15,017 research outputs found

    Automatic synthesis of decision procedures

    Get PDF

    Signal Flow Graph Approach to Efficient DST I-IV Algorithms

    Get PDF
    In this paper, fast and efficient discrete sine transformation (DST) algorithms are presented based on the factorization of sparse, scaled orthogonal, rotation, rotation-reflection, and butterfly matrices. These algorithms are completely recursive and solely based on DST I-IV. The presented algorithms have low arithmetic cost compared to the known fast DST algorithms. Furthermore, the language of signal flow graph representation of digital structures is used to describe these efficient and recursive DST algorithms having (n−1)(n-1) points signal flow graph for DST-I and nn points signal flow graphs for DST II-IV

    Verifying Safety Properties With the TLA+ Proof System

    Get PDF
    TLAPS, the TLA+ proof system, is a platform for the development and mechanical verification of TLA+ proofs written in a declarative style requiring little background beyond elementary mathematics. The language supports hierarchical and non-linear proof construction and verification, and it is independent of any verification tool or strategy. A Proof Manager uses backend verifiers such as theorem provers, proof assistants, SMT solvers, and decision procedures to check TLA+ proofs. This paper documents the first public release of TLAPS, distributed with a BSD-like license. It handles almost all the non-temporal part of TLA+ as well as the temporal reasoning needed to prove standard safety properties, in particular invariance and step simulation, but not liveness properties

    Meta-F*: Proof Automation with SMT, Tactics, and Metaprograms

    Full text link
    We introduce Meta-F*, a tactics and metaprogramming framework for the F* program verifier. The main novelty of Meta-F* is allowing the use of tactics and metaprogramming to discharge assertions not solvable by SMT, or to just simplify them into well-behaved SMT fragments. Plus, Meta-F* can be used to generate verified code automatically. Meta-F* is implemented as an F* effect, which, given the powerful effect system of F*, heavily increases code reuse and even enables the lightweight verification of metaprograms. Metaprograms can be either interpreted, or compiled to efficient native code that can be dynamically loaded into the F* type-checker and can interoperate with interpreted code. Evaluation on realistic case studies shows that Meta-F* provides substantial gains in proof development, efficiency, and robustness.Comment: Full version of ESOP'19 pape

    Certified Roundoff Error Bounds Using Semidefinite Programming.

    Get PDF
    Roundoff errors cannot be avoided when implementing numerical programs with finite precision. The ability to reason about rounding is especially important if one wants to explore a range of potential representations, for instance for FPGAs or custom hardware implementation. This problem becomes challenging when the program does not employ solely linear operations as non-linearities are inherent to many interesting computational problems in real-world applications. Existing solutions to reasoning are limited in the presence of nonlinear correlations between variables, leading to either imprecise bounds or high analysis time. Furthermore, while it is easy to implement a straightforward method such as interval arithmetic, sophisticated techniques are less straightforward to implement in a formal setting. Thus there is a need for methods which output certificates that can be formally validated inside a proof assistant. We present a framework to provide upper bounds on absolute roundoff errors. This framework is based on optimization techniques employing semidefinite programming and sums of squares certificates, which can be formally checked inside the Coq theorem prover. Our tool covers a wide range of nonlinear programs, including polynomials and transcendental operations as well as conditional statements. We illustrate the efficiency and precision of this tool on non-trivial programs coming from biology, optimization and space control. Our tool produces more precise error bounds for 37 percent of all programs and yields better performance in 73 percent of all programs

    Tropicalization of classical moduli spaces

    Full text link
    The image of the complement of a hyperplane arrangement under a monomial map can be tropicalized combinatorially using matroid theory. We apply this to classical moduli spaces that are associated with complex reflection arrangements. Starting from modular curves, we visit the Segre cubic, the Igusa quartic, and moduli of marked del Pezzo surfaces of degrees 2 and 3. Our primary example is the Burkhardt quartic, whose tropicalization is a 3-dimensional fan in 39-dimensional space. This effectuates a synthesis of concrete and abstract approaches to tropical moduli of genus 2 curves.Comment: 33 page

    Algorithm of arithmetical operations with fuzzy numerical data

    Get PDF
    In this article the theoretical generalization for representation of arithmetic operations with fuzzy numbers is considered. Fuzzy numbers are generalized by means of fuzzy measures. On the basis of this generalization the new algorithm of fuzzy arithmetic which uses a principle of entropy maximum is created. As example, the summation of two fuzzy numbers is considered. The algorithm is realized in the software "Fuzzy for Microsoft Excel".fuzzy measure (Sugeno), fuzzy integral (Sugeno), fuzzy numbers; arithmetical operations; principle of entropy maximum
    • …
    corecore