

Edinburgh Research Explorer

Automatic synthesis of decision procedures

Citation for published version:
Janicic, P & Bundy, A 2007, 'Automatic synthesis of decision procedures'. in Towards Mechanized
Mathematical Assistants: 14th Symposium, Calculemus 2007, 6th International Conference, MKM 2007,
Hagenberg, Austria, June 27-30, 2007. Proceedings. vol. 4573, Lecture Notes in Computer Science, vol.
4573, Springer-Verlag GmbH, pp. 80-93., 10.1007/978-3-540-73086-6_7

Digital Object Identifier (DOI):
10.1007/978-3-540-73086-6_7

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Author final version (often known as postprint)

Published In:
Towards Mechanized Mathematical Assistants

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Feb. 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28961475?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/978-3-540-73086-6_7
http://www.research.ed.ac.uk/portal/en/publications/automatic-synthesis-of-decision-procedures(b7f1859b-d2e0-4139-8ce1-33e7a91f4101).html

Automatic Synthesis of Decision Procedures: a

Case Study of Ground and Linear Arithmetic?

Predrag Janičić1 and Alan Bundy2

1 Faculty of Mathematics, University of Belgrade
Studentski trg 16, 11000 Belgrade, Serbia — email: janicic@matf.bg.ac.yu

2 School of Informatics, University of Edinburgh
Appleton Tower, Crichton St, Edinburgh EH8 9LE, UK — email: A.Bundy@ed.ac.uk

Abstract. We address the problem of automatic synthesis of decision
procedures. We evaluate our ideas on ground arithmetic and linear arith-
metic, but the approach can be applied to other domains as well. The
approach is well-suited to the proof-planning paradigm. The synthesis
mechanism consists of several stages and sub-mechanisms. Our system
(adeptus), which we present in this paper, synthesized a decision pro-
cedure for ground arithmetic completely automatically and it used some
specific method generators in generating a decision procedure for lin-
ear arithmetic, in only a few seconds of cpu time. We believe that this
approach can lead to automated assistance in constructing decision pro-
cedures and to more reliable implementations of decision procedures.

1 Introduction

Decision procedures are often vital in theorem proving [2, 6]. In order to have
decision procedures usable in a theorem prover, it is often necessary to have
them implemented not only efficiently, but also flexibly. In addition, it is very
important to have decision procedures for new, user-defined theories. The imple-
mentation of decision procedures should be such that it can be verified in some
formal way. For all these reasons, it would be fruitful if the process (or, at least,
all its routine steps) of synthesizing and implementing decision procedures can
be automated. It would help avoiding human mistakes in implementing decision
procedures. Since many steps in different decision procedures can be described
via rewriting, object level proofs could often be also relatively easily derived.

In this paper we follow ideas from the programme on proof plans for normal-
isations from [4]. As discussed there, many steps of many decision procedures
can be described via sets of rewrite rules. This observation prepares the way for
automatic generation of decision procedures (given the necessary rewrite rules),
which is vital for user defined theories. Following and extending the ideas from
[4], we have developed a system adeptus (coming from Assembly of DEcision
Procedures via TransmUtation and Synthesis1) capable of automatically synthe-

? First author supported by EPSRC grant GR/R52954/01 and Serbian Ministry of
Science grant 144030. Second author supported in part by EPSRC grant GR/S01771.

1 Also, Adeptus (Lat.) is “one with the alchemical knowledge to turn base metals into
gold”.

sizing normalisation procedures and decision procedures.2 All the methods that
adeptus generates are built in the spirit of the proof planning paradigm (and are
implemented in prolog). For some theories, the approach presented gives not
only automatically generated decision procedures, but also a higher-level under-
standing of syntactical transformations within the underlying theory. We believe
that this approach can be helpful in both providing an easier implementation of
decision procedures and gaining a deeper understanding of them.

In this paper we evaluate our techniques on ground arithmetic and linear
arithmetic (over rationals). adeptus synthesized the decision procedures for
ground arithmetic in around 3 seconds, and a decision procedure for (quantified)
linear arithmetic in around 5 seconds of cpu time.

2 Preliminaries

Decision procedure. A theory T is decidable if there is an algorithm, which we
call a decision procedure, such that for an input T -sentence f , it returns yes
if and only if T ` f (and returns no otherwise).

Ground and linear arithmetic. Ground arithmetic is a fragment of arithmetic
that does not involve variables. Linear arithmetic is a fragment of arithmetic
that involves only addition (nx is treated as x + · · · + x, where x appears
n times). For both these theories, we assume that variables can range over
rational numbers. The Fourier/Motzkin procedure [8] is one of the decision
procedures for linear arithmetic.

Backus-Naur form. For describing syntactical classes, we use Backus-Naur form
— bnf (equivalent to context-free grammars). We will assume that each
bnf definition has attached its top class. The language of a bnf is a set
of all expressions that can be derived from the top class. For representing
some infinite syntactical classes, for convenience, we use some meta-level
conditions. We define the relation ec (element of class) as follows: ec(b, e, c)
holds iff e is an element of the class c in the bnf definition b.

Rewrite rules. Unconditional rewrite rules are of the form: RuleName : l −→ r.
Conditional rewrite rules are of the form: RuleName : l −→ r if p1, p2, . . . , pn,

where p1, p2, . . ., pn are literals. These rewrite rules may rely on some prop-
erties specific to the underlying theory T . The rules like n1x + n2x −→
nx if n = n1 +n2. (corresponding to linear arithmetic), we will have to use
modulo the underlying theory. For a rule RuleName : l −→ r if p1, p2, . . . , pn,

we say that it is sound w.r.t. theory T if for arbitrary T -formula Φ and
arbitrary substitution ϕ it holds that T ` Φ if T , p1ϕ, p2ϕ, . . . , pnϕ `
Φ[lϕ 7→ rϕ], and we say that it is complete w.r.t. theory T if for arbi-
trary T -formula and arbitrary substitution ϕ it holds that T ` Φ only if
T , p1ϕ, p2ϕ, . . . , pnϕ ` Φ[lϕ 7→ rϕ].

Proof planning and methods. Proof-planning is a technique for guiding the search
for a proof in automated theorem proving. To prove a conjecture, within a

2
adeptus is implemented in prolog as a stand-alone system. The code and the
longer version of this paper are available from www.matf.bg.ac.yu/~janicic.

proof-planning system, a method constructs the proof plan and this plan
is then used to guide the construction of the proof itself [3]. These plans
are made up of tactics, which represent common patterns of reasoning. A
method is a specification of a tactic. A method has several slots: a name,
input, preconditions, transformation, output, postconditions, and the name
of the attached tactic. A method cannot be applied if its preconditions are
not met. Also, with the transformation performed and the output computed,
the postconditions are checked and the method application fails if they fail.3

3 Proposed Programme

Our programme (slightly modified from the first version [4]) for automated syn-
thesis of different kinds of normalisation methods and normalisation procedures
can be decomposed into several parts:

– Make a method which is capable of doing the following: given two syntactical
classes and some rewrite rules, select (if it is possible) a subset of rewrite
rules which is sufficient to transform any member of the first syntactical class
into a member of the second syntactical class. The output syntactical class
and the corresponding method can be automatically generated in a number
of special cases. An algorithm which can generate such a method we call a
method generator.

– There will be different kinds of methods, e.g., one for removing some function
symbol, one for stratification, one for thinning etc. (see further text and [4]
for explanation of these terms); for each of them, there is a method generator.

– Given several generated methods, it should be possible to combine them
(automatically) into a compound method or, sometimes, into a decision pro-
cedure for some theory;

– Methods (and compound methods) should be designed in such a way that
their soundness, completeness, and termination can be easily proved;

– Since some transformations (required for some procedures) are very complex,
building methods may require human interaction and assistance.

Following the above programme, we implemented our system adeptus capa-
ble of generating code for real-world decision procedures. We have implemented
several method generators. They take a given bnf, transform it into another one,
and build a method that can transform any formula that belongs to the first bnf

into a formula that belongs to the second bnf. On the set of all these generators,
we can perform a (heuristically guided) search for a sequence of methods which
goes from the starting bnf to a trivial bnf (consisting of only > and ⊥). If the
final syntactical class is equal to {⊥,>}, then the whole of the sequence yields
a decision procedure for the underlying theory (under some assumptions about
available rewrite rules). If such a method can be built, soundness, termination,

3 Alteratively, instead of (active) postconditions, methods can have effects — condi-
tions that are guaranteed to be true when the method succeeds.

and completeness can be easily proved. Apart from these method generators,
we use also special-purpose method generators. For simplicity, in the rest of the
paper we assume that, in formulae being transformed, variables are standardized
apart, i.e., there are no two quantifiers with the same variable symbol.

4 Method Generators and Generated Methods

Normalisation Method Generators. Normalisation methods are methods
based on exhaustive application of rewrite rules. Each normalization method
has the following general form:

name: methodname;
input: f ;

preconditions: ec(b, f, top class) (where b is the input bnf definition);
transformation: transforms f to f ′ by exhaustive application of the set of

rewrite rules (applying to positions that correspond to the
attached syntactical classes);

output: f ′;
postconditions: ec(b′, f ′, top class) (where b′ is the output bnf definition).

Example 1. Each formula belonging to the following class:
f := af |¬f |f ∨ f |f ∧ f |f ⇒ f |f ⇔ f |(∃var : sort)f |(∀var : sort)f

can be transformed by using the rewrite rule f1 ⇔ f2 −→ (f1 ⇒ f2)∧ (f2 ⇒ f1)
and the resulting formula belongs to the following class f :

f := af |¬f |f ∨ f |f ∧ f |f ⇒ f |(∃var : sort)f |(∀var : sort)f .

We have implemented generators for several kinds of methods:

Remove is a normalization method used to eliminate a certain function symbol,
predicate symbol, logical connective, or a quantifier from a formula. The
method uses sets of appropriate rewrite rules and applies them exhaustively
to the current formula until no occurrences of the specific symbol remain. For
instance, as shown in Example 1, the given bnf definition can be transformed
to the corresponding bnf definition without the symbol ⇔.

Stratify is a normalization method used to stratify one syntactical class into two
syntactical classes containing some predicate or function symbols, logical
connectives or quantifiers. For instance, a stratify method for moving dis-
junctions beneath conjunctions can be constructed if the following rewrite
rules are available: st_conj_disj1: f1 ∧ (f2 ∨ f3) −→ (f1 ∧ f2) ∨ (f1 ∧ f3),
st_conj_disj2: (f2 ∨ f3) ∧ f1 −→ (f2 ∧ f1) ∨ (f3 ∧ f1). Stratify methods
can also serve for reordering elements within an expression, e.g., a stratify
method can be used to stratify variable x and rearrange a polynomial in such
a way that its summands involving x will be at the end of the expression.

Thin is a normalization method that eliminates multiple occurrences of a unary
logical connective or a unary function symbol. For instance, we can use the
rule ¬¬f −→ f in order to transform each formula belonging to f := af |¬f

to a formula belonging to f := af |¬af .

Absorb is a normalization method that can eliminate some recursion rules. For
instance, we can use the rule rm_mult: c1 · c2 −→ c3 if c3 = c1 · c2 in order
to transform each term belonging to t := t · rc|rc (where rc denotes rational
constants) to a term belonging to t := rc.

Left-assoc is one of the normalization methods for reorganising within a class. If
a syntactical class contains only one function symbol or a connective and if
that symbol is both binary and associative, then members of this class can be
put into left associative form. For instance, we will need the left association
of addition and the left association of conjunction.

A normalisation method generator is a procedure with the following input:
(i) a bnf form b of the input expressions; (ii) a set of rewrite rules R; (iii) a kind
t of the required method (e.g., remove). It generates a method M and a bnf

form b′ (of the output expressions).4 By exhaustively applying the rules from R,
M transforms any expression belonging to b to an expression belonging to b′.

Example 2. Consider the following class: f := h(a)|h(b)|g1(a)|g2(b) where a and
b are some classes and suppose there are the following rewrite rules available: R1 :
h(x) −→ g1(x), R2 : h(x) −→ g2(x). These rules are sufficient for eliminating the
symbol h and for transforming the above class into the class: f := g1(a)|g2(b).
However, it cannot be reached by arbitrary use of exhaustive applications of
the given rewrite rules, but R1 should be applied only to h(a), and R2 only to
h(b). The lesson is that we have to take care about which rule we use for each
construction of syntactical classes. This (or analogous) information has to be
built into the method we want to construct.

Method generators for most normalisation methods work, in a sense, in a
uniform way: each of them first tries to eliminate non-recursive classes in the
input bnf, then searches for “problematic” bnf entries and constructs the target
output bnf set; then, a generic algorithm for searching over the set of available
rewrite rules is invoked and it checks if all “problematic” entries can be rewritten
in such a way that any input formula, when rewritten, falls in the target output
top class. Also, this search mechanism attaches rewrite rules to particular entries.
If there are no required rewrite rules, a method generator reports it, so the user
could try to provide missing rules (in a planned, advanced version, which is not
part of the work presented in this paper, the method generator would speculate
the remaining necessary rules and/or try to redefine/relax the output class).

Special-Purpose Method Generators. The first one of the following special-
purpose generators can be used for a quantifier elimination procedure for any the-
ory, while the remaining three are specific for linear arithmetic. Note, however,
that it is essential to have these generators (although they are theory-specific):
they can be used in an automatic search process and generate the required meth-
ods with the given preconditions (which are not known in advance).

4 In our system, the tactics are not implemented yet. So, our procedures produce
meta-level proof plans, not the object level proofs.

Method Generator for Adjusting the Innermost Quantifier. This generator gen-
erates a method which transforms a formula in prenex normal form in the
following way: if its innermost quantifier is existential, then keep it un-
changed; if its innermost quantifier is universal, then rewrite the formula
(Qx1)(Qx2) . . . (Qxn)(∀x)f to a formula (Qx1)(Qx2) . . . (Qxn)¬(∃x)¬f by
using the following rewrite rule: rm_univ: (∀x)f −→ ¬(∃x)¬f . The motive
of this method is to deal only with elimination of existential quantifiers.

One-side Method Generator. This generator generates (if the input bnf admits
that) a method which transforms all literals in such a way that each of them
has 0 as its second argument. For instance, for symbols <, >, ≤, 6=, ≥, = as
parameters, after applying that generated method each literal will have one
of the following forms: t < 0, t > 0, t ≤ 0, t 6= 0, t ≥ 0, t = 0.

Method Generator for Isolating a Variable. This generator generates (if the in-
put bnf admits that) a method that isolates a distinguished variable x in
all literals. After applying that method, each of the literals either does not
involve x or has one of the forms: νx = γ, x = γ, λx < α, x < α (where ν,
γ, λ, α have no occurrences of x).

Method Generator for Removing a Variable. The cross multiply and add step is
the essential step of the Fourier/Motzkin’s procedure [8]. It is applied for
elimination of x from ∃xF (x), where F is in disjunctive normal form and
each of its literals either does not involve x or has one of the forms: νx = γ,
x = γ, λx < α, x < α (where ν, γ, λ, α have no occurrences of x). After
performing this step, x does not occur in the current formula and so the
corresponding quantifier can be deleted.

Properties of Generated Methods. A normalisation method links two syn-
tactical sets. In purely syntactical terms, each formula f1 that belongs to the top
class of the input bnf set should be transformed (in a finite number of steps) into
a formula f2 that belongs to the top class of the output bnf set. In semantical
terms, it should hold that T ` f1 if (and only if) T ` f2. If the “if” condition
holds, then the method is sound, and if the “only if” condition holds then the
method is complete (w.r.t. T).

Termination. For each generated method it must be shown that it is terminating
(by considering properties of the rewrite rules used5). For some sorts of
methods, their termination is guaranteed by the way they are generated.

Soundness. We distinguish soundness of a method w.r.t. syntactical restrictions
and soundness of a method w.r.t. the underlying theory T :

– If a method transforms one formula into another one, then it is ensured
by the method’s postconditions that the second one does meet the re-

5 Note that these sets of rewrite rules are not always confluent. Moreover, for certain
tasks, such as, for instance, transforming a formula into disjunctive normal form,
there is no confluent and terminating rewrite system [9].

quired syntactical restrictions (given by the method specification), so the
method is sound w.r.t. syntactical restrictions.6

– All available rewrite rules (all of them correspond to the underlying
theory T) are assumed to be sound. Thus, since a method is (usually)
based on exhaustive application of some (normally sound) rewrite rules,
it is trivially sound w.r.t. T .

Completeness. We distinguish completeness of a method w.r.t. syntactical re-
strictions and w.r.t. the underlying theory T :
– It is not a priori guaranteed that a method can transform any input

formula (which meets the preconditions) into some other formula (that
belongs to the output class), i.e., it is not guaranteed that the method
is complete w.r.t. syntactical restrictions. Namely, a method maybe uses
some conditional rewrite rules (which cannot be applied to all input for-
mulae). If a method uses only unconditional rewrite rules or conditional
rewrite rules which cover all possible cases, then it can transform any
input formula into a formula belonging to the output class.

– Completeness of a method w.r.t. T relies on the completeness of the
rewrite rules used. If a method can transform any input formula into a
formula belonging to the output class and if all the rewrite rules it uses
are complete, then the method is complete w.r.t. T .

5 Search Engine for Synthesizing Compound Methods

Given method generators, a bnf description of a theory T , and a set of corre-
sponding rewrite rules, a user can go step by step and try to combine different
generated methods. Also, an automatic search for compound methods or a deci-
sion procedure for T can be performed. The goal of this process is to generate a
sequence of methods such that: (i) the output bnf class of the non-final method
is the input bnf class of the next method in the sequence; (ii) the output bnf

class of the last method in the sequence is a goal bnf, for instance, a trivial bnf

— consisting of entries > and ⊥ for the top class. This sequence can have more
methods that are instances of the same kind of methods, or even the very same
method more than once. Our search procedure in each step invokes all available
method generators, with all possible parameters (depending on the underlying
language). The search procedure tries to find a sequence of methods that con-
sists of subsequences, such that each of them is of length less than or equal to a
fixed value M , and such that the final bnfs of the subsequences are of strictly
decreasing size. So, in the generated procedure there might be some bnf size
increasing steps, but the whole of the procedure would be decreasing. The size
of bnf definition is a heuristic measure and we define it to be the sum of sizes of
all its entries; the size of the entry c := c′ is defined as follows: (i) each symbol
c in c′ adds 100; (ii) each symbol c′′ in c′ (where c′′ is some other class) adds

6 Conditional rules are the reason for using active postconditions in methods (instead
of passive effects). Namely, in some situations no rewrite rule is applicable, but the
processed formula is not yet in normal form, so the postcondition must be tested.

10; (iii) each other symbol in c′ adds 1. Defined this way, the measure forces the
engine to try to get rid of recursive classes and then of the classes that involve
some other classes. The trivial, goal bnf class (consisting of only f := >|⊥)
has the size 2. If the current sequence cannot be continued, the search engine
backtracks and tries to find alternatives.

Example 3. The size of the following bnf definition (for ground arithmetic):
f := af |¬f |f ∨ f |f ∧ f |f ⇒ f |f ⇔ f

af := >|⊥|t = t|t < t|t > t|t ≤ t|t ≥ t|t 6= t

t := rc| − t|t · t|t + t

is 1556. The size of bnf for the full linear arithmetic is 2233.

Given a finite number of method generators and a finite number of rewrite
rules, at each step a finite number of methods can be generated (there is also
a finite number of possible parameters). Thus, since the algorithm produces
subsequences (of maximal length M) of decreasing sizes (natural numbers) of
corresponding bnf definitions, the given algorithm terminates. If method gen-
erators can generate all methods necessary for building the required compound
method, then (thanks to backtracking) the given algorithm can build one such
compound method (for M large enough). If we iterate the given algorithm (for
M = 1, 2, 3, . . .), then it will eventually build the required compound method,
so this iterated algorithm is complete. However, we can also use it only with
particular values for M (then the procedure is not complete, but it gives better
results if it used only for an appropriate value for M).

The ordering of method generators is not important for termination and
correctness of the given search algorithm, but it is important for its efficiency.
We used the following ordering (based on empirical tests): remove, thin, absorb,
stratify, left_assoc.

For theories for which normalisation methods cannot build a decision pro-
cedure, we use special-purpose method generators and the basic search engine
in a more complex way. The search for a decision procedure based on quanti-
fier elimination is performed in three stages, by the following compound search
engine:

– the first stage is reaching a bnf for which the method for adjusting the
innermost quantifier is applicable;

– the second stage continues while the variable elimination method is applica-
ble (in each loop one variable is being eliminated); the output bnf of this
stage has to be a subset of its input bnf;

– the third stage starts with the output bnf of the first stage, but with all
entries involving variables and quantifiers deleted (it is the bnf of the current
formula after the loop described as the second stage); its goal bnf definition
is the trivial one (i.e., consisting only of > and ⊥).

For each of these stages we use the basic search engine and we use all method
generators with priority given to the special-purpose method generators.

Properties of Compound Methods. A set of generated methods for some
underlying theory T can be combined (by a human, or automatically) into a
compound method (for that theory). Compound methods (in this context) can
use primitive methods in a sequence or in a loop (but not conditional branch-
ing). The preconditions of a compound method are the preconditions of the first
method, and the postconditions are the postconditions of the last method used.7

Termination. If a compound method is a sequence of terminating methods, then
it is (trivially) terminating. If it has a loop, a deeper argument is required.

Soundness. Since it relies on the soundness of the used primitive methods, every
compound method is also sound (both w.r.t. syntactical restrictions and
w.r.t. the underlying theory T). Meeting the syntactical restrictions of the
compound method is also ensured by its postconditions.

Completeness. If all the used methods are complete and if the compound method
is terminating, then it is (trivially) complete. More precisely, if a compound
method (i) is terminating; (ii) uses only (primitive) methods which never fail
(i.e., the methods which transform any input formula to a formula belonging
to the output class) and which use only complete rewrite rules, then that
compound method is complete (w.r.t. T).

Based on the above considerations, we can make a crucial observation: if a
compound method for some theory T has an input bnf set corresponding to
the whole of T , a trivial output bnf set consisting only of > and ⊥, and if it is
terminating, sound, and complete (w.r.t. T)8, then it is a decision procedure for
T . This way, we can, in some cases, trivially get a proof that some (automatically
generated) compound method is a decision procedure for some theory.

6 Evaluation

We ran the basic search engine, on the bnf definition given in Example 3, with
M = 3, with the described method generators, and with 59 relevant rewrite
rules available. We set the goal bnf definition to be the trivial one (f := >|⊥),
thus aiming at synthesizing a decision procedures for ground arithmetic. The
search algorithm took 2.91 seconds of cpu time9 and during the search there
were 48 methods successfully generated (while there are 22 of them in the final
sequence). The search algorithm produced the sequence of methods DP_GA with
the following “overview”: remove ⇔, remove ⇒, remove ≤, remove ≥, remove 6=,
remove >, remove −, stratify [∧,∨], thin ¬, stratify [∨], stratify [+], left assoc ∨,
left assoc +, left assoc ∗, absorbe ∗, absorbe +, remove <, remove =, left assoc
∧, remove ∧, remove ∨.

7 This way of constructing the preconditions and postconditions of a compound
method is not adequate in general but suffices for the examples we were working
on (recall that in compound methods that our system generates, the output bnf

class of a method is always the input bnf class of the next method in the sequence).
8 Soundness and completeness properties rely on properties of the rewrite rules used.
9 The system is implemented in swi Prolog and tested on a 512Mb PC 2.4Ghz.

Theorem 1 The procedure DP_GA for ground arithmetic is terminating, sound
and complete, i.e., it is a decision procedure for ground arithmetic.

Proof sketch. The procedure DP_GA is sound and terminating, as all generated
methods are sound and terminating and there is no loop. We still don’t claim
that it is complete as there are some conditional rewrite rules used. For instance,
in the step absorbe + of DP GA, the conditional rule reduce_plus: t1 + t2 ⇒ t3, if
t3 = t1 + t2 is used, but it is still not shown that its condition covers all possible
cases. The user can show this by proving: (∀c1 : rational)(∀c2 : rational)(∃c3 :
rational)(c3 = c1 + c2). It is easy to prove that such conjectures are theorems
of linear arithmetic. Moreover, some of them can be proved by the decision
procedure DP_LA for linear arithmetic (which we also automatically generated
and we report on that in the subsequent text). All this leads us to conclude that
the procedure DP_GA is correct.

We applied the compound search engine on the bnf description of the full
linear arithmetic, with M = 3 for the first and the third stage, with M = 5 for
the second stage10, with all the described methods, and with 71 relevant rewrite
rules available. The search algorithm took 4.80 seconds of cpu time and during
the search there were 89 methods successfully generated, while there are 51 of
them in the final sequence, yielding a decision procedure DP_LA.

Theorem 2 The procedure DP_LA for linear arithmetic is terminating, sound
and complete, i.e., it is a decision procedure for linear arithmetic.

Proof sketch. Each of individual methods used in the generated procedure DP_LA
is terminating. Since each loop eliminates one variable and since there are a
finite number of variables in the input formula, the loop terminates. Hence,
the procedure DP_LA is terminating. Since all methods in DP_LA use only sound
rewrite rules, all of them are sound, and hence, the whole of the procedure is
sound. The completeness relies not only on the completeness of the rewrite rules
used, but also on the coverage property for the methods that use conditional
rewrite rules. It is easy to see (similarly as for DP_GA) that all required coverage
properties are fulfilled (moreover, some of the coverage properties can be proved
by the generated procedure itself, which is, of course, acceptable, as we know that
the procedure is sound). Therefore, in each method, either unconditional rules
are used or conditional rules that cover all possible cases. Thus, all methods
always succeed and all methods are complete. Hence, the procedure DP_LA is
complete. All in all, the procedure DP_LA terminates, it transforms an arbitrary
input (linear arithmetic) formula Φ into the resulting formula > or ⊥, while the
resulting formula is > if and only if Φ is a theorem in linear arithmetic.

We don’t claim that the generated procedure DP_LA is the shortest or the most
efficient one. However, we doubt that a decision procedure for linear arithmetic
can be described correctly in a much shorter way. This suggests that it is non-
trivial for a human programmer to implement this procedure without flaws and
bugs, even when provided with the code for the key step (cross multiply and

10 For lower values of M the system failed to generate the required procedure.

add), because the most probable flaws are rather in correctly combining all the
remaining steps.

7 Related Work

Our approach is based on ideas from [4] and apart from that strong link, as we
are aware of, it can be considered basically original.

The work presented here is related to the Knuth-Bendix completion proce-
dure [7] and its variants in a sense that it performs automatic construction of
decision procedures. However, there are significant differences. While the com-
pletion procedure produces a confluent and terminating set of rewrite rules, and
hence a way how to reach a normal form, it does not give a description of the
normal form. In contrast, our system does not necessarily produce a decision pro-
cedure (or a normalisation procedure) whenever the completion procedure does,
but when it produces a procedure, it also provides the finite description of the
output (normalised) language. In addition, the completion procedure produces
procedures that are based on exhaustive applications of rewrite rules, while our
system produces procedures that use subsets of rewrite rules in stages and gives
structured proofs (easily understandable to a human). For instance, our system
can generate a procedure for constructing conjunctive normal form, which can-
not be done by a single rule set. We believe that it would be worthwhile to
combine our work with the Knuth-Bendix completion procedure in the following
way: the completion procedure can be used to find a confluent and terminating
rule set and then adeptus can be used to describe the normal form it produces.

Our work is also related to work aimed at deriving decision procedures us-
ing superposition-based inference system for clausal equational logic [1]. That
approach is an alternative to the congruence closure algorithm and to the Knuth-
Bendix completion procedure. It does not use rewrite rules in a structured way,
so it is not suitable for dealing with large sets of rules (as for linear arithmetic).
Our work is also related to work that performs automatic learning of proof meth-
ods [5]. The system LearnΩmatic learns proof methods (including decision
procedures) from proof traces obtained by brute force application of available
primitive methods. This approach (unlike ours does not give opportunities for
simple proofs of termination or completeness of learnt methods.

8 Realm of the Approach and Further Automation

In the presented method generators, we took a method kind, input bnf, and
some set of rewrite rules, and used them to generate a required method (with
some output bnf). However, it would be fruitful if we could start with an input
bnf and look at bnfs and methods that can be obtained by subsets of the
available rewrite rules. It is interesting to consider whether for a given bnf and
a set of (terminating) rewrite rules we can always compute the output bnf. The
answer for the general case is negative, since, in a general case, the resulting set
of expressions is not necessarily definable by a bnfs. Even if there is an algorithm

that (given a bnf and a terminating set of rewrite rules) constructs an output
bnf whenever it is possible (this is subject of our current research), it would
still not ensure further automation of our programme in general case. Namely, if
want to synthesize a decision procedure, we would generate a sequence of bnfs
looking for a trivial one (consisting of only > and ⊥) and, we would need to check
whether two bnfs give the same language, but that problem is undecidable in
general. Therefore, it is likely that we cannot have a complete procedure for
synthesizing decision procedures. On the other hand, we believe that our system
can work well in many practical situations. Our system is heuristic, and its realm
is determined by the set of method generators available (so it is difficult to make
a formal characterisation of the realm).

In synthesizing decision procedures, the approach does not distinguish if the
theory is a combination of some theories or not. Thus, the problem of combining
decision procedures (for combination of decidable theories) is not addressed: if
there are synthesized decision procedures for component theories, these cannot
be combined. A decision procedure for a combination theory can be synthesized
only if it as a whole can be described in terms of normalisation methods.

For future work we are planning the following lines of research:

– we will be looking for other challenging domains for our techniques;

– we will try to extend the set of our method generators and search engines
and will try to further improve their efficiency;

– we will implement mechanisms which generate not only necessary methods,
but also the corresponding tactics;

– we will try to automate the process of proving completeness (i.e., whether
conditions in the rewrite rules used cover all possible cases); we will try to
do it whenever possible by using the mentioned “self-reflection” principle;

– we will try to combine our system with Knuth-Bendix completion procedure.

9 Conclusions

We presented a system (adeptus) for synthesising decision procedures. It is
based on ideas from [4]. adeptus consists of several method generators and
mechanisms for searching over them and combining them. We have implemented
the system and used it for automatically generating decision procedures (in pro-

log) for ground arithmetic and for linear arithmetic. These implementations are
correct (and the user gets help in proving correctness, completeness and termi-
nation), which is not quite easy for a human programmer to achieve. We believe
that our approach can be used in other domains as well and can lead to automa-
tion of some routine steps in different types of programming tasks. The presented
approach is such that it provides a framework for easy proving of termination,
soundness and completeness of generated procedures. Also, the approach can
give a deeper insight into the nature of some decision procedures.

References

1. Armando, A., S. Ranise, and M. Rusinowitch: ‘Uniform Derivation of Decision
Procedures by Superposition’. CSL 2001, Vol. 2142 of LNCS, Springer, 2001.

2. Boyer, R. S. and J. S. Moore: ‘Integrating Decision Procedures into Heuristic The-
orem Provers: A Case Study of Linear Arithmetic’. Machine Intelligence 11. 1988,

3. Bundy, A.: ‘The Use of Explicit Plans to Guide Inductive Proofs’. In: R. Lusk and
R. Overbeek (eds.): 9th Conference on Automated Deduction. 1988.

4. Bundy, A.: ‘The Use of Proof Plans for Normalization’. In: R. S. Boyer (ed.):
Essays in Honor of Woody Bledsoe, 1991.

5. Jamnik, M., M. Kerber, M. Pollet, and C. Benzmuller: ‘Automatic Learning of
Proof Methods in Proof Planning’. CSRP-02-5, University of Birmingham, 2002.

6. Janičić, P. and A. Bundy: ‘A General Setting for the Flexible Combining and
Augmenting Decision Procedures’. Journal of Automated Reasoning 28(3), 2002.

7. Knuth, D. E. and P. B. Bendix: ‘Simple word problems in universal algebra’. In:
J. Leech (ed.): Computational problems in abstract algebra. Pergamon Press, 1970.

8. Lassez, J.-L. and M. Maher: ‘On Fourier’s algorithm for linear arithmetic con-
straints’. Journal of Automated Reasoning 9, 373–379, 1992.

9. Socher-Ambosius, R.: ‘Boolean algebra admits no convergent rewriting system’. 4th

Conference on Rewriting Techniques and Applications, Vol. 488 of LNCS, 1991.

