. Since the difficulty of this problem has been well appreciated before this formalization, practitioners have turned to a host approximate Hamiltonians. By extending the results of \cite{Schuch09}, we show in DFT, although the introduction of an approximate potential leads to a non-interacting Hamiltonian, it remains, in the worst case, an NP-complete problem.Comment: Contributed chapter to "Many-Electron Approaches in Physics, Chemistry and Mathematics: A Multidisciplinary View

    Approximating the Regular Graphic TSP in near linear time

    Get PDF
    We present a randomized approximation algorithm for computing traveling salesperson tours in undirected regular graphs. Given an nn-vertex, kk-regular graph, the algorithm computes a tour of length at most (1+7lnkO(1))n\left(1+\frac{7}{\ln k-O(1)}\right)n, with high probability, in O(nklogk)O(nk \log k) time. This improves upon a recent result by Vishnoi (\cite{Vishnoi12}, FOCS 2012) for the same problem, in terms of both approximation factor, and running time. The key ingredient of our algorithm is a technique that uses edge-coloring algorithms to sample a cycle cover with O(n/logk)O(n/\log k) cycles with high probability, in near linear time. Additionally, we also give a deterministic 32+O(1k)\frac{3}{2}+O\left(\frac{1}{\sqrt{k}}\right) factor approximation algorithm running in time O(nk)O(nk).Comment: 12 page
    corecore