
Certified Roundoff Error Bounds
Using Semidefinite Programming

Abstract
Roundoff errors cannot be avoided when implementing nu-
merical programs with finite precision. The ability to reason
about rounding is especially important if one wants to ex-
plore a range of potential representations, for instance in the
world of FPGAs. This problem becomes challenging when
the program does not employ solely linear operations as non-
linearities are inherent to many interesting computational
problems in real-world applications.

Existing solutions to reasoning are limited in presence of
nonlinear correlations between variables, leading to either
imprecise bounds or high analysis time. Furthermore, while
it is easy to implement a straightforward method such as in-
terval arithmetic, sophisticated techniques are less straight-
forward to implement in a formal setting. Thus there is a
need for methods which output certificates that can be for-
mally validated inside a proof assistant.

We present a framework to provide upper bounds of ab-
solute roundoff errors. This framework is based on optimiza-
tion techniques employing semidefinite programming and
sums of squares certificates, which can be formally checked
inside the Coq theorem prover. Our tool covers a wide range
of nonlinear programs, including polynomials and transcen-
dental operations as well as conditional statements. We illus-
trate the efficiency and precision of this tool on non-trivial
programs coming from biology, optimization and space con-
trol.

Categories and Subject Descriptors D.2.4 [Software
Engineering]: Program Verification

Keywords hardware precision tuning; roundoff error; nu-
merical accuracy; floating-point arithmetic; fixed-precision
arithmetic; semidefinite programming; sums of squares; cor-
relation sparsity pattern; proof assistant; formal verification.

1. Introduction
Constructing numerical programs which perform accurate
computation turns out to be difficult, due to finite numer-
ical precision of implementations such as floating-point or
fixed-point representations. Finite-precision numbers induce
roundoff errors, and knowledge of the range of these roundoff
errors is required to fulfill safety criteria of critical programs,
as typically arising in modern embedded systems such as air-
craft controllers. Such a knowledge can be used in general
for developing accurate numerical software, but appears to
be particularly relevant while considering algorithms migra-
tion onto reconfigurable hardware (e.g. FPGAs). The ad-
vantage of architectures based on FPGAs is that they allow
more flexible choices, rather than choosing either for IEEE
standard single or double precision. Indeed, in this case, we

benefit from a more flexible number representation while
ensuring guaranteed bounds on the program output.

To obtain lower bounds over roundoff errors, one can rely
on testing approaches, such as meta-heuristic search [16]
or under-approximation tools (e.g. s3fp [20]). Here, we are
interested in handling efficiently the complementary over-
approximation problem, namely to obtain precise upper
bounds over the error. This problem boils down to finding
tight abstractions of linearities or non-linearities while being
able to bound the resulting approximations in an efficient
way. For computer programs consisting of linear operations,
automatic error analysis can be obtained with well-studied
optimization techniques based on SAT/SMT solvers [34],
affine arithmetic [26]. However, non-linear operations are
key to many interesting computational problems arising
in physics, biology, controller implementations and global
optimization. Recently, two promising frameworks have been
designed to provide upper bounds for roundoff errors of
nonlinear programs. The corresponding algorithms rely on
Taylor-interval methods [62], implemented in the FPTaylor
tool, and on combining SMT with affine arithmetic [23],
implemented in the Rosa real compiler.

The common drawback of these two frameworks is that
they do not fully take into account the correlations be-
tween program variables. Thus they may output coarse error
bounds or perform analysis within a large amount of time.

While the Rosa tool is based on theoretical results that
should provide sounds over-approximations of error bounds,
the tool does not produce formal proof certificates to al-
low independent soundness checking. The complexity of the
mathematics underlying techniques for nonlinear reasoning,
and the intricacies associated with constructing an efficient
implementation, are such that a means for independent for-
mal validation of results is particularly desirable. To the
best of our knowledge, the FPTaylor software is the only aca-
demic tool which can produce formal proof certificates. This
is based on the framework developed in [61] to verify non-
linear inequalities in Hol-light [36] using Taylor-interval
methods. However, most of computation performed in the
informal optimization procedure end up being redone inside
the Hol-light proof assistant, yielding a formal verification
which is computationally demanding.

The aim of this work is to provide a formal framework
to perform automated precision analysis of computer pro-
grams that manipulate finite-precision data using nonlin-
ear operators. For such programs, guarantees can be pro-
vided with certified programming techniques. Semidefinite
programming (SDP) is relevant to a wide range of mathe-
matical fields, including combinatorial optimization, control
theory and matrix completion. In 2001, Lasserre introduced
a hierarchy of SDP relaxations [42] for approximating poly-
nomial infima. Our method to bound the error is a decision
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procedure based on an specialized variant of Lasserre hier-
archy [43]. The procedure relies on SDP to provide sparse
sum-of-squares decompositions of nonnegative polynomials.
Our framework handles polynomial program analysis (in-
volving the operations +,×,−) as well as extensions to the
more general class of semialgebraic and transcendental pro-
grams (involving √,/,min,max, arctan, exp), following the
approximation scheme described in [49].

Overview of our Method We present an overview of our
method and of the capabilities of related techniques, using
an example. Consider a program implementing the following
polynomial expression f :

f(x) := x2 × x5 + x3 × x6 − x2 × x3 − x5 × x6

+x1 × (−x1 + x2 + x3 − x4 + x5 + x6) ,
where the six-variable vector x := (x1, x2, x3, x4, x5, x6) is
the input of the program. For this example, the set X of
possible input values is a product of closed intervals: X =
[4.00, 6.36]6. This function f together with the set X appear
in many inequalities arising from the the proof of Kepler
Conjecture [32], yielding challenging global optimization
problems.

The polynomial expression f is obtained by performing
15 basic operations (1 negation, 3 subtractions, 6 additions
and 5 multiplications). When executing this program with
a set of floating-point numbers x̂ := (x̂1, x̂2, x̂3, x̂4, x̂5, x̂6) ∈
X, one actually computes a floating-point result f̂ , where all
operations +,−,× are replaced by the respectively associ-
ated floating-point operations ⊕,	,⊗. The results of these
operations comply with IEEE 754 standard arithmetic [3]
(see relevant background in Section 2.1). For instance, one
can write x̂2 ⊗ x̂5 = (x2 × x5)(1 + e1), by introducing an
error variable e1 such that −ε ≤ e1 ≤ ε, where the bound
ε is the machine precision (e.g. ε = 2−24 for single preci-
sion). One would like to bound the absolute roundoff error
|r(x, e)| := |f̂(x, e)− f(x)| over all possible input variables
x ∈ X and error variables e1, . . . , e15 ∈ [−ε, ε]. Let us define
E := [−ε, ε]15 and K := X×E, then our bound problem can
be cast as finding the maximum r? of | r | over K, yielding
the following nonlinear optimization problem:

r? := max
(x,e)∈K

|r(x, e)|

= max{− min
(x,e)∈K

r(x, e), max
(x,e)∈K

r(x, e)} ,
(1)

One can directly try to solve these two polynomial opti-
mization problems using classical SDP relaxations [42]. As
in [62], one can also decompose the error term r as the sum of
a term l(x, e), which is affine w.r.t. e, and a nonlinear term
h(x, e) := r(x, e) − l(x, e). Then the triangular inequality
yields:

r? ≤ max
(x,e)∈K

|l(x, e)|+ max
(x,e)∈K

|h(x, e)| . (2)

It follows for this example that l(x, e) = x2x5e1 + x3x6e2 +
(x2x5 + x3x6)e3 + · · · + f(x)e15 =

∑15
i=1 si(x)ei. The Sym-

bolic Taylor expansions method [62] consists of using Taylor-
interval optimization to compute a rigorous interval enclo-
sure of each polynomial si, i = 1, . . . , 15, over X and finally
obtain an upper bound of |l|+ |h| over K. Our method uses
sparse semidefinite relaxations for polynomial optimization
(derived from [43]) to bound l as well as basic interval arith-
metic to bound h. The following results have been obtained
on an Intel Core i5 CPU (2.40GHz). All execution times
have been computed by averaging over five runs.

• A direct attempt to solve the two polynomial problems
occurring in Equation (1) fails as the SDP solver (in our
case Sdpa [67]) runs out of memory.

• Using our method implemented in the Real2Float tool,
one obtains an upper bound of 788ε for |l| + |h| over K
in less than one second. This bound is provided together
with a certificate which can be formally checked inside
the Coq proof assistant in 0.34 seconds.

• Using basic interval arithmetic, one obtains 17.1 times
more quickly a coarser bound of 2023ε.

• Symbolic Taylor expansions implemented in FPTaylor
[62] provide an intermediate bound of 937ε but 16.3 times
slower than with our implementation. Formal verification
of this bound inside the Hol-light proof assistant takes
73.8 seconds and is 217 times slower than proof checking
with Real2Float inside Coq.

• Finally, our bound is also obtained with the Rosa real
compiler [23] but 4.6 times slower than with our imple-
mentation.

Contributions Our key contributions can be summarized
as follows:

• We present an optimization algorithm providing certi-
fied over-approximations for roundoff errors of nonlin-
ear programs. This algorithm is based on sparse sums
of squares programming [43]. By comparison with other
methods, our algorithm allows us to obtain tighter upper
bounds, while overcoming scalability and numerical is-
sues inherent in SDP solvers [64]. Our algorithm can cur-
rently handle programs implementing polynomial func-
tions, but also involving non-polynomial components, in-
cluding either semialgebraic or transcendental operations
(e.g. /,√, arctan, exp), as well as conditional statements.
Programs containing iterative or while loops are not cur-
rently supported.

• Our framework is fully implemented in the Real2Float
tool. Among several features, the tool can optionally
perform formal verification of roundoff error bounds
for polynomial programs, inside the Coq proof assis-
tant [21]. The last software release of Real2Float pro-
vides OCaml [2] and Coq libraries and is freely avail-
able1. Our implementation tool is built in top of the
NLCertify verification system [48]. Precision and effi-
ciency of the tool are evaluated on several benchmarks
coming from the existing literature. Numerical experi-
ments demonstrate that our method competes well with
recent approaches relying on Taylor-interval approxima-
tions [62] or combining SMT solvers with affine arith-
metic [23].
The paper is organized as follows. In Section 2, we recall

mandatory background on roundoff errors due to finite preci-
sion arithmetic before describing our nonlinear program se-
mantics (Section 2.1). Then we remind how to perform certi-
fied polynomial optimization based on semidefinite program-
ming (Section 2.2) and how to obtain formal bounds while
checking the certificates inside the Coq proof assistant (Sec-
tion 2.3). Section 3 contains the main contribution of the pa-
per, namely how to compute tight over-approximations for
roundoff errors of nonlinear programs with sparse semidefi-
nite relaxations. Finally, Section 4 is devoted to the evalua-
tion of our nonlinear verification tool Real2Float on bench-
marks arising from control systems, optimization, physics
and biology.

1 forge.ocamlcore.org/frs/?group_id=351 (not anonymized)
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2. Preliminaries
2.1 Program Semantics and Floating-point

Numbers
We adopt the standard practice [38] to approximate a real
number x with its closest floating-point representation x̂ =
x(1 + e), with |e| is less than the machine precision ε. The
validity of this model is ensured as we neglect both overflow
and denormal range values. The operator ·̂ is called the
rounding operator and can be selected among rounding to
nearest, rounding toward zero (resp. ±∞). The scientific
notation of a binary (resp. decimal) floating-point number x̂
is a triple (s, sig, exp) consisting of a sign bit s, a significand
sig ∈ [1, 2) (resp. [1, 10)) and an exponent exp, yielding
numerical evaluation (−1)s sig 2exp (resp. (−1)s sig 10exp).

The value of ε actually gives the upper bound of the
relative floating-point error and is equal to 2−prec, where
prec is called the precision, referring to the number of
significand bits used. For single precision floating-point, one
has prec = 24. For double (resp. quadruple) precision, one
has prec = 53 (resp. prec = 113). Let us define R the
set of real numbers and F the set of binary floating-point
numbers. For each real-valued operation bopR ∈ {+,−,×, /
}, the result of the corresponding floating-point operation
bopF ∈ {⊕,	,⊗,�} satisfies the following when complying
with IEEE 754 standard arithmetic [3]:

bopF (x̂, ŷ) = bopR (x, y) (1 + e) , | e |≤ ε = 2−prec . (3)
Other operations include special functions taken from a
dictionary D, containing the unary functions tan, arctan,
cos, arccos, sin, arcsin, exp, log, (·)r with r ∈ R \ {0}. For
fR ∈ D, the corresponding floating-point evaluation satisfies

fF(x̂) = fR(x)(1 + e) , | e |≤ ε(fR) . (4)
The value of the relative error bound ε(fR) differs from the
machine precision ε in Equation (3) and has to be properly
adjusted. We refer the interested reader to [12] for relative
error bound verification of transcendental functions (see
also [37] for formalization in Hol-light).

Program semantics We support conditional code with-
out procedure calls nor loops. Despite these restrictions, we
can consider a wide range of nonlinear programs while as-
suming that important numerical calculations can be ex-
pressed in a loop-free manner. Our programs are encoded in
an ML-like language:

let box_prog x1 . . . xn = [(a1, b1); . . . ; (an, bn)];;
let obj_prog x1 . . . xn = [(f(x), εReal2Float)];;
let cstr_prog x1 . . . xn = [g1(x); . . . ; gk(x)];;
let uncert_prog x1 . . . xn = [u1; . . . ;un];;

Here, the first line encodes interval constraints for input vari-
ables, namely x := (x1, . . . , xn) ∈ [a1, b1] × · · · × [an, bn].
The second line provides the function f(x) as well as the to-
tal roundoff error bound εReal2Float. Then, one encodes poly-
nomial nonnegativity constraints over the input variables,
namely g1(x) ≥ 0, . . . , gk(x) ≥ 0. Finally, the last line al-
lows the user to specify a numerical constant ui to associate
a given uncertainty to the variable xi, for each i = 1, . . . , n.

The type of numerical constants is denoted by C. In our
current implementation, the user can choose either 64 bits
floating-point or arbitrary-size rational numbers. This type
C is used for the terms εReal2Float, u1, . . . , un, a1, . . . , an,
b1, . . . , bn. The inductive type of polynomial expressions
with coefficients in C is pExprC defined as follows:

type pexprC = | Pc of C | Px of positive
| Psub of pexprC * pexprC | Pneg of pexprC
| Padd of pexprC * pexprC
| Pmul of pexprC * pexprC

The constructor Px takes a positive integer as argument to
represent either an input or local variable. The inductive
type nlexpr of nonlinear expressions (such as f(x)) is de-
fined as follows:

type nlexpr =
| Pol of pexprC | Neg of nlexpr
| Add of nlexpr * nlexpr
| Mul of nlexpr * nlexpr
| Sub of nlexpr * nlexpr
| Div of nlexpr * nlexpr | Sqrt of nlexpr
| Transc of transc * nlexpr
| IfThenElse of pexprC * nlexpr * nlexpr
| Let of positive * nlexpr * nlexpr

The type transc corresponds to the dictionary D of spe-
cial functions. For instance, the term Transc (exp, f(x))
represents the program implementing exp(f(x)). Given a
polynomial expression p and two nonlinear expressions f
and g, the term IfThenElse(p(x), f(x), g(x)) represents
the conditional program implementing if (p(x) ≥ 0) f(x)
else g(x). The constructor Let allows us to define local

variables in an ML fashion, e.g. let t1 = 331.4 + 0.6 ∗ T in
−t1 ∗ v/((t1 + u) ∗ (t1 + u)) (part of the doppler1 program

considered in Section 4).
Finally, one obtains rounded nonlinear expressions using

an inductive procedure round : nlexpr → nlexpr, defined
accordingly to Equation (3) and Equation (4). When an
uncertainty ui is specified for an input variable xi, the
corresponding rounded expression is given by xi (1+e), with
| e | ≤ ui.

2.2 SDP relaxations for polynomial optimization
The sums of squares method involves approximation of
polynomial inequality constraints by sums of squares (SOS)
equality constraints. Here we recall mandatory background
about SOS. We apply this method in Section 3 to solve the
problems of Equation (1) when the nonlinear function r is
a polynomial.

Sums of squares certificates and SDP First we remind
basic acts about generation of SOS certificates for polyno-
mial optimization, using semidefinite programming. Denote
by R[x] the vector space of polynomials and by R2d[x] the
restriction of R[x] to polynomials of degree at most 2d. Let
us define the set of SOS polynomials:

Σ[x] :=
{∑

i

q2
i , with qi ∈ R[x]

}
, (5)

as well as its restriction Σ2d[x] := Σ[x]
⋂

R2d[x] to polyno-
mials of degree at most 2d. For instance, the following bivari-
ate polynomial σ(x) := 1 + (x2

1 − x2
2)2 lies in Σ4[x] ⊆ R4[x].

Optimization methods based on SOS use the implication
p ∈ Σ[x] =⇒ ∀x ∈ Rn, p(x) ≥ 0, i.e. the inclusion of Σ[x]
in the set of nonnegative polynomials. Given r ∈ R[x], one
considers the following polynomial minimization problem:

r∗ := inf
x∈Rn

{ r(x) : x ∈ K } , (6)

where the set of constraints K ⊆ Rn is defined by
K := {x ∈ Rn : g1(x) ≥ 0, . . . , gk(x) ≥ 0} ,
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for polynomial functions g1, . . . , gk. The set K is called a
basic semialgebraic set. Membership to semialgebraic sets is
ensured by satisfying conjunctions of polynomial nonnega-
tivity constraints.

Remark 1. When the input variables satisfy interval con-
straints x ∈ [a1, b1] × · · · × [an, bn] then one can easily
show that there exists some integer M > 0 such that M −∑n

i=1 x
2
i ≥ 0. In the sequel, we assume that this nonneg-

ativity constraint appears explicitly in the definition of K.
Such an assumption is mandatory to prove the convergence
of semidefinite relaxations recalled in Theorem 2.1.

In general, the objective function r and the set of con-
straints K can be nonconvex, which makes the resolution of
Problem (6) difficult to solve in practice. One can rewrite
Problem (6) as the equivalent maximization problem:

r∗ := sup
x∈Rn,µ∈R

{µ : r(x)− µ ≥ 0 , ∀x ∈ K } . (7)

Now we outline how to handle the nonnegativity constraint
r − µ ≥ 0. Given a nonnegative polynomial p ∈ R[x], the
existence of an SOS decomposition p =

∑
i
q2
i valid over Rn

is ensured by the existence of a symmetric real matrix Q, a
solution of the following linear matrix feasibility problem:

p(x) = md(x)ᵀ Q md(x) , ∀x ∈ Rn, (8)

where md(x) := (1, x1, . . . , xn, x
2
1, x1x2, . . . , x

d
n) and the

matrix Q has only nonnegative eigenvalues. Such a matrix Q
is called positive semidefinite. The vector md (resp. matrix
Q) has a size (resp. dimension) equal to sdn :=

(
n+d
d

)
.

Problem (8) can be handled with semidefinite programming
(SDP) solvers, such as Mosek [7] or SDPA [67] (see [65] for
specific background about SDP). Then, one computes the
“LDL” decomposition Q = LᵀDL (variant of the classical
Cholesky decomposition), where L is a lower triangular
matrix and D is a diagonal matrix. Finally, one obtains
p(x) = (L md(x))ᵀ D (L md(x)) =

∑sd
n
i=0 qi(x)2. Such a

decomposition is called a sums of squares (SOS) certificate.

Example 1. Let us define p(x) := 1
4 + x4

1 − 2x2
1x

2
2 + x4

2.
With m2(x) = (1, x1, x2, x

2
1, x1x2, x

2
2), one solves the linear

matrix feasibility problem p(x) = m2(x)ᵀ Q m2(x). One can
show that the solution writes Q = LᵀDL for a 6× 6 matrix
L and a diagonal matrix D with entries ( 1

2 , 0, 0, 1, 0, 0),
yielding the SOS decomposition: p(x) = ( 1

2 )2 +(x2
1−x2

2)2 =:
σ(x). It is enough to prove that p is nonnegative.

Dense SDP relaxations for polynomial optimization
In order to solve our goal problem (Problem (1)), we are
trying to solve Problem (6), recast as Problem (7). We
first explain how to obtain tractable approximations of this
difficult problem. Define g0 := 1. The hierarchy of SDP
relaxations developed by Lasserre [42] provides lower bounds
of r∗, through solving the optimization problems (Pd):

(Pd) :



p?d := sup
σj ,µ

µ ,

s.t. r(x)− µ =
∑k

j=0 σj(x)gj(x) , ∀x ,

µ ∈ R , σj ∈ Σ[x] , j = 0, . . . , k ,

deg(σjgj) ≤ 2d, j = 0, . . . , k .

The next theorem is a consequence of the assumption men-
tioned in Remark 1.

Theorem 2.1 (Lasserre [42]). Let p?d be the optimal value
of the SDP relaxation (Pd). Then, the sequence of optimal
values (p?d)d∈N is nondecreasing and converges to r?.

The number of SDP variables grows polynomially with
the integer d, called the relaxation order. Indeed, at fixed
n, the relaxation (Pd) involves O((2d)n) SDP variables and
(k+1) linear matrix inequalities (LMIs) of size O(dn). When
d increases, then more accurate lower bounds of r? can
be obtained, at an increasing computational cost. At fixed
d, the relaxation (Pd) involves O(n2d) SDP variables and
(d+ 1) linear matrix inequalities (LMIs) of size O(nd).

Exploiting sparsity Here we remind how to exploit the
structured sparsity of the problem to replace one SDP prob-
lem (Pd) by an SDP problem (Sd) of size O(κ2d) where κ
is the average size of the maximal cliques of the correlation
pattern of the polynomial variables (see [43, 66] for more
details). We now present these notions as well as the formu-
lation of sparse SDP relaxations (Sd).

We note Nn the set of n-tuple of nonnegative integers.
The support of a polynomial r(x) :=

∑
α∈Nn rαxα is defined

as supp(r) := {α ∈ Nn : rα 6= 0 }. For instance the
support of p(x) := 1

4 + x4
1 − 2x2

1x
2
2 + x4

2 is supp(p) =
{ (0, 0), (4, 0), (2, 2), (0, 4) }.

Let Fj be the index set of variables which are involved in
the polynomial gj , for each j = 1, . . . , k. The correlative
sparsity is represented by the n × n correlative sparsity
matrix (csp matrix) R defined by:

R(i, j) :=


1 if i = j ,
1 if ∃α ∈ supp(f) such that αi, αj ≥ 1 ,
1 if ∃k ∈ {1, . . . ,m} such that i, j ∈ Fk ,
0 otherwise .

We define the undirected csp graph G(N,E) with N =
{1, . . . , n} and E = {{i, j} : i, j ∈ N, i < j,R(i, j) = 1}.
Then, let C1, . . . , Cm ⊆ N denote the maximal cliques of
G(N,E) and define nj := #Cj , for each j = 1, . . . ,m.
Remark 2. From the assumption of Remark 1, one can add
the m redundant additional constraints:

gk+j := njM
2 −

∑
i∈Cj

x2
i ≥ 0 , j = 1, . . . ,m , (9)

set k′ = k +m, define the compact semialgebraic set:
K′ := {x ∈ Rn : g1(x) ≥ 0, . . . , gk′ (x) ≥ 0 } ,

and modify Problem (6) into the following optimization prob-
lem:

r∗ := inf
x∈Rn

{ r(x) : x ∈ K′ } . (10)

For each j = 1, . . . ,m, we note R2d[x, Cj ] the set of
polynomials of R2d[x] which involve the variables (xi)i∈Cj .
We note Σ[x, Cj ] := Σ[x]

⋂
R2d[x, Cj ]. Similarly, we define

Σ[x, Fj ], for each j = 1, . . . , k. The following program is the
sparse variant of the SDP program (Pd):

(Sd) :



r?d := sup
µ,σj

µ ,

s.t. r(x)− µ =
∑k′

j=0 σj(x)gj(x) , ∀x ,

µ ∈ R , σ0 ∈
∑m

j=1 Σ[x, Cj ] ,

σj ∈ Σ[x, Fj ] , j = 1, . . . , k′ ,

deg(σjgj) ≤ 2d , j = 0, . . . , k′ ,
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where σ ∈
∑m

j=1 Σ[x, Cj ] if and only if there exist σ1 ∈
Σ[x, C1], . . . , σm ∈ Σ[x, Cm] such that σ(x) =

∑m

j=1 σ
j(x),

for all x ∈ Rn.
The number of SDP variables of the relaxation (Sd) is∑m

j=1

(
nj +2d

2d

)
. At fixed d, it yields an SDP problem with

O(κ2d) variables, where κ := 1
m

∑m

j=1 nj is the average size
of the cliques C1, . . . , Cm. Moreover, the cliques C1, . . . , Cm
satisfy the running intersection property:
Definition 2.2 (RIP). Let m ∈ N0 and I1, . . . , Im be sub-
sets of {1, . . . , n}. We say that I1, . . . , Im satisfy the running
intersection property (RIP) when for all i = 1, . . . ,m, there
exists an integer l < i such that Ii ∩ (∪j<iIj) ⊆ Il.

This RIP property together with the assumption men-
tioned in Remark 2 allow to state the sparse variant of The-
orem 2.1:
Theorem 2.3 (Lasserre [43, Theorem 3.6]). Let r?d be the
optimal value of the sparse SDP relaxation (Sd). Then the
sequence (r?d)d∈N is nondecreasing and converges to r?.

The interested reader can find more details in [66] about
additional ways to exploit sparsity in order to derive anal-
ogous sparse SDP relaxations. We illustrate the benefits of
the SDP relaxations (Sd) with the following example:
Example 2. Consider the polynomial f mentioned in Sec-
tion 1: f(x) := x2x5 + x3x6 − x2x3 − x5x6 + x1(−x1 + x2 +
x3 − x4 + x5 + x6). Here, n = 6, d = 2, N = {1, . . . , 6}. The
6× 6 correlative sparsity matrix R is:

R =


1 1 1 1 1 1
1 1 1 0 1 0
1 1 1 0 1 1
1 0 0 1 0 0
1 1 1 0 1 1
1 0 1 0 1 1


The csp graph G associated to R is depicted in Figure 1. The

6

4

5

1

2

3

Figure 1. Correlative sparsity pattern graph for the vari-
ables of f

maximal cliques of G are C1 := {1, 4}, C2 := {1, 2, 3, 5}
and C3 := {1, 3, 5, 6}. For d = 2, the dense SDP relax-
ation (P2) involves

(6+4
4

)
= 210 variables against

(2+4
4

)
+

2
(4+4

4

)
= 115 for the sparse variant (S2). The dense SDP

relaxation (P3) involves 924 variables against 448 for the
sparse variant (S3). This difference becomes significant while
considering that the time complexity of semidefinite pro-
gramming is polynomial w.r.t. the number of variables with
an exponent greater than 3 (see [9, Chapter 4] for more de-
tails).

2.3 Computer proofs for polynomial optimization
Here, we briefly recall some existing features of the Coq
proof assistant to handle formal polynomial optimization,

when using SDP relaxations. The advantage of such relax-
ations is that they provide SOS certificates, which can be for-
mally checked a-posteriori. For more details on Coq, we rec-
ommend the documentation available in [10]. Giving a poly-
nomial r and a set of constraints K, one can obtain a lower
bound of r by solving any instance of Problem (Pd). Then,
one can verify formally the correctness of the lower bound
r?d, using the SOS certificate output σ0, . . . , σk. Indeed it
is enough to prove the polynomial equality r(x) − r?d =∑k

j=0 σj(x)gj(x) inside Coq. Such equalities can be effi-
ciently proved using Coq’s ring tactic [31] via the mech-
anism of computational reflection [17]. Any polynomial of
type pexprC (see Section 2.1) can be normalized to a unique
polynomial of type polC (see [31] for more details on the
constructors of this type). For the sake of clarity, let con-
sider the unconstrained case, i.e. K = Rn. One encodes an
SOS certificate σ0(x) =

∑m

i=1 q
2
i with the sequence of poly-

nomials [q1; . . . ; qm], each qi being of type polC . To prove
the equality r = σ0, our version of the ring tactic normal-
izes both r and the sequence [q1; . . . ; qm] and compares the
two normalization results. This mechanism is illustrated in
Figure 2 with the polynomial p := 1

4 + x4
1 − 2x2

1x
2
2 + x4

2 (see
Example 1) being encoded by p and the polynomials 1/2
and x2

1 − x2
2 being encoded respectively by q1 and q2.

1
4 + x4

1 − 2x2
1x

2
2 + x4

2 p

( 1
2 )2 + (x2

1 − x2
2)2 [q1; q2]

reflexive tactic

reification

interpretation

normalization

Figure 2. An illustration of computational reflection

In the general case, this computational step is done
through a checker_sos procedure which returns a Boolean
value. If this value is true, one applies a correctness lemma,
whose conclusion yields the nonnegativity of r−r?d over K. In
practice, the SDP solvers are implemented in floating-point
precision, thus the above equality between r − r?d and the
SOS certificate does not hold. However, following Remark 1,
each variable lies in a closed interval, thus one can bound the
remainder polynomial ε(x) := r(x)− r?d −

∑k

j=0 σj(x)gj(x)
using basic interval arithmetic, so that the lower bound ε? of
ε yields the valid inequality: ∀x ∈ K, r(x) ≥ r?d+ε?. For more
explanation, we refer the interested reader to the formal
framework [50]. Note that this formal verification remains
valid when considering the sparse variant (Sd).

3. Guaranteed Roundoff Error Bounds
using SDP Relaxations

In this section, we present our new algorithm, relying on
sparse SDP relaxations, to bound roundoff errors of non-
linear programs. After stating our general algorithm (Sec-
tion 3.1), we detail how this procedure can handle polyno-
mial programs (Section 3.2) and then present extensions to
the non-polynomial case (Section 3.3).

3.1 The General Optimization Framework
Here we consider a given program which implements a
nonlinear transcendental expression f with input variables
x satisfying a set of constraints X. We assume that X
is included in a box (i.e. a product of closed intervals)
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[a,b] := [a1, b1] × · · · × [an, bn] and that X is encoded as
follows:

X := {x ∈ Rn : g1(x) ≥ 0, . . . , gk(x) ≥ 0 } ,
for polynomial functions g1, . . . , gk. Then, we denote by
f̂(x, e) the rounded expression of f after applying the round
procedure (see Section 2.1), introducing additional error
variables e.

The algorithm bound, depicted in Figure 3, takes as input
x, X, f , f̂ , e as well as the set E of bound constraints
over e. Here we assume that our program implementing
f does not involve conditional statements (this case will
be discussed later in Section 3.3). For a given machine
ε, one has E := [−ε, ε]m, with m being the number of
error variables. This algorithm actually relies on the sparse
SDP optimization procedure (Sd) (see Section 2.2 for more
details), thus bound also takes as input a relaxation order d ∈
N. The algorithm provides as output an interval enclosure
Id of the absolute error | f̂(x, e)− f(x) | over K. From this
interval Id := [fd, fd], one can compute fd := max{−fd, fd},
which is a sound upper bound of the maximal absolute error
r? := max(x,e)∈K | f̂(x, e)− f(x) |.

Input: input variables x, input constraints X, nonlinear
expression f , rounded expression f̂ , error variables e,
error constraints E, relaxation order d

Output: interval enclosure Id of the absolute error | f̂−f |
over K := X×E

1: Define the absolute error r(x, e) := f̂(x, e)− f(x)
2: Compute l(x, e) := r(x, 0) +

∑m

j=1
∂r(x,e)
∂ej

(x, 0) ej
3: Compute h := r − l
4: Compute interval bounds for h: Ih := ia_bound(h,K)
5: Compute interval bounds for l: Ild := sdp_bound(l,K, d)

6: return Id := Ild + Ih

Figure 3. bound: our algorithm to compute roundoff errors
bounds of nonlinear programs

After computing the absolute roundoff error r := f̂ − f
(Line 1), one decomposes r as the sum of an expression l
which is affine w.r.t. the error variable e and a remainder
h. One way to obtain l is to compute the vector of partial
derivatives of r w.r.t. e evaluated at (x, 0) and finally to
take the inner product of this vector and e (Line 2). Then,
the idea is to compute a precise bound of l and a coarse
bound of h. The underlying reason is that h involves error
term products of degree greater than 2 (e.g. e1e2), yielding
an interval enclosure Ih of a priori much smaller width,
compared to the interval enclosure Il of l. One obtains Ih
using the procedure ia_bound implementing basic interval
arithmetic (Line 4).

3.2 Polynomial Programs
We first describe our sdp_bound optimization algorithm
when implementing polynomial programs. In this case,
sdp_bound calls an auxiliary procedure sdp_poly. The
bound of l is provided through solving two sparse SDP
instances of Problem (Sd), at relaxation order d. We now
give more explanation about the sdp_poly procedure.

We can map each input variable xi to the integer i,
for all i = 1, . . . , n, as well as each error variable ej to
n + j, for all j = 1, . . . ,m. Then, define the sets C1 :=
{1, . . . , n, n+1}, . . . , Cm := {1, . . . , n, n+m}. Here, we take

advantage of the sparsity correlation pattern of l by using
m distinct sets of cardinality n+ 1 rather than a single one
of cardinality n+m, i.e. the total number of variables. After
noticing that r(x, 0) = f̂(x, 0)− f(x) = 0, one can scale the
optimization problems by writing

l(x, e) =
m∑
j=1

sj(x)ej = ε

m∑
j=1

sj(x)ej
ε
, (11)

with sj(x) := ∂r(x,e)
∂ej

(x, 0), for all j = 1, . . . ,m. Replacing
e by e/ε leads to compute an interval enclosure of l/ε over
K′ := X× [−1, 1]m. Recall that from Remark 1, there exists
an integer M > 0 such that M −

∑n

i=1 x
2
i ≥ 0, as the

input variable satisfy box constraints. Moreover, to fulfil the
assumption of Remark 2, one encodes K′ as follows:

K′ := { (x, e) ∈ Rn+m : g1(x) ≥ 0, . . . , gk(x) ≥ 0 ,
gk+1(x, e1) ≥ 0, . . . , gk+m(x, em) ≥ 0 } ,

with gk+j(x, ej) := M+1−
∑n

i=1 x
2
i−e2

j , for all j = 1, . . . ,m.
The index set of variables involved in gj is Fj := N =
{1, . . . , n} for all j = 1, . . . , k. The index set of variables
involved in gk+j is Fj := Cj for all j = 1, . . . ,m.

Then, one can compute a lower bound of the minimum
of l′(x, e) := l(x, e)/ε over K′ by solving the following
optimization problem:

l′d := sup
µ,σj

µ ,

s.t. l′ − µ = σ0 +
∑k+m

j=1 σjgj ,

µ ∈ R , σ0 ∈
∑m

j=1 Σ[(x, e), Cj ] ,

σj ∈ Σ[(x, e), Fj ] , j = 1, . . . , k +m,

deg(σjgj) ≤ 2d , j = 1, . . . , k +m.
(12)

A feasible solution of Problem (12) ensures the existence
of σ1 ∈ Σ[(x, e1)], . . . , σm ∈ Σ[(x, em)] such that σ0 =∑m

j=0 σ
j , allowing the following reformulation:

l′d := sup
µ,σj

µ ,

s.t. l′ − µ =
∑m

j=1 σ
j +
∑k+m

j=1 σjgj ,

µ ∈ R , σj ∈ Σ[x] , j = 1, . . . ,m ,

σj ∈ Σ[(x, ej)] , deg(σj) ≤ 2d , j = 1, . . . ,m ,

deg(σjgj) ≤ 2d , j = 1, . . . , k +m.
(13)

An upper bound l′d can be obtained by replacing sup with
inf and l′ − µ by µ − l′ in Problem (13). Our optimization
procedure sdp_poly computes the lower bound l′d as well
as an upper bound l′d of l′ over K′ then returns the interval
Ild := [ε l′d, ε l′d], which is a sound enclosure of the values of l
over K.

We emphasize two advantages of the decomposition r :=
l+h and more precisely of the linear dependency of l w.r.t. e:
scalability and robustness to SDP numerical issues. First,
no computation is required to determine the correlation
sparsity pattern of l, by comparison to the general case.
Thus, it becomes much easier to handle the optimization of
l with the sparse SDP Problem (13) rather than with the
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corresponding instance of the dense relaxation (Pd). While
the latter involves

(
n+m+2d

2d

)
SDP variables, the former

involves only m
(
n+1+2d

2d

)
variables, ensuring the scalability

of our framework. In addition, the linear dependency of l
w.r.t. e allows us to scale the error variables and optimize
over a set of variables lying in K′ := X× [−1, 1]. It ensures
that the range of input variables does not significantly
differ from the range of error variables. This condition is
mandatory while considering SDP relaxations because most
SDP solvers (e.g. Mosek [7], SDPA [67]) are implemented
using double precision floating-point. It is impossible to
optimize l over K (rather than l′ over K′) when the maximal
value ε of error variables is less than 2−53, due to the fact
that SDP solvers would treat each error variable term as
0, and consequently l as the zero polynomial. Hence, this
decomposition insures our framework from the numerical
issues related to finite-precision implementation of SDP
solvers.

Let us define the interval enclosure Il := [l, l], with
l := inf(x,e)∈K l(x, e) and l := sup(x,e)∈K l(x, e). The next
lemma states that one can approximate Il as closely as
desired using the sdp_poly procedure.
Lemma 3.1 (Convergence of the sdp_poly procedure).
Let Ild be the interval enclosure returned by the procedure
sdp_poly(l,K, d). The sequence (Ild)d∈N converges to Il.

Proof. It is sufficient to show the similar convergence result
for l′ = l/ε, as it implies the convergence for l by a scaling
argument. The sets C1, . . . , Cm satisfy the RIP property
(see Definition 2.2). Moreover, the encoding of K′ satisfies
the assumption mentioned in Remark 2. Thus, Theorem 2.3
implies that the sequence of lower bounds (l′d)d∈N converges
to l′ := inf(x,e)∈K′ l′(x, e). Similarly, the sequence of upper
bounds converge to l′, yielding the desired result.

Lemma 3.1 guarantees asymptotic convergence to the
exact enclosure of l when the relaxation order d tends
to infinity. However, it is more reasonable in practice to
keep this order as small as possible to obtain tractable
SDP relaxations. Hence, we generically solve each instance
of Problem (13) at the minimal relaxation order, that is
d0 := max{ddeg l/2e),max1≤j≤k+m{ddeg(gj)/2e)}}.

3.3 Non-polynomial and Conditional Programs
Other classes of programs do not only involve polynomials
but also semialgebraic and transcendental functions as well
as conditional statements. Such programs are of particular
interest as they often occur in real-world applications such as
biology modeling, space control or global optimization. We
present how the general optimization procedure sdp_bound
can be extended to these nonlinear programs.

Semialgebraic programs Here we assume that the func-
tion l is semialgebraic, that is involves non-polynomial com-
ponents such as divisions or square roots. Following [45],
we explain how to transform the optimization problem
inf(x,e)∈K l(x, e) into a polynomial optimization problem,
then use the sparse SDP program (13). One way to perform
this reformulation consists of introducing lifting variables to
represent non-polynomial operations. We first illustrate the
extension to semialgebraic programs with an example.
Example 3. Let consider the program implementing the
rational function f : [0, 1] → R defined by f(x1) := x1

1+x1
.

Applying the rounding procedure (with machine ε) yields

f̂(x1, e) := x1(1+e2)
(1+x1)(1+e1) and the decomposition r(x1, e) :=

f̂(x1, e)− f(x1) = l(x1, e) +h(x1 e) = s1(x1)e1 + s2(x1)e2 +
h(x1, e). One has s1(x1) = ∂r(x1,e)

∂e1
(x1, 0) = − x1

1+x1
and

s2(x1) = −s1(x1).
Let K := [0, 1]× [−ε, ε]2. One introduces a lifting variable

x2 := x1
1+x1

to handle the division operator and encode the
equality constraint p(x) := x2(1 + x1) − x1 = 0 with the
two inequality constraints p(x) ≥ 0 and −p(x) ≥ 0. To
ensure the compactness assumption, one bounds x2 within
I := [0, 1/2], using basic interval arithmetic.

Let Kpoly := {(x, e) ∈ [0, 1] × I × [ε, ε]2 : p(x) ≥
0 , −p(x) ≥ 0}. Then the rational optimization problem
involving l is equivalent to inf(x,e)∈Kpoly x2(−e1 + e2), a
polynomial optimization problem that we can handle with
the sdp_poly procedure, described in Section 3.2.

In the semialgebraic case, sdp_bound calls an auxiliary
procedure sdp_sa. Given input variables y := (x, e), in-
put constraints K := X × E and a semialgebraic function
l, sdp_sa first applies a recursive procedure lift which re-
turns variables ypoly, constraints Kpoly and a polynomial
fpoly such that the interval enclosure Il of l(y) over K is
equal to the interval enclosure of the polynomial lpoly(ypoly)
over Kpoly. Calling sdp_sa yields the interval enclosure
Ild := sdp_poly(lpoly,Kpoly, d). We detail the lifting pro-
cedure lift in Figure 4 for the constructors Pol(Line (2)),
Div (Line (3)) and Sqrt (Line (8)). The interval I obtained
through the ia_bound procedure (Line (1)) allows us to
constrain the additional variable x to ensure the assump-
tion of Remark 2. For the sake of consistency, we omit the
other cases (Neg, Add, Mul and Sub) where the procedure is
straightforward. For a similar procedure in the context of
global optimization, we refer the interested reader to [47,
Chapter 2].

Input: input variables y, input constraints K, semialge-
braic expression f

Output: variables ypoly, constraints Kpoly, polynomial ex-
pression fpoly

1: I := ia_bound(f,K)
2: if f = Pol (p) then ypoly := y, Kpoly := K, fpoly := p
3: else if f = Div (g,h) then
4: yg,Kg, gpoly := lift(y,K, g)
5: yh,Kh, hpoly := lift(y,K, h)
6: ypoly := (yg,yh, x) fpoly := x
7: Kpoly := {ypoly ∈ Kg ×Kh × I : xgpoly = fpoly}
8: else if f = Sqrt (g) then
9: yg,Kg, gpoly := lift(y,K, g)
10: ypoly := (yg, x) fpoly := x
11: Kpoly := {ypoly ∈ Kg × I : x2 = gpoly}
12: ...
13: end
14: return ypoly,Kpoly, fpoly

Figure 4. lift: a recursive procedure to reduce semialge-
braic problems to polynomial problems

The set of variables ypoly can be decomposed as (xpoly, e),
where xpoly gathers input variables with lifting variables
and has a cardinality equal to npoly. Then, one easily shows
that the sets {1, . . . , npoly, e1},. . . ,{1, . . . , npoly, em} satisfy
the RIP, thus ensuring to solve efficiently the corresponding
instances of Problem (13).
Transcendental programs Here we assume that the
function l is transcendental, i.e. involves univariate non-
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semialgebraic components such as exp or sin. For each uni-
variate transcendental function fR in our dictionary set D,
one assumes that fR is twice differentiable, so that the uni-
variate function g := fR + γ

2 | · |
2 is convex on I for large

enough γ > 0 (for more details, see the references [4, 52]).
It follows that there exists a constant γ ≤ supx∈I −f ′′R (x)
such that for all xi ∈ I:

∀x ∈ I, fR(x) ≥ f−xi
(x) ,

with f−xi
:= −γ2 (x− xi)2 + f ′R(xi)(x− xi) + fR(xi) ,

(14)

implying that for all x ∈ I, fR(x) ≥ maxxi∈I f
−
xi

(x). Simi-
larly, one obtains an upper-approximation minxi∈I f

+
xi

(x).
Figure 5 provides such approximations for the function
fR(x) := log(1 + exp(x)) on the interval I := [−8, 8].

x1
x1 7→ log(1 + exp(x1))

f−
0

f−
8

f+
0

f+
8

−8 8

Figure 5. Semialgebraic Approximations for x 7→ log(1 +
exp(x)): max{f−0 (x), f−8 (x)} ≤ log(1 + exp(x)) ≤
min{f+

0 (x), f+
8 (x)}

For transcendental programs, our procedure sdp_bound
calls the auxiliary procedure sdp_transc. Given input vari-
ables (x, e), constraints K and a transcendental function l,
sdp_transc first computes a semialgebraic lower (resp. up-
per) approximation l− (resp. l+) of l over K. For more de-
tails in the context of global optimization, we refer the reader
to [49]. Then, calling the procedure sdp_sa allows us to get
interval enclosures of l− as well as l+. We illustrate the pro-
cedure to handle transcendental programs with an example.
Example 4. Let consider the program implementing the
transcendental function f : [−8, 8] → R defined by f(x1) :=
log(1 + exp(x1)). Applying the rounding procedure yields
f̂(x1, e) := log[(1+exp(x1)(1+e1)) (1+e2)](1+e3). Here, |e2|
is bounded by the machine ε while |e1| (resp. |e3|) is bounded
with an adjusted absolute error ε1 := ε(exp) (resp. ε3 :=
ε(log)). Let K := [−8, 8]× [−ε1, ε1]× [ε, ε]× [−ε3, ε3].

One obtains the decomposition r(x1, e) := f̂(x1, e) −
f(x1) = l(x1, e)+h(x1, e) = s1(x1)e1 +s2(x1)e2 +s3(x1)e3 +
h(x1, e), with s1(x1) = exp(x1)

1+exp(x1) , s2(x1) = 1 and s3(x1) =
log(1+exp(x1)) = f(x1). Figure 5 provides a lower approxi-
mation s−3 := max{f−0 , f

−
8 } of s3 as well as an upper approx-

imation s+
3 := min{f+

0 , f
+
8 }. One can get similar approxi-

mations s−1 and s+
1 for s1. One first obtains (coarse) interval

enclosures I2 = ia_bound(s1,K) and I3 = ia_bound(s3,K)
and one introduces extra variables x2 ∈ I2 and x3 ∈ I3 to
represent s1 and s3 respectively. Then, the interval enclosure
of l over K is equal to the interval enclosure of lsa(x, e) :=
x2e1 +e2 +x3e3 over the set Ksa := {(x1, e) ∈ K , (x2, x3) ∈
I2 × I3 , s

−
1 (x1) ≤ x2 ≤ s+

1 (x1) , s−3 (x1) ≤ x3 ≤ s+
3 (x1)}.

Programs with conditionals Finally, we explain how to
extend our bounding procedure to nonlinear programs in-
volving conditionals through the recursive algorithm given in
Figure 6. The bound_nlprog algorithm relies on the bound
procedure (see Figure 3 in Section 3.1) to compute round-
off error bounds of programs implementing transcendental
functions (Line 12). From Line 1 to Line 11, the algorithm
handles the case when the program implements a function
f defined as follows:

f(x) :=
{
g(x) if p(x) ≥ 0,
h(x) otherwise.

The first branch output is g while the second one is h.

Input: input variables x, input constraints X, nonlinear
expression f , rounded expression f̂ , error variables e,
error constraints E, relaxation order d

Output: interval enclosure Id of the error | f̂ − f | over
K := X×E

1: if f = IfThenElse (p, g, h) then
2: Ipd := bound(x,X, p, p̂, e,E, d) = [pd, pd]
3: X1 := {x ∈ X : 0 ≤ p(x) ≤ pd}
4: X2 := {x ∈ X : pd ≤ p(x) ≤ 0}
5: X3 := {x ∈ X : 0 ≤ p(x)}
6: X4 := {x ∈ X : p(x) ≤ 0}
7: I1

d := bound_nlprog(x,X1, g, ĥ, e,E, d)
8: I2

d := bound_nlprog(x,X2, h, ĝ, e,E, d)
9: I3

d := bound_nlprog(x,X3, g, ĝ, e,E, d)
10: I4

d := bound_nlprog(x,X4, h, ĥ, e,E, d)
11: return Id := I1

d ∪ I2
d ∪ I3

d ∪ I4
d

12: else return Id := bound(x,X, f, f̂ , e,E, d)
13: end

Figure 6. bound_nlprog: our algorithm to compute round-
off error bounds of programs with conditional statements

A preliminary step consists of computing the roundoff
error enclosure Ipd := [pd, pd] (Line 2) for the program im-
plementing the polynomial p. Then the procedure computes
bounds related to the divergence path error, that is the max-
imal value between the four following errors:

• (Line 7) the error obtained while computing the rounded
result ĥ of the second branch instead of computing the
exact result g of the first one, occurring for the set
of variables (x, e) such that p̂(x, e) ≤ 0 ≤ p(x). For
scalability and numerical issues, we consider an over-
approximation X1 (Line 3) of this set, where the variables
x satisfy the relaxed constraints 0 ≤ p(x) ≤ pd.

• (Line 8) the error obtained while computing the rounded
result ĝ of the first branch instead of computing the
exact result h of the second one, occurring for the set
of variables (x, e) such that p(x) ≤ 0 ≤ p̂(x, e). We also
consider an over-approximation X2 (Line 4), where the
variables x satisfy the relaxed constraints pd ≤ p(x) ≤ 0.

• (Line 9) the roundoff error corresponding to the program
implementation of g.

• (Line 10) the roundoff error corresponding to the pro-
gram implementation of h.

Simplification of error terms In addition, our algo-
rithm bound_nlprog integrates several features to reduce
the number of error variables. First, it memorizes all sub-
expressions of the nonlinear expression tree to perform com-
mon sub-expressions elimination. We can also simplify error
term products, thanks to the following lemma.
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Lemma 3.2 (Higham [38, Lemma 3.3]). Let ε < 1
k

and
γk := kε

1−kε . Then, for all e1, . . . , ek ∈ [−ε, ε], there exists θk
such that

∏k

i=1(1 + ei) = 1 + θk and | θk |≤ γk.

Lemma 3.2 implies that for any k such that ε < 1
k
, one has

γk ≤ (k+1)ε. Our algorithm has an option to automatically
derive safe over-approximations of the absolute roundoff
error while introducing only one variable e1 (bounded by
(k + 1)ε) instead of k error variables e1, . . . , ek (bounded
by ε). The cost of solving the corresponding optimization
problem can be significantly reduced but it yields coarser
error bounds.

4. Experimental Evaluation
Now, we present experimental results obtained by applying
our general bound_nlprog algorithm (see Section 3, Fig-
ure 6) to various examples coming from physics, biology,
space control and optimization. The bound_nlprog algo-
rithm is implemented in a tool called Real2Float, built
in top of the NLCertify nonlinear verification package, re-
lying on OCaml (Version 4.02.1), Coq (Version 8.4pl5)
and interfaced with the SDP solver Sdpa (Version 7.3.6).
The SDP solver output numerical SOS certificates, which
are converted into rational SOS using the Zarith OCaml
library (Version 1.2), implementing arithmetic operations
over arbitrary-precision integers. For more details about
the installation and usage of Real2Float, we refer to the
dedicated web-page2 and the setup instructions3. All ex-
amples are displayed in Appendix A as the corresponding
Real2Float input text files and satisfy our nonlinear pro-
gram semantics (see Section 2.1). All results have been ob-
tained on an Intel Core i5 CPU (2.40GHz). Execution tim-
ings have been computed by averaging over five runs.

4.1 Benchmark Presentation
For each example, we compared the quality of the roundoff
error bounds (Table 1) and corresponding execution times
(Table 2) while running our tool Real2Float, FPTaylor
(version from May 2015) [62] and Rosa (version from May
2014) [23]. A given program implements a nonlinear func-
tion f(x), involving variables x lying in a set X contained
in a box [a,b]. Applying our rounding model on f yields the
nonlinear expression f̂(x, e), involving additional error vari-
ables e lying in a set E. At a given semidefinite relaxation
order d, our tool computes the upper bound fd of the abso-
lute roundoff error | f−f̂ | over K := X×E and verifies that
it is less than a requested number εReal2Float. As we keep the
relaxation order d as low as possible to ensure tractable SDP
programs, it can happen that fd > εReal2Float. In this case,
we subdivide a randomly chosen interval of the box [a,b]
in two halves to obtain two sub-sets X1 and X2, fulfilling
X := X1 ∪X2, and apply the bound_nlprog algorithm on
both sub-sets until we succeed to certify that εReal2Float is a
sound upper bound of the roundoff error.

The number εReal2Float is compared with the upper bounds
computed by FPTaylor, which relies on Taylor Symbolic ex-
pansions [62], Rosa, which relies on SMT and affine arith-
metic [23], as well as a third procedure, IA, relying on inter-
val arithmetic. We designed IA to follow the same steps than
bound_nlprog, together with the sub-procedure bound, but

2 http://nl-certify.forge.ocamlcore.org/real2float.html
(not anonymized)
3 see the README.md file in the top level directory

to compute an interval enclosure of l with the procedure
ia_bound using a basic interval arithmetic procedure, in-
stead of calling the sdp_bound procedure (see Line 5 of the
algorithm depicted in Figure 3). For comparison purpose, we
also executed each program using random inputs, following
the approach used in the Rosa paper [23]. Specifically, we
executed each program on 107 random inputs satisfying the
input restrictions. The results from these random samples
provide lower bounds on the absolute error. For the sake
of further presentation, we associate an alphabet character
(from a to w) to identify each of the 23 nonlinear programs:

• The first 14 programs implement polynomial and semi-
algebraic functions: a-e come from physics, f and h from
biology, g from control, i-k are derived from expressions
involved in the proof of Kepler Conjecture (for more de-
tails, see [32] and the related formalization project [33])
and l-n implement polynomial approximations of the
sine and square root functions. With the exception of
i-k, all these programs are used to compare FPTaylor
and Rosa in [62].

• The three polynomial programs o-q come from the global
optimization literature and correspond respectively to
Problem 3.3, 4.6 and 4.7 in [27]. We selected them as they
typically involve nontrivial polynomial preconditions (i.e.
X is not a simple box but rather a set defined with
conjunction of nonlinear polynomial inequalities).

• The four programs r-u involve transcendental functions.
The two programs r and s are used in the FPTaylor
paper [62] and correspond respectively to the program
logexp (see Example 4) and the program sphere taken
from NASA World Wind Java SDK [1]. The 2 programs
t and q respectively implement the functions coming
from the optimization problems Hartman 3 and Hartman
6 in [6], involving both sums of exponential functions
composed with quadratic polynomials.

• The last two programs v-w involve conditional state-
ments and come from the static analysis literature. They
correspond to the two respective running examples of [30]
and [5]. The first program v is used in the Rosa paper [23]
for the analysis of divergence path error.

The three tools Real2Float, Rosa and FPTaylor can handle
input variable uncertainties as well as multi-precision pro-
grams, but for the sake of conciseness, we only considered
to compare their performance on programs implemented in
single (ε = 2−24) or double (ε = 2−53) precision floating-
point. For the programs involving transcendental functions,
we followed the same procedure as in FPTaylor while ad-
justing the precision ε (fR) = 1.5ε for each special func-
tion fR ∈ {sin, cos, log, exp}. Each univariate transcendental
function is approximated from below (resp. from above) us-
ing suprema (resp. infima) of linear or quadratic polynomials
(see Example 4 for the case of program logexp).

4.2 Comparison Results
Comparison results for error bound computation are pre-
sented in Table 1. Our Real2Float tool computes the tight-
est upper bounds for 18 out of 23 benchmarks. For the 3
programs a-c involving rational functions and the program
t encoding Problem Hartman 3, FPTaylor computes the
tightest bounds. The symbol Div0 means that the IA pro-
cedure aborts with a division by zero exception, which typ-
ically occurs when computing too coarse interval enclosures
of rational function denominators. One current limitation
of Real2Float is its ability to manipulate symbolic expres-
sions, e.g. computing rational function derivatives or yield-
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Table 1. Comparison results of upper and lower bounds for absolute roundoff errors (the best results are emphasized using
bold fonts)

Benchmark id precision Real2Float Rosa FPTaylor IA lower bound

Programs involving polynomial and semialgebraic functions
doppler1 a (double) 2.75e–13 4.97e–13 1.57e–13 Div0 7.11e–14
doppler2 b (double) 8.04e–13 1.29e–12 2.87e–13 Div0 1.14e–13
doppler3 c (double) 1.37e–13 2.03e–13 8.16e–14 Div0 4.27e–14
rigidBody1 d (double) 3.80e–13 5.08e–13 3.87e–13 3.80e–13 2.28e–13
rigidBody2 e (double) 3.98e–11 6.48e–11 5.24e–11 3.98e–11 2.19e–11
verhulst f (double) 3.37e–16 6.82e–16 3.50e–16 6.22e–01 2.23e–16
carbonGas g (double) 1.09e–08 1.60e–08 1.25e–08 3.10e–03 4.11e–09
predPrey h (double) 1.57e–16 1.98e–16 1.87e–16 2.02e–16 1.47e–16
kepler0 i (double) 8.76e–14 9.07e–14 1.04e–13 1.03e–13 2.23e–14
kepler1 j (double) 3.90e–13 4.43e–13 4.48e–13 6.52e–13 7.58e–14
kepler2 k (double) 1.90e–12 2.16e–12 2.07e–12 3.00e–12 3.03e–13
sineTaylor l (double) 5.53e–16 9.57e–16 6.71e–16 9.39e–16 4.45e–16

(float) 2.97e–07 1.03e–06 3.51e–07 5.07e–07 1.79e–07
sineOrder3 m (double) 6.68e–16 1.11e–15 9.96e–16 8.82e–16 3.34e–16

(float) 3.58e–07 1.19e–06 5.35e–07 4.74e–07 2.12e–07
sqroot n (double) 7.56e–16 8.41e–16 7.87e–16 8.48e–16 4.45e–16

(float) 4.06e–07 9.03e–07 4.23e–07 4.56e–07 2.45e–07

Programs implementing polynomial functions with polynomial preconditions
floudas1 o (double) 3.00e–13 2.99e–13 6.20e–13 6.36e–13 1.48e–13
floudas2 p (double) 8.79e–16 1.12e–15 9.96e–16 1.12e–15 2.35e–16
floudas3 q (double) 7.33e–15 1.00e–14 1.16e–14 1.87e–14 7.31e–15

Programs implementing transcendental functions
logexp r (double) 1.65e–15 − 1.71e–15 8.29e–13 1.19e–15
sphere s (double) 7.78e–15 − 1.29e–14 7.78e–15 5.05e–15
hartman3 t (double) 1.50e–13 − 1.34e–14 3.46e+05 1.10e–14
hartman6 u (double) 2.00e–13 − OoM 2.82e+03 6.50e–14

Programs involving conditional loops
cav10 v (double) 2.91e+00 2.91e+00 − 1.02e+02 2.90e+00
perin w (double) 2.01e+00 2.01e+00 − 4.91e+01 2.00e+00

ing reduction to the same denominator. For that reason, we
omitted some programs studied in [62] (e.g. turbine) involv-
ing rational functions. Performance of FPTaylor are better
to analyze such functions, as it handles properly symbolic
operations through the interface with the Maxima com-
puter algebra system [51]. Accordingly with the FPTaylor
paper [62], the Rosa real compiler often provides coarser
bounds, except for the two conditional programs v and w and
the polynomial program o. Program u can only be tackled
with Real2Float as FPTaylor aborted after running out of
memory (meaning of the symbol OoM). A possible failure
explanation is the complexity of the corresponding Prob-
lem Hartman 6, involving 133 arithmetic operations and 6
input variables. To the best of our knowledge, Real2Float
is the only academic tool which is able to handle the gen-
eral class of programs involving either transcendental func-
tions or conditional statements. The FPTaylor (resp. Rosa)
does not currently handle conditionals (resp. transcendental
functions), as meant by the symbol − in the corresponding
column entries. However, an interface between both software
would embed them with their respective missing feature.

These error bound comparison results together with
their corresponding execution timings (given in Table 2)
are used to plot the data points shown in Figure 7. For

each benchmark identified by id, let tReal2Float (in 3rd col-
umn of Table 2) refer to the execution time of Real2Float
to obtain the corresponding upper bound εReal2Float (in
4th column of Table 1). Similarly, let us define the ex-
ecution times tRosa, tFPTaylor and the corresponding er-
ror bounds εRosa, εFPTaylor. Then the x-axis coordinate of

the point id (resp. id ) displayed in Figure 7 corre-
sponds to the relative difference between the execution time
of Rosa (resp. FPTaylor) and Real2Float, i.e. the ratio
tRosa−tReal2Float

tReal2Float
(resp. tFPTaylor−tReal2Float

tReal2Float
). Similarly, the y-axis

coordinate of the point id (resp. id ) is εRosa−εReal2Float
εReal2Float

(resp. εFPTaylor−εReal2Float
εReal2Float

). For readability purpose, we used an
appropriate logarithmic scale for the x-axis.

The axes of the coordinate system of Figure 7 divide
the plane into four quadrants: the nonnegative quadrant
(+,+) contains data points referring to programs for which
Real2Float computes the tighter bounds in less time, the
second one (+,−) contains points referring to programs for
which Real2Float is slower but more accurate, the non-
positive quadrant (−,−) for which Real2Float is slower and
computes coarser bounds and the last one (−,+) for which
Real2Float is faster but less accurate. On the quadrant
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Figure 7. Comparisons of execution times and upper
bounds of roundoff errors obtained with Rosa and FPTaylor,
relatively to Real2Float

Table 2. Comparison of execution times (in seconds) for
absolute roundoff error bounds (the best results are empha-
sized using bold fonts)
Benchmark id Real2Float Rosa FPTaylor
doppler1 a 7.73 23.7 7.45
doppler2 b 4.97 24.0 7.29
doppler3 c 7.61 35.4 7.15
rigidBody1 d 0.40 0.20 6.22
rigidBody2 e 2.37 11.7 8.37
verhulst f 1.22 9.93 3.52
carbonGas g 5.05 39.4 10.1
predPrey h 3.10 36.2 5.05
kepler0 i 0.93 4.28 15.1
kepler1 j 3.15 32.9 98.0
kepler2 k 21.6 56.1 215
sineTaylor l 0.42 0.99 9.66
sineOrder3 m 0.16 6.71 5.19
sqroot n 0.38 1.89 10.1
floudas1 o 19.5 17.8 15.3
floudas2 p 1.80 2.49 1.83
floudas3 q 4.33 17.3 4.40
logexp r 0.06 − 2.04
sphere s 0.03 − 4.48
hartman3 t 1.90 − 62.5
hartman6 u 15.6 − OoM
cav10 v 0.37 12.3 −
perin w 1.38 41.4 −

(+,−), one can see that Real2Float computes bound which
are less accurate than FPTaylor on programs a-c and t, but
much faster for program b. The quadrant (−,+) indicates
that Rosa (resp. FPTaylor) is more efficient but less precise
than Real2Float on program d (resp. o). The presence of
the majority of plots on the nonnegative quadrant (+,+)

confirms that Real2Float does not compromise efficiency
at the expense of accuracy.

For each program implementing polynomials, our tool has
an option to provide formal guarantees for the corresponding
roundoff error bound εReal2Float. Using the formal mechanism
described in Section 2.3, Real2Float formally checks inside
Coq the SOS certificates generated by the SDP solver.

Relative informal efficiency

Relative formal efficiency
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Figure 8. Comparisons of informal and formal execution
times to certify bounds of roundoff errors obtained with
FPTaylor, relatively to Real2Float

The FPTaylor software has a similar option to provide
formal scripts which can be checked inside the Hol-light
proof assistant, for programs involving polynomial and tran-
scendental functions. Our tool has more limitations to per-
form formal verification as it cannot handle non-polynomial
programs. Next, we describe the formal proof results ob-
tained while verifying the bounds for the eight polynomial
programs d-f and i-n. Figure 8 allows to compare the execu-
tion times of Real2Float and FPTaylor required to analyze
the eight programs in both informal (i.e. without verifica-
tion inside Coq or Hol-light) and formal settings. The
x-axis coordinate of each point id displayed in Figure 7
is the same as on Figure 7. The dotted line represents the
bisector of the first quadrant angle. The y-axis coordinate
of the point id corresponds to the relative difference be-
tween the execution time tHol-light to obtain a Hol-light
formal proof with FPTaylor and the execution time tCoq to
obtain a Coq formal proof with Real2Float, i.e. the ratio
tHol-light−tCoq

tCoq
. Note that all points have nonnegative y-axis

coordinates, as our tool formally checks all program bounds
more efficiently than FPTaylor (more than hundred times
faster for the three programs i, m-n). The figure shows that
the speedup ratio in the formal setting is higher than in the
informal setting for the four programs i and l-n, as the
corresponding points are above the first bisector. This em-
phasizes the benefit of using SOS certificates for formal ver-
ification rather than optimization methods based on Taylor
approximations. The latter performs almost as well as the
former to analyze program k but yields a coarser bound.

5. Related Works
Satisfiability Modulo Theories (SMT) SMT solvers al-
low to analyze programs with various semantics or specifi-
cations but are limited for the manipulation of problems
involving nonlinear arithmetic. Several solvers, including
Z3 [25], provide partial support for the IEEE floating-point
standard [60]. They suffer from a lack of scalability when
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used for roundoff error analysis in isolation (as emphasized
in [23]), but can be integrated into existing frameworks,
e.g. FPhile [58]. The procedure in [28] can solve SMT prob-
lems over the real numbers, using interval constraint prop-
agation but has not yet been applied to quantification of
roundoff error. The Rosa tool [23] provides a way to compile
real programs involving semialgebraic functions and condi-
tional statements. The tool uses affine arithmetic to pro-
vide sound over-approximations of roundoff errors, allow-
ing for generation of finite precision implementations which
fulfill the required precision given as input by the user.
Bounds of the affine expressions are provided through an
optimization procedure based on SMT. In our case, we use
the same rounding model but provide approximations which
are affine w.r.t. the additional error variables and nonlinear
w.r.t. the input variables. Instead of using SMT, we bound
the resulting expressions with optimization techniques based
on semidefinite programming. At the moment (and in con-
trast to our method) the Rosa tool does not formally verify
the output bound provided by the SMT solver, but such a
feature could be embedded through an interface with the
smtcoq framework [8]. This latter tool allows the proof wit-
ness generated by an SMT solver to be formally (and inde-
pendently) re-checked inside Coq. The smtcoq framework
uses tactics based on computational reflection to enable this
re-checking to be performed efficiently.

Abstract Domains Abstract interpretation [22] has been
extensively used in the context of static analysis to provide
sound over-approximations, called abstractions, of the sets
of values taken by program variables. The effects of vari-
able assignments, guards and conditional loops statements
are handled with several domain specific operators (e.g. in-
clusion, meet and join). Well studied abstract domains in-
clude intervals [55] as well as more complicated frameworks
based on affine arithmetic [63], octogons [54], zonotopes [30],
polyhedra [18], interval polyhedra [19], some of them be-
ing implemented inside a tool called Apron [39]. Abstract
domains provide sound over-approximations of program ex-
pressions, and allow upper bounds on roundoff error to be
computed. The Gappa tool [24] relies on interval abstract
domains with an extension to affine domains [46], to reason
about roundoff errors. As demonstrated in [62], the bounds
obtained inside Gappa are often coarser than other meth-
ods which take into account the variable correlations. Formal
guarantees can be provided as Gappa benefits from an in-
terface with Coq while making use of interval libraries [53]
relying on formalized floating-points [15]. The static anal-
ysis tool Fluctuat relies on affine abstract domains [13].
Gappa and Fluctuat tools use a different rounding model
(also available as an option inside FPTaylor) based on a
piecewise constant relative error bound. This is more pre-
cise than our current rounding model but requires extensive
use of a branch and bound algorithm as each interval has to
be subdivided in intervals [2n, 2n+1] for several values of the
integer n. As a side effect, the corresponding optimization
procedure is computationally demanding, as noticed in [62].

Global Optimization Frameworks Computing sound
bounds of nonlinear expressions is mandatory to perform
formal analysis of finite precision implementations and can
be performed with various optimization tools. In the poly-
nomial case, alternative approaches to semidefinite relax-
ations are based on decomposition in the multivariate Bern-
stein basis. Formal verification of bounds obtained with
this decomposition has been investigated in the thesis of

Zumkeller [68] and by Munõz and Narkawicz [56] in the
PVS theorem prover [57]. We are not aware of any work
based on these techniques which can quantify roundoff er-
rors. Another decomposition of nonnegative polynomials
into SOS certificates consists in using the Krivine [40]-
Handelman [35] representation and boils down to solving
linear programming (LP) relaxations. In our case, we use a
different representation, leading to solve SDP relaxations.
The Krivine-Handelman representation has been used in [14]
to compute roundoff error bounds. LP relaxations often pro-
vide coarser bounds than SDP relaxations and it has been
proven in [41] that generically finite convergence does not
occur for convex problems, at the exception of the linear
case. Branch and bound methods with Taylor models [11]
are not restricted to polynomial systems and have been for-
malized [61] to solve nonlinear inequalities occurring in the
proof of Kepler Conjecture. Symbolic Taylor Expansions [62]
have been implemented in the FPTaylor tool to compute for-
mal bounds of roundoff errors for programs involving both
polynomial and transcendental functions. This method hap-
pens to be efficient and precise to analyze various programs
and it would be interesting to design a procedure combining
FPTaylor with our tool on specific subsets of input con-
straints.

6. Conclusion and Perspectives
Our verification framework allows us to over-approximate
roundoff errors occurring while executing nonlinear pro-
grams implemented with finite precision. The framework
relies on semidefinite optimization, ensuring certified ap-
proximations. Our approach extends to medium-size non-
linear problems, due to automatic detection of the corre-
lation sparsity pattern of input variables and roundoff er-
ror variables. Experimental results indicate that the opti-
mization algorithm implemented in our Real2Float software
package often produces tighter error bounds than the ones
provided by the competitive solvers Rosa and FPTaylor. In
addition, Real2Float produces sums of squares certificates
which guarantee the correctness of these upper bounds and
can can be efficiently verified inside the Coq proof assistant.

This work yields several directions for further research
investigation. First, we intend to increase the size of gras-
pable instances by exploiting symmetry patterns of certain
program sub-classes to use specific SDP hierarchies [59]. We
could also provide roundoff error bounds for more general
programs, involving either finite or infinite conditional loops.
A preliminary mandatory step is to be able to generate in-
ductive invariants with SDP relaxations. Another interesting
direction would be to apply the method used in [44] to derive
sequences of lower roundoff error bounds together with SDP-
based certificates. On the formal proof side, we could benefit
from floating-point/interval arithmetic libraries available in-
side Coq, first to improve the efficiency of the formal polyno-
mial checker, currently relying on exact arithmetic, then to
extend the formal verification to non-polynomial programs.
Finally, we plan to combine this optimization framework
with the procedure in [29] to improve the automatic re-
ordering of arithmetic expressions, allowing more efficient
optimization of FPGA implementations.
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Appendix A: Nonlinear Programs

let box_doppler1 u v T = [(−100, 100); (20, 20e3); (−30, 50)]; ;
let obj_doppler1 u v T = [(let t1 = 331.4 + 0.6 ∗ T in
−t1 ∗ v/((t1 + u) ∗ (t1 + u)), 2.75e–13)]; ;

let box_doppler2 u v T = [(−125, 125); (15, 25e3); (−40, 60)]; ;
let obj_doppler2 u v T = [(let t1 = 331.4 + 0.6 ∗ T in
−t1 ∗ v/((t1 + u) ∗ (t1 + u)), 8.04e–13)]; ;

let box_doppler3 u v T = [(−30, 120); (320, 20300); (−50, 30)]; ;
let obj_doppler3 u v T = [(let t1 = 331.4 + 0.6 ∗ T in
−t1 ∗ v/((t1 + u) ∗ (t1 + u)), 1.37e–13)]; ;

let box_rigidbody1 x1 x2 x3 = [(−15, 15); (−15, 15); (−15, 15)]; ;
let obj_rigidbody1 x1 x2 x3 = [(
−x1 ∗ x2 − 2 ∗ x2 ∗ x3 − x1 − x3, 3.80e–13)]; ;

let box_rigidbody2 x1 x2 x3 = [(−15, 15); (−15, 15); (−15, 15)]; ;
let obj_rigidbody2 x1 x2 x3 = [(2 ∗ x1 ∗ x2 ∗ x3 + 3 ∗ x3 ∗ x3
−x2 ∗ x1 ∗ x2 ∗ x3 + 3 ∗ x3 ∗ x3 − x2, 3.98e–11)]; ;

let box_verhulst x = [(0.1, 0.3)]; ;
let obj_verhulst x = [(4 ∗ x/(1 + (x/1.11)), 3.37e–16)]; ;

let box_carbonGas v = [(0.1, 0.5)]; ;
let obj_carbonGas v = [(let p = 3.5e7 in let a = 0.401 in
let b = 42.7e–6 in let t = 300 in let n = 1000 in
(p + a ∗ (n/v) ∗ ∗2) ∗ (v − n ∗ b) − 1.3806503e–23 ∗ n ∗ t, 1.09e–8)]; ;

let box_predPrey x = [(0.1, 0.3)]; ;
let obj_predPrey x = [(4 ∗ x ∗ x/(1 + (x/1.11) ∗ ∗2), 1.57e–16)]; ;

let box_kepler0 x1 x2 x3 x4 x5 x6 =
[(4, 6.36); (4, 6.36); (4, 6.36); (4, 6.36); (4, 6.36); (4, 6.36)]; ;
let obj_kepler0 x1 x2 x3 x4 x5 x6 = [(x2 ∗ x5 + x3 ∗ x6 − x2 ∗ x3
−x5 ∗ x6 + x1 ∗ (−x1 + x2 + x3 − x4 + x5 + x6), 8.76e–14)]; ;

let box_kepler1 x1 x2 x3 x4 =
[(4, 6.36); (4, 6.36); (4, 6.36); (4, 6.36)]; ;
let obj_kepler1 x1 x2 x3 x4 = [(x1 ∗ x4 ∗ (−x1 + x2 + x3 − x4)
+x2 ∗ (x1 − x2 + x3 + x4) + x3 ∗ (x1 + x2 − x3 + x4)
−x2 ∗ x3 ∗ x4 − x1 ∗ x3 − x1 ∗ x2 − x4, 3.90e–13)]; ;

let box_kepler2 x1 x2 x3 x4 x5 x6 =
[(4, 6.36); (4, 6.36); (4, 6.36); (4, 6.36); (4, 6.36); (4, 6.36)]; ;
let obj_kepler2 x1 x2 x3 x4 x5 x6 = [(x1 ∗ x4 ∗ (−x1 + x2 + x3
−x4 + x5 + x6) + x2 ∗ x5 ∗ (x1 − x2 + x3 + x4 − x5 + x6)
+x3 ∗ x6 ∗ (x1 + x2 − x3 + x4 + x5 − x6) − x2 ∗ x3 ∗ x4
−x1 ∗ x3 ∗ x5 − x1 ∗ x2 ∗ x6 − x4 ∗ x5 ∗ x6, 1.90e–12)]; ;

let box_sineTaylor x = [(−1.57079632679, 1.57079632679)]; ;
let obj_sineTaylor x = [(x − (x ∗ x ∗ x)/6.0
+(x ∗ x ∗ x ∗ x ∗ x)/120.0
−(x ∗ x ∗ x ∗ x ∗ x ∗ x ∗ x)/5040.0, 5.53e–16)]; ;

let box_sineOrder3 z = [(−2, 2)]; ;
let obj_sineOrder3 z = [(0.954929658551372 ∗ z
−0.12900613773279798 ∗ (z ∗ z ∗ z), 6.68e–16)]; ;

let box_sqroot y = [(0, 1)]; ;
let obj_sqroot y = [(1.0 + 0.5 ∗ y − 0.125 ∗ y ∗ y
+0.0625 ∗ y ∗ y ∗ y − 0.0390625 ∗ y ∗ y ∗ y ∗ y, 7.56e–16)]; ;

let box_floudas1 x1 x2 x3 x4 x5 x6 =
[(0, 6); (0, 6); (1, 5); (0, 6); (1, 5); (0, 10)]; ;
let cstr_floudas1 x1 x2 x3 x4 x5 x6 =
[(x3 − 3) ∗ ∗2 + x4 − 4; (x5 − 3) ∗ ∗2 + x6 − 4;
2 − x1 + 3 ∗ x2; 2 + x1 − x2; 6 − x1 − x2; x1 + x2 − 2]; ;
let obj_floudas1 x1 x2 x3 x4 x5 x6 = [(−25 ∗ (x1 − 2) ∗ ∗2
−(x2 − 2) ∗ ∗2 − (x3 − 1) ∗ ∗2 − (x4 − 4) ∗ ∗2
−(x5 − 1) ∗ ∗2 − (x6 − 4) ∗ ∗2, 3.00e–13)]; ;

let box_floudas2 x1 x2 = [(0, 3); (0, 4)]; ;
let cstr_floudas2 x1 x2 = [
2 ∗ x1 ∗ ∗4 − 8 ∗ x1 ∗ ∗3 + 8 ∗ x1 ∗ x1 − x2;
4 ∗ x1 ∗ ∗4 − 32 ∗ x1 ∗ ∗3 + 88 ∗ x1 ∗ x1 − 96 ∗ x1 + 36 − x2]; ;
let obj_floudas2 x1 x2 = [(−x1 − x2, 8.79e–16)]; ;

let box_floudas3 x1 x2 = [(0, 2); (0, 3)]; ;
let cstr_floudas3 x1 x2 = [−2 ∗ x1 ∗ ∗4 + 2 − x2]; ;
let obj_floudas3 x1 x2 = [(
−12 ∗ x1 − 7 ∗ x2 + x2 ∗ x2, 7.33e–15)]; ;

let box_logexp x = [(−8, 8)]; ;
let obj_logexp x = [(log(1 + exp(x)), 1.65e–15)]; ;

let box_sphere x r y z = [(−10, 10); (0, 10);
(−1.570796, 1.570796); (−3.14159265, 3.14159265)]; ;
let obj_sphere x r y z = [(x + r ∗ sin(y) ∗ cos(z), 7.78e–15)]; ;

let box_hartman3 x1 x2 x3 = [(0, 1); (0, 1); (0, 1)]; ;
let obj_hartman3 x1 x2 x3 = [(
let e1 = 3.0 ∗ (x1 − 0.3689) ∗ ∗2 + 10.0 ∗ (x2 − 0.117) ∗ ∗2
+30.0 ∗ (x3 − 0.2673) ∗ ∗2 in
let e2 = 0.1 ∗ (x1 − 0.4699) ∗ ∗2 + 10.0 ∗ (x2 − 0.4387) ∗ ∗2
+35.0 ∗ (x3 − 0.747) ∗ ∗2 in
let e3 = 3.0 ∗ (x1 − 0.1091) ∗ ∗2 + 10.0 ∗ (x2 − 0.8732) ∗ ∗2
+30.0 ∗ (x3 − 0.5547) ∗ ∗2 in
let e4 = 0.1 ∗ (x1 − 0.03815) ∗ ∗2 + 10.0 ∗ (x2 − 0.5743) ∗ ∗2
+35.0 ∗ (x3 − 0.8828) ∗ ∗2 in
−(1.0 ∗ exp(−e1) + 1.2 ∗ exp(−e2)
+3.0 ∗ exp(−e3) + 3.2 ∗ exp(−e4)), 1.50e–13)]; ;

let box_hartman6 x1 x2 x3 x4 x5 x6 =
[(0, 1); (0, 1); (0, 1); (0, 1); (0, 1); (0, 1)]; ;
let obj_hartman6 x1 x2 x3 x4 x5 x6 = [(
let e1 = 10.0 ∗ (x1 − 0.1312) ∗ ∗2 + 3.0 ∗ (x2 − 0.1696) ∗ ∗2
+17.0 ∗ (x3 − 0.5569) ∗ ∗2 + 3.5 ∗ (x4 − 0.0124) ∗ ∗2
+1.7 ∗ (x5 − 0.8283) ∗ ∗2 + 8.0 ∗ (x6 − 0.5886) ∗ ∗2 in
let e2 = 0.05 ∗ (x1 − 0.2329) ∗ ∗2 + 10.0 ∗ (x2 − 0.4135) ∗ ∗2
+17.0 ∗ (x3 − 0.8307) ∗ ∗2 + 0.1 ∗ (x4 − 0.3736) ∗ ∗2
+8.0 ∗ (x5 − 0.1004) ∗ ∗2 + 14.0 ∗ (x6 − 0.9991) ∗ ∗2 in
let e3 = 3.0 ∗ (x1 − 0.2348) ∗ ∗2 + 3.5 ∗ (x2 − 0.1451) ∗ ∗2
+1.7 ∗ (x3 − 0.3522) ∗ ∗2 + 10.0 ∗ (x4 − 0.2883) ∗ ∗2
+17.0 ∗ (x5 − 0.3047) ∗ ∗2 + 8.0 ∗ (x6 − 0.665) ∗ ∗2 in
let e4 = 17.0 ∗ (x1 − 0.4047) ∗ ∗2 + 8.0 ∗ (x2 − 0.8828) ∗ ∗2
+0.05 ∗ (x3 − 0.8732) ∗ ∗2 + 10.0 ∗ (x4 − 0.5743) ∗ ∗2
+0.1 ∗ (x5 − 0.1091) ∗ ∗2 + 14.0 ∗ (x6 − 0.0381) ∗ ∗2 in
−(1.0 ∗ exp(−e1) + 1.2 ∗ exp(−e2)
+3.0 ∗ exp(−e3) + 3.2 ∗ exp(−e4)), 2.00e–13)]; ;

let box_cav10 x = [(0, 10)]; ;
let obj_cav10 x = [( if (x ∗ x − x > 0) then x ∗ 0.1
else x ∗ x + 2, 2.91)]; ;

let box_perin x y = [(1, 7); (−2, 7)]; ;
let cstr_perin x y = [x − 1; y + 2; x − y; 5 − y − x]; ;
let obj_perin x y = [( if (x ∗ x + y ∗ y ≤ 4) then y ∗ x
else 0, 2.01)]; ;
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