43 research outputs found

    Improved Composite Q-Function Approximation and its Application in ASEP of Digital Modulations over Fading Channels

    Get PDF
    In this paper, capitalizing on Mils ratio for Qfunction approximation, we have presented novel improved composite Q-function approximation. Based on our improved approximation, we have further presented tight approximation for the average symbol error probability (ASEP) expressions of digital modulations over Nakagami-m fading channels. First, comparison to other known Q-function closed-form approximations has been performed, and it has been shown that accuracy improvement has been achieved in the observed range of values. Further, it has been shown that by using proposed approximation, values of average symbol error probability (ASEP) for some applied modulation formats could be efficiently and accurately evaluated when transmission over Nakagami-m fading channels is observed. Also, it has been shown in the paper that by using proposed approximation, observed ASEP measures are bounded more closely, than by using other known Q-function closed-form approximations

    Accurate Closed-Form Approximations for the BER of Multi-Branch Amplify-and-Forward Cooperative Systems with MRC in Rayleigh Fading Channels

    Get PDF
    Abstract: -Relay-based cooperative systems have recently attracted significant attention since they enable exploiting the inherent spatial diversity of wireless networks with single antenna terminals. In this paper, the authors address the error performance of a cooperative diversity network consisting of a source, a destination, and multiple dual-hop amplify-and-forward (AF) relays in Rayleigh fading channels, in which the source broadcasts the signal to the relays in the first time slot and the relays simultaneously forward signals to the destination in the second time slot. Analytically studying the error performance of multiple dual-hop AF cooperative networks with maximal ratio combining (MRC) receivers at the destination and deriving closedform expressions has always been a difficult task. Considering an L-Relay nodes AF cooperative network in Rayleigh fading channels employing MRC, closed-form approximate expressions are derived for the bit error rate (BER) of a class of coherent modulation techniques that are easy to calculate, thus circumventing the computational inefficiency of the exact formulation. Exact results obtained using numerical integration are provided to validate the tightness of the proposed expressions. In addition, a slight modification for the amplification gain at the relay-node is proposed, which showed an improvement in the effective signal-to-noise ratio at the destination node

    Design and performance evaluation of bitwise retransmission schemes in wireless sensor networks

    Get PDF
    The previously proposed bitwise retransmission schemes which retransmit only selected bits to accumulate their reliability are designed and evaluated. Unlike conventional automatic repeat request (ARQ) schemes, the bitwise retransmission schemes do not require a checksum for error detection. The bitwise retransmission decisions and combining can be performed either after demodulation of the received symbols or after channel decoding. The design and analysis assume error-free feedback, however, the impact of feedback errors is also considered. The bit-error rate (BER) expressions are derived and verified by computer simulations in order to optimize the parameters of the retransmission schemes. The BER performance of coded and uncoded bitwise retransmissions is compared with a hybrid ARQ (HARQ) scheme over additive white Gaussian noise (AWGN), slow fading, and fast fading channels. It is shown that bitwise retransmissions outperform block repetition coding (BRC) over AWGN channels. In addition, the selection diversity created by the bitwise retransmissions can outperform the HARQ at large signal-to-noise ratio (SNR) over fast fading channels. Finally, the practical design of a bitwise retransmission protocol for data fusion in wireless sensor networks is presented assuming Zigbee, WiFi and Bluetooth system parameters

    A Survey on Approximations of One-Dimensional Gaussian Q-Function

    Get PDF
    Predicting the digital communication system performance plays a very important role in the process of system design. This performance is usually quantified by symbol error probability or bit error probability. Computing these probabilities in presence of Additive White Gaussian Noise requires to work with integrals involving the Gaussian Qfunction, which cannot be expressed in closed-form in terms of elementary functions. As a result, approximating the Gaussian Q-function in closed-form expressions with high accuracy becomes a necessity. In this paper, we give an overview about the Gaussian Q-function approximations and via some illustrating examples, we discuss their accuracy, tractability as well as their computational complexit

    Distributed Space-Time Message Relaying for Uncoded/Coded Wireless Cooperative Communications

    Get PDF
    During wireless communications, nodes can overhear other transmissions through the wireless medium, suggested by the broadcast nature of plane wave propagation, and may help to provide extra observations of the source signals to the destination. Modern research in wireless communications pays more attention to these extra observations which were formerly neglected within networks. Cooperative communication processes this abundant information existing at the surrounding nodes and retransmits towards the destination in various forms to create spatial and/or coding diversity, thereby to obtain higher throughput and reliability. The aim of this work is to design cooperative communication systems with distributed space-time block codes (DSTBC) in different relaying protocols and theoretically derive the BER performance for each scenario. The amplify-and-forward (AF) protocol is one of the most commonly used protocols at the relays. It has a low implementation complexity but with a drawback of amplifying the noise as well. We establish the derivation of the exact one-integral expression of the average BER performance of this system, folloby a novel approximation method based on the series expansion. An emerging technology, soft decode-and-forward (SDF), has been presented to combine the desired features of AF and DF: soft signal representation in AF and channel coding gain in DF. In the SDF protocol, after decoding, relays transmit the soft-information, which represents the reliability of symbols passed by the decoder, to the destination. Instead of keeping the source node idling when the relays transmit as in the traditional SDF system, we let the source transmit hard information and cooperate with the relays using DSTBC. By theoretically deriving the detection performance at the destination by either using or not using the DSTBC, we make comparisons among three SDF systems. Interesting results have been shown, together with Monte-Carlo simulations, to illustrate that our proposed one-relay and two-relay SDF & DSTBC systems outperform traditional soft relaying for most of the cases. Finally, these analytic results also provide a way to implement the optimal power allocation between the source and the relay or between relays, which is illustrated in the line model
    corecore