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Abstract
In this work, we achieve gap amplification for the Small-Set Expansion problem. Specifically, we
show that an instance of the Small-Set Expansion Problem with completeness ε and soundness
1
2 is at least as difficult as Small-Set Expansion with completeness ε and soundness f(ε), for any
function f(ε) which grows faster than

√
ε. We achieve this amplification via random walks – the

output graph corresponds to taking random walks on the original graph. An interesting feature
of our reduction is that unlike gap amplification via parallel repetition, the size of the instances
(number of vertices) produced by the reduction remains the same.
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1 Introduction

The small-set expansion problem refers to the problem of approximating the edge expansion
of small sets in a graph. Formally, given a graph G = (V,E) and a subset of vertices S ⊆ V
with |S| ≤ |V |/2, the edge expansion of S is

φ(S) = E(S, S̄)
vol(S) ,

where vol(S) refers to the fraction of all edges of the graph that are incident on the subset S.
The edge expansion of the graph G is given by φG = minS⊆V,vol(S)≤1/2 φ(S). The problem of
approximating the value of φG is the well-studied uniform sparsest cut problem [10, 4, 2].

In the small-set expansion problem, the goal is to approximate the edge expansion of
the graph at a much finer granularity. Specifically, for δ > 0 define the parameter φG(δ) as
follows:

φG(δ) = min
S⊆V,vol(S)≤δ

φ(S).

The problem of approximating φG(δ) for all δ > 0 is the small-set expansion problem.
The small-set expansion problem has received considerable attention in recent years due

to its close connections to the unique games conjecture. To describe this connection, we will
define a gap version of the problem.
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I Definition 1. For constants 0 < s < c < 1 and δ > 0, the SSEδ(c, s) problem is defined
as follows: Given a graph G = (V,E) distinguish between the following two cases:

G has a set S with vol(S) ∈ [δ/2, δ] with expansion less than 1− c
All sets S with vol(S) ≤ δ in G have expansion at least 1− s.

We will omit the subscript δ and write SSE(c, s) when we refer to the SSEδ(c, s) problem
for all constant δ > 0.

Recent work by Raghavendra and Steurer [13] introduced the following hardness assump-
tion and showed that it implies the unique games conjecture.

I Hypothesis 2. For all ε > 0, there exists δ > 0 such that SSEδ(1− ε, ε) is NP -hard.

I Theorem 3 ([13]). The small set expansion hypothesis implies the unique games conjecture.

Moreover, the small set expansion hypothesis is shown to be equivalent to a variant of the
Unique Games Conjecture wherein the input instance is promised to be a small-set expander
[14]. Assuming the small-set expansion hypothesis, hardness results have been obtained for
several problems including Balanced Separator, Minimum Linear Arrangement [14] and the
problem of approximating vertex expansion [11].

In this work, we will be concerned with gap amplification for the small set expansion
problem. Gap amplification refers to an efficient reduction that takes a weak hardness result
for a problem Π with a small gap between the completeness and soundness and produces a
strong hardness with a much larger gap. Formally, this is achieved via an efficient reduction
from instances of problem Π to harder instances of the same problem Π. Gap amplification
is a crucial step in proving hardness of approximation results. An important example of
gap amplification is the parallel repetition of 2-prover 1-round games or Label Cover. Label
cover is a constraint satisfaction problem which is the starting point for a large number of
reductions in hardness of approximation [7]. Starting with the PCP theorem, one obtains a
weak hardness for label cover with a gap of 1 vs 1− β0 for some tiny absolute constant β0
[3]. Almost all label-cover based hardness results rely on the much stronger 1 vs ε hardness
for label cover obtained by gap amplification via the parallel repetition theorem of Raz [16].
More recently, there have been significant improvements and simplifications to the parallel
repetition theorem [15, 8, 5].

It is unclear if parallel repetition could be used for gap amplification for small set expansion.
Given a graph G, the parallel repetition of G would consist of the product graph GR for
some large constant R. Unfortunately, the product graph GR can have small non-expanding
sets even if G has no small non-expanding sets. For instance, if G has a balanced cut then
GR could have a non-expanding set of volume 1

2R .
In this work, we show that random walks can be used to achieve gap amplification for

small set expansion. Specifically, given a graph G the gap amplification procedure constructs
Gt on the same set of vertices as G, but with edges corresponding to t-step lazy random
walks in G. Using this approach, we are able to achieve the following gap amplification.

I Theorem 4. Let f be any function such that limε→0
f(ε)√
ε
→∞. Then:

If for all ε > 0, SSE′(1− ε, 1− f(ε)) is NP-hard then for all η > 0, SSE(1− η, 1/2) is
NP-hard.

We remark here that the result has some discrepancy in the set sizes between the original
instance and the instance produced by the reduction. For this reason, the reduction has
to start with a slightly different version of the Small set expansion problem SSE′ (See
Definition 10).
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The above result nicely complements the gap amplification result for the closely related
problem of Unique Games obtained via parallel repetition [15]. For the sake of completeness
we state the result below.

I Theorem 5 ([15]). Let f be any function such that limε→0
f(ε)√
ε
→∞. Then:

If for all ε > 0 if UG(1 − ε, 1 − f(ε)) is NP-hard then for all η > 0, UG(1 − η, 1/2) is
NP-hard.

Note that the size of the instance produced by our reduction remains bounded by O(n2). In
fact, the instance produced has the same number of vertices but possibly many more edges.
This is in contrast to parallel repetition wherein the size of the instance grows exponentially
in the number of repetitions used.

Technically, the proof of the result is very similar to an argument in the work of Arora,
Barak and Steurer [1] to show that graphs with sufficiently high threshold rank cannot be
small-set expanders (see Steurer’s thesis [17] for an improved version of the result). The work
of O’Donnell and Wright [12] recast these arguments using continuous-time random walks
instead of lazy-random walks, yielding cleaner and more general proofs. In this work, we will
reuse the proof technique and obtain upper and lower bounds for the expansion profile of
lazy random walks (see Theorem 11). These upper and lower bounds immediately imply the
desired gap amplification result for small-set expansion.

Subsequent to our work, Kwok and Lau [9] have obtained a stronger analysis of our gap
amplification theorem, yielding almost tight bounds.

2 Preliminaries

Unless otherwise specified, we will be concerned with an undirected graph G = (V,E) with
n vertices and associated edge weights w : E → R+. The degree of vertex i denoted by
d(i) =

∑
(i,j)∈E w(i, j). The volume of a set S ⊆ V is defined to be vol(S) =

∑
i∈S d(i).

Henceforth, we will assume that the total volume is 1, i.e.,
∑
i∈V d(i) = 1. The adjacency

matrix A of the graph G has entries Aij = w(i, j). The degree matrix D is a n× n diagonal
matrix with Dii = d(i).

2.1 Expansion Profile
The expansion profile of a graph is defined as follows.

I Definition 6. For a graph G, define the expansion profile φG : R+ → [0, 1] as

φG(δ) = min
S⊆V,vol(S)≤δ

φ(S)

where φ(S) = E(S,S̄)
vol(S) .

2.2 Lazy Random Walks
The transition matrix for a lazy random walk on G is given by

M = 1
2 (I +D−1A) .

The lazy random walk corresponds to staying at the same vertex with probability 1
2 , and mov-

ing to a random neighbor with probability 1
2 . We will let Gt denote the graph corresponding

to the t-step lazy random walk. The adjacency matrix of Gt is given by DM t.
We recall a few standard facts about lazy random walks here.

APPROX/RANDOM’14
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I Fact 7. If G is a graph with adjacency matrix A, then G’s lazy random walk operator
M = 1

2 (I +D−1A) has the property that ‖D1/2Mv‖22 = vTDM2v for any vector v.

Proof. We use the fact that M = 1
2D
−1/2(I +D−1/2AD−1/2))D1/2:

‖D1/2Mv‖22 = 1
4v
TMTDMv

= 1
4v
TD

1/2(I +D−
1/2AD−

1/2)D−1/2DD−
1/2(I +D−

1/2AD−
1/2)D1/2v

= 1
4v
TD

1/2(I +D−
1/2AD−

1/2)2D
1/2v

= vTDM2v,

as desired. J

I Fact 8. If G is a graph with adjacency matrix A, then for the lazy random walk operator
M = 1

2 (I +D−1A), we have

‖D1/2v‖22 = vTDv ≥ vTDMv ≥ vTDM2v = ‖D1/2Mv‖22.

Proof. Since the eigenvalues λi of D−1/2AD−1/2 are between [−1, 1], the eigenvalues of
M ′ = 1

2 (I +D−1/2AD−1/2) are µi = 1
2 (1 + λi), and so µi ∈ [0, 1]. Let D1/2v =

∑
αiui be the

decomposition of D1/2v in terms of the eigenvectors of M ′. Then we have

D
1/2Mv = M ′D

1/2v =
∑

αiµiui,

and so vTDv =
∑
α2
i , vTDMv =

∑
α2
iµi, and vTDM2v =

∑
α2
iµ

2
i . Since µi ∈ [0, 1], we

have vTDv ≥ vTDMv ≥ vTDM2v, as desired. J

I Fact 9. For the lazy random walk operator M = 1
2 (I + D−1A) and any vector v ∈ RV ,

v ≥ 0 we have

‖Dv‖1 = ‖DMv‖1.

Proof. Let v ∈ RV . We have

‖DMv‖1 = 1TD( I+D
−1A

2 )v = 1
2 ((1TD)v + (1TA)v) = ‖Dv‖1,

where the last inequality follows because 1TD = 1TA. J

2.3 Small-Set Expansion Problem
The formal statement of the SSE′ problem is as follows.

I Definition 10. For constants 0 < s < c < 1 and δ > 0, the Small-Set Expansion problem
SSE′δ(c, s) is defined as follows: Given a graph G = (V,E), distinguish between the following
two cases:

G contains a set S such that vol(S) ∈ [δ/2, δ] and φ(S) ≤ 1− c
All sets S with vol(S) ≤ 8δ in G have expansion φ(S) ≥ 1− s.

The key difference from SSEδ(c, s) is that the soundness is slightly stronger in that even
sets of size 8δ have expansion at least 1− s.

2.4 Organization
In Section 3, we will obtain upper and lower bounds (Theorem 11) for expansion profile of
lazy random walks. Subsequently, we use these bounds to conclude the main result of the
paper in Section 4. In Appendix A, we give a reduction that establishes the equivalence of
the search versions of two different notions of Small-Set Expansion. Finally, we also present
a reduction from SSE on irregular graphs to SSE on regular graphs in Appendix B.
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3 Expansion Profile of Lazy Random Walks

Let G = (V,E) be a graph with adjacency matrix A, and diagonal degree matrix D.
The transition matrix for a lazy random walk on G is M = 1

2 (I + D−1A) = 1
2D
−1/2(I +

D−1/2AD−1/2)D1/2.
For every t ∈ N, let Gt denote the graph corresponding to the t-step lazy random walk

whose adjacency matrix is given by DM t. We will prove the following theorem about the
expansion profile of Gt.

I Theorem 11. For all t ∈ N and η, δ ∈ (0, 1], if Gt denotes the graph corresponding to the
t-step lazy random walk in a graph G = (V,E) then,

min

1−
(

1−
φ2
G( 4δ

η )
32

)t
, 1− η

 ≤ φGt(δ) ≤ t

2 · φG(δ) .

We will split the proof of the above theorem in to two parts: Lemma 12 and Lemma 13

I Lemma 12. For every subset S ⊆ V ,

φGt(S) ≤ t

2 · φG(S),

and therefore φGt(δ) ≤ t
2 · φG(δ).

Proof. Fix a subset S ⊂ V . From [6], we have that the probability p(t) that a lazy random
walk stays entirely in S for t steps is bounded below by

p(t) ≥
(

1− 1
2φ(S)

)t
.

Now, the expansion of S in Gt is the probability of leaving the set on the tth step of the
random walk, which is at most 1− p(t). Hence,

φGt(S) ≤ 1− p(t) ≤ 1−
(

1− 1
2φ(S)

)t
≤ t

2φ(S),

as desired. The result immediately follows for all sets of volume ≤ δ. J

I Lemma 13. For all t, η,

φGt (δ) ≥ min

1−
(

1−
φ2
G( 4δ

η )
32

)t
, 1− η

 .

We prove this lemma by contradiction, by showing that if the expansion in the final
graph is not large enough then there exists a vector with bounded Rayleigh quotient with
respect to the original graph, from which we can extract a non-expanding set. The intuition
is that the expansion of a set in the final graph DM t corresponds to the neighborhood of the
random walk after t steps, and if the neighborhood is not large enough after t steps, there
must be at least one step (or application of M) during which it did not grow.

Proof. Suppose by way of contradiction that this is not the case. Let β = φG( 4δ
η ) and let

δ′ = 4δ
η . Further, let β̂ = 1

2β.

APPROX/RANDOM’14
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Let S be a set of volume at most δ · vol(V ) such that

φGt(S) ≤ min

1−
(

1− β̂2

8

)t
, 1− η

 . (1)

Let v0 = 1S be the vector corresponding to the indicator function of the set S. Define
vi = M iv0, and for the diagonal degree matrix D of A, define wi = D1/2vi. Note that
‖w0‖22 = vol(S), and ‖Dv0‖1 = vol(S). By Fact 9 we also have ‖Dvi‖1 = vol(S) for all i.

We first lower-bound ‖w t
2
‖2. By definition of expansion,

φGt(S) = 1− vT0 DM
tv0

vT0 Dv0

which by Fact 7 implies that ‖D1/2M
t
2 v0‖22 = vol(S)(1− φGt(S)). Now, using (1) we get

‖w t
2
‖22 = ‖D1/2M

t
2 v0‖22 = vol(S)(1− φGt(S)) ≥ vol(S) ·max

(
η, (1− 1

8 β̂
2)t
)

(2)

By Fact 8, we have ‖wi‖2 ≥ ‖wi+1‖2 ≥ 0 for all i, and (2) holds for all i ≤ t
2 .

We now assert that there must be some i for which

‖wi+1‖22
‖wi‖22

> 1− 1
4 β̂

2.

To see this, consider the product of all such terms for i < t
2 . Some algebraic simplification

shows that
t
2−1∏
i=0

‖wi+1‖22
‖wi‖22

=
‖w t

2
‖22

‖w0‖22
>

(1− 1
8 β̂

2)t · vol(S)
vol(S) =

(
1− 1

8 β̂
2
)t
,

where the second-to-last inequality follows from (2). Thus for some i < t
2 we have

‖wi+1‖22
‖wi‖22

>

(
(1− 1

8 β̂
2)t
) 2

t

> 1− 1
4 β̂

2.

Then let wi be the vector corresponding to the first i for which ‖wi+1‖22 ≥ (1− 1
4 β̂

2)‖wi‖22.
Since wi+1 is obtained from vi via one step of a lazy random walk and a normalization,

we can bound the Rayleigh quotient of vi with respect to the Laplacian of DM = 1
2 (D +A):

vTi D(I −M)vi
vTi Dvi

= 1− vTi DMvi
vTi Dvi

,

by Fact 8,

≤ 1− vTi DM
2vi

vTi Dvi

and by Fact 7,

= 1− ‖wi+1‖22
‖wi‖22

≤ 1
4 β̂

2. (3)
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We now truncate the vector vi, then run Cheeger’s algorithm on the truncated vector in
order to find a non-expanding small set, and thus obtain a contradiction. Let θ = η

4 . We
take the truncated vector

zi(j) =
{
vi(j)− θ vi(j) ≥ θ
0 otherwise .

By Fact 9, Dvi has L1 mass vol(S). Thus, the total volume of the set Sz of vertices with
nonzero support in zi is

vol(Sz) =
∑

vi(j)>θ

d(j) ≤
∑

vi(j)>θ

1
θ
d(j)vi(j) ≤

1
θ
· ‖Dvi‖1 = 4 vol(S)

η

Hence any subset of Sz has volume at most 4 vol(S)
η .

For the vector vi, we know that ‖Dvi‖1 = vol(S). Moreover using (2),

‖D1/2vi‖22 = ‖wi‖22 ≥ ‖wt/2‖22 ≥ η vol(S) .

Applying Lemma 14 to vi and zi to conclude,
zTi D(I −M)zi

zTi Dzi
≤ 2v

T
i D(I −M)vi

vTi Dvi
.

Using (3), this implies the following bound on the Rayleigh quotient of zi,
zTi D(I −M)zi

zTi Dzi
≤ 1

2 β̂
2 .

Thus, when we run Cheeger’s algorithm on zi, we get a set of volume at most 4 vol(S)
η

and of expansion less than β̂ in DM , and therefore less than β in G. Since β = φG( 4δ
η ), this

is a contradiction. This completes the proof of Lemma 13. J

The following lemma, which gives an upper bound on the Rayleigh quotient of a truncated
vector, is a slight generalization of Lemma 3.4 of [1].

I Lemma 14. Let x ∈ RV be non-negative, let L be the weighted Laplacian of a graph
G = (V,E) with weights w(i, j) and degree matrix D. Suppose that

4θ‖Dx‖1 ≤ ‖D1/2x‖22 (4)

Then for the threshold vector y defined by

y(i) =
{
x(i)− θ x(i) > θ

0 otherwise ,

we have
yTLy

yTDy
≤ 2 · x

TLx

xTDx
.

Proof. First, we show yTLy ≤ xTLx.

yTLy =
∑

(i,j)∈E

w(i, j)(y(i)− y(j))2

=
∑

(i,j)∈E
y(i),y(j)≥0

w(i, j)(x(i)− x(j))2 +
∑

(i,j)∈E
y(i)≥0,y(j)=0

w(i, j)(x(i)− θ)2

≤
∑

(i,j)∈E

w(i, j)(x(i)− x(j))2

= xTLx,

APPROX/RANDOM’14
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where the second-to-last inequality follows from the fact that if y(i) = 0, then x(i) ≤ θ.
Now, we show that yTDy ≥ 1

2x
TDx. First, we note that d(i)y(i)2 ≥ d(i)x(i)2−2θd(i)x(i)

for all k. Thus,∑
i∈V

d(i)y(i)2 ≥
∑
i∈V

d(i)x(i)2 − 2θd(i)x(i)

=
(∑
i∈V

d(i)x(i)2

)
− 2θ

(∑
i∈V

d(i)x(i)
)

≥ 1
2
∑
i∈V

d(i)x(i)2 .

Where the the last inequality follows by assumption (4).
Thus, we have

yTLy

yTDy
≤ 2 · x

TLx

xTDx
,

as desired. J

4 Gap Amplification

In this section, we will prove Theorem 4 which we restate here for convenience.

I Theorem 15 (Restatement of Theorem 4). Let f be any function such that limε→0
f(ε)√
ε
→∞.

Then:
If for all ε > 0, SSE′(1 − ε, 1 − f(ε)) is NP-hard then for all η > 0 SSE(1 − η, 1

2 ) is
NP-hard.

Proof. Fix ε small enough so that 64ε
f(ε)2 ≤ η. There exists such an ε since limε→0

f(ε)√
ε
→∞.

Fix t = 64
f(ε)2 .

Given an instance G of SSE′(1− ε, 1− f(ε)), the reduction just outputs the graph Gt
obtained via t-step lazy random walks on G. Since the adjacency matrix of G′ can be
calculated with log t matrix multiplications, this reduction clearly runs in time O(n3 log t).

Completeness. If there exists a set of S with vol(S) ∈ [δ/2, δ] and φG(S) ≤ ε then by
Lemma 12 the same set S satisfies,

φGt(S) ≤ t

2φG(S) = Θ
(

ε

f(ε)2

)
≤ η .

Soundness. If φG(8δ) ≥ f(ε) then by applying Lemma 13

φGt (δ) ≥ min
(

1−
(

1− 1
32f(ε)2

)t
, 1/2

)
≥ 1

2 .

J
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7 Johann Hȧstad. Some optimal inapproximability results. Journal of the ACM, 48(4):798–
859, 2001.

8 Holenstein. Parallel repetition: Simplifications and the no-signaling case. In STOC: ACM
Symposium on Theory of Computing (STOC), 2007.

9 Tsz Chiu Kwok and Lap Chi Lau. Personal communication, 2014.
10 Frank Thomson Leighton and Satish Rao. Multicommodity max-flow min-cut theorems

and their use in designing approximation algorithms. J. ACM, 46(6):787–832, 1999.
11 Anand Louis, Prasad Raghavendra, and Santosh Vempala. The complexity of approximat-

ing vertex expansion. CoRR, abs/1304.3139, 2013.
12 Ryan O’Donnell and David Witmer. Markov chain methods for small-set expansion. Arxiv

arXiv:1204.4688, 2012.
13 Prasad Raghavendra and David Steurer. Graph expansion and the unique games conjecture.

In STOC, pages 755–764, 2010.
14 Prasad Raghavendra, David Steurer, and Madhur Tulsiani. Reductions between expansion

problems. In IEEE Conference on Computational Complexity, pages 64–73, 2012.
15 Anup Rao. Parallel repetition in projection games and a concentration bound. In Richard E.

Ladner and Cynthia Dwork, editors, Proceedings of the 40th Annual ACM Symposium on
Theory of Computing (STOC’08), pages 1–10. ACM, 2008.

16 Ran Raz. A parallel repetition theorem. SIAM Journal on Computing, 27(3):763–803, June
1998.

17 David Steurer. On the Complexity of Unique Games and Graph Expansion. PhD thesis,
Princeton University, 2010.

A Equivalence of Two Notions of the Small-Set Expansion Problem

There is a slightly different version of the Small-Set expansion decision problem that differs
from Definition 1 in the soundness case.

I Definition 16. For constants 0 < s < c < 1, and δ > 0, the Small-Set Expansion problem
SSE=

δ (c, s) is defined as follows: Given a graph G = (V,E) with vol(V ) = N , distinguish
between the following two cases:

G has a set of volume in the range [ 1
2δN, δN ] with expansion less than 1− c

All sets in G of volume in the range [ 1
4δN, δN ] have expansion at least 1− s.

APPROX/RANDOM’14
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Clearly SSE=
δ (c, s) is a harder decision problem than SSEδ(c, s) since the soundness

assumption is weaker. There is no known reduction from SSE=
δ (c, s) to SSEδ(c, s) that

establishes the equivalence of the two versions. Here we observe that the search versions of
these two problems are equivalent.

I Proposition 17. For all δ0, c, s > 0 A search algorithm for SSEδ(2c−1, s) for δ ∈ [δ0/2, δ0]
gives a search algorithm for SSE=

δ (c, s) in the range δ ∈ [δ0/2, δ0].

Proof. Suppose we are given an algorithm A that finds a set S′ of volume at most δN
and expansion less than 1 − s whenever there exists a set S with vol(S) ∈ [ 1

4δN, δN ] and
Φ(S) ≤ 2− 2c. We construct a set S ⊆ V such that vol(S) ∈ [ 1

4δN, δN ] and φ(S) < 1− s.
We proceed iteratively, as follows.

We start with an empty initial set, Sout, and with the full graph, G0 = G. If vol(Sout) ∈
[ 1
4δN, δN ], we terminate and return Sout. Otherwise, at the ith step, we apply A to Gi−1 to
obtain a set Si of expansion less than 1− s. If vol(Si) ∈ [ 1

4δN, δN ] return Si, otherwise add
the vertices in Si to Sout. We then set Gi = Gi−1 \ Si. If no such set can be found, then we
terminate and return no.

Clearly, this algorithm terminates and runs in polynomial time. Suppose S′ is a non-
expanding set with vol(S′) ∈ [ 1

2δN, δN ]. As long as Sout has volume smaller than 1
4δN ,

S′ − Sout will have volume at least vol(S′)/2 and has expansion at most 2φ(S′) ≤ 2 − 2c.
Hence by the assumption about algorithm A, it will return a set Si of expansion at most
1− s. The check of the volume of Si ensures that Sout will never go from below the allowable
volume range to above in a single step. Finally if Si was never returned for any step i, the
union of all the sets Si has expansion at most 1− s and volume in the range [δN/4, δN ]. J

B Reduction from Irregular Graphs to Regular Graphs

In this section, we present a reduction from small set expansion on irregular graphs to small
set expansion on regular graphs. Specifically, we prove the following theorem.

I Theorem 18. There exists an absolute constant C such that for all γ, β ∈ (0, 1) there is
a polynomial time reduction from SSEδ(1 − γ, 1 − β) on a irregular graph G = (V,E) to
SSEδ(1− γ, 1− β/C) on a 4-regular graph G′ = (V ′, E′)

Proof. The reduction is as follows: we replace each vertex v ∈ V with a 3-regular expander
Av on deg(v) vertices. Using standard constructions of 3-regular expanders, we can assume
that the graphs Av have edge expansion at least κ = 0.01. Now, for each edge (v, w) ∈ E, we
add an edge between a particular vertex in Av and Aw. The resulting graph on the expanders
is G′, with V ′ = ∪v∈VAv. Note that G′ is d-regular, and that |V ′| =

∑
v∈V deg(v) = vol(V ),

as desired.
For the completeness, we note that if a set S ⊂ V with volume at most δ|V | has φG(S) < γ,

then the set S′ = ∪v∈SAv has the same number of edges leaving the set as S, and the number
of vertices in the set is equal to vol(S). Thus, φG′(S′) < γ/4, as desired.

For soundness, suppose there is a set S′ ⊂ V ′ with |S′| ≤ δ|V ′| and φG′(S′) < β. Then
we can partition S′ into sets corresponding to each Av; let Bv = S′ ∩Av. Then consider the
set

S∗ = ∪|Bv|≥ 1
2 |Av|Av,

the set of Av that overlap with S′ by at least half. We will argue that S∗ has expansion at
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most 10
κ β in G′. First, by definition of expansion we have

β ≥ φG′(S′) =
∑
v E(Bv, S̄′)

4
∑
v∈V |Bv|

=
∑
v E(Bv, Av \Bv) + E(Bv, S̄′ \Av)

4
∑
v∈V |Bv|

,

where we distinguish between boundary edges of S′ inside and outside of the Av. In particular,
we have

4β
∑
v∈V
|Bv| ≥

∑
v∈V

E(Bv, Av \Bv).

Now, we bound from below the number of boundary edges within Av. Since Av is an expander
with expansion κ, we have

E(Bv, Av \Bv) ≥ κ ·min(|Bv|, |Av \Bv|).

Hence we will have,

S′∆S∗ =
∑
v

min(|Bv|, |Av \Bv|) ≤
1
κ

∑
v

E(Bv, Av \Bv) ≤
4β
κ

∑
v∈V
|Bv| =

4β
κ
|S′| .

Since G′ is a 4-regular graph, we can upper bound the expansion of S∗ by

φG′(S∗) ≤
E[S′, S̄′] + 4|S′∆S∗|

4|S′| − 4|S′∆S∗| ≤ 4β|S′|+ 16β/κ|S′|
4|S′| − 16β/κ|S′| ≤

β (1 + 4/κ)
1− 4β/κ

.

Thus, in G the set S = {v | Av ∈ S∗} has expansion at most 10
κ β, and vol(S) ∈

[ 1
2δ vol(V ), 2δ vol(V )], as desired. J

APPROX/RANDOM’14
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