
Sigmoid Approximation to the Gaussian Q-function

and its Applications to Spectrum Sensing Analysis
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Abstract—Most of the existing approximations for the Gaus-
sian Q-function have been developed bearing in mind applications
that require high estimation accuracy for large argument values
(e.g., derivation of the bit/symbol error rates of digital communi-
cation systems, which are typically in the order of 10−6 to 10

−12).
Such values correspond to positive arguments of the function and
consequently most of the existing approximations are valid for
positive arguments only. However, other relevant problems where
the Gaussian Q-function can appear do not require such a level
of accuracy (e.g., derivation of the detection probability of a
signal detector, where accuracies of two or three decimal figures
are sufficient) and, more importantly, require the evaluation of
the Q-function over the whole range of values (i.e., both positive
and negative arguments). In this context, this paper analyses a
sigmoid approximation to the Q-function that provides adequate
levels of accuracy for any real argument. As an illustrative
example, this approximation is employed to obtain new closed-
form expressions for the probability of detection of an energy
detector under Rayleigh and Nakagami-m fading channels.

I. INTRODUCTION

The Gaussian Q-function Q(x) [1, eq. (26.2.3)] is found

in many problems of digital communication systems. Since

no exact and simple closed-form expression (adequate for

mathematical manipulations) is known, several approximations

have been proposed [2]–[11]. The existing approximations

have been developed mainly for the derivation of the bit or

symbol error rates of digital communication systems over

fading channels, which are in the order of 10−6 to 10−12 [12]

and therefore require accuracies of 6 to 12 decimal figures.

This range of values corresponds to positive arguments of the

Q-function (x ≥ 0) and most of the existing approximations,

despite their high accuracies within such region of arguments,

are only valid for positive arguments, resulting in high esti-

mation errors for negative arguments – and in some cases, for

positive arguments close to zero as well. Only the polynomial

approximation proposed in [6] is valid over a limited range

of both positive and negative arguments around the origin.

However, such approximation was specifically envisaged for

analytical derivations of error rates in log-normal channels and

its complex form is in general unsuitable for other scenarios.

Some relevant scenarios where the Gaussian Q-function can

also appear do not require such high levels of accuracy and,

more importantly, require the evaluation of the Q-function over

the whole range of values (i.e., both positive and negative

arguments). A good example of this is the derivation of the

detection probability of signal detection methods (referred

to as spectrum sensing methods in the context of cognitive

radio [13]) over fading channels, where accuracies of two

or three significant figures are sufficient for most practical

applications. The integrals found in this type of problems

usually require integrating Q(x) over positive and negative

arguments, something for which the existing approximations

are not well suited. A possible solution is to make use

of the property Q(−x) = 1 − Q(x), which enables the

application of existing approximations to negative arguments.

However, when integrating Q(x) over fading channels, this

approach requires the original integral to be split into several

integrals (of a different type in general), thus leading to tedious

analytical developments (e.g., see the example in [8]). In this

type of problems it would be desirable and convenient to have

an approximation that provides the required level of accuracy

(i.e., up to the second or third decimal figure) over the whole

range of both positive and negative arguments. In this context,

this paper evaluates an approximation to the Q-function that

provides a satisfactory level of accuracy for any real argument.

II. SIGMOID APPROXIMATION TO THE Q-FUNCTION

The Gaussian Q-function is defined as [1, eq. (26.2.3)]:

Q(x) =
1√
2π

∫ ∞

x

e−
t2

2 dt (1)

The shape of the Gaussian Q-function resembles that of the

sigmoid function (standard logistic function), which is defined

as 1/(1+e−x), but with inverted symmetry around the origin.

Motivated by this observation, the following approximation,

based on a modified sigmoid function, is here considered:

Q(x) ≈ Q̂(x) =
1

1 + eαx
=

e−αx

1 + e−αx
=

e−
αx
2

e
αx
2 + e−

αx
2

=
1

2

[
1− tanh

(αx
2

)]
, x ∈ R (2)

where α ∈ R is a fitting coefficient. Notice that all the forms

in (2) are mathematically equivalent, but some may be more

convenient depending on the particular integral to be solved.

The fitting coefficient α can be computed so as to minimise

the root mean square error (RMSE) of the sigmoid approxima-

tion within the range of arguments of interest, x ∈ [−Υ,Υ]:

α = argmin
β

√
1

2Υ

∫ Υ

−Υ

[
Q(x)− 1

1 + eβx

]2
dx (3)
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TABLE I
OPTIMUM VALUE OF α FOR DIFFERENT ARGUMENT RANGES.

Argument range Optimum α

x ∈ [−1,+1] 1.6331

x ∈ [−2,+2] 1.6855

x ∈ [−3,+3] 1.6997

x ∈ [−4,+4] 1.7009

x ∈ [−5,+5] 1.7010

x ∈ (−∞,+∞) 1.7010

The optimum value of α depends on the considered argument

range (Table I). As the argument range increases, the optimum

value of α converges to a value. For argument ranges Υ ≥ 5,

the result of evaluating (3) converges to α = 1.7010 ≈ 1.7,

which constitutes the optimum value of α that minimises the

RMSE of the sigmoid approximation for any real argument.

III. ACCURACY ANALYSIS

The relative error is usually employed to compare ap-

proximations to numbers of widely differing size (i.e., with

differences of several orders of magnitude). As mentioned in

Section I, most existing approximations have been proposed

to derive the bit/symbol error rates of digital communication

systems over fading channels, which can be in the order of

10−6 to 10−12. Given this range of values of Q(x), the use of

the relative error, which provides a finer detail of appreciation

at such low values, comes as a natural choice for evaluating

the accuracy of previous approximations. However, the relative

error does not constitute an adequate metric of accuracy in

this work. The reason is that the values of Q(x) for negative

arguments (limx→−∞ Q(x) = 1) are greater than the values

for positive arguments (limx→∞ Q(x) = 0). As a result,

and despite the symmetry around the origin of Q(x) and

the approximation in (2), the relative error (i.e., the absolute

error divided by the true function’s value) would incorrectly

suggest that the considered approximation is more accurate

for negative arguments. To avoid this artefact, the absolute

error is used in this paper as accuracy metric instead of the

relative error (notice that previous approximations are only

valid for positive arguments and therefore do not suffer from

this problem). Moreover, for the scenario considered in this

paper (i.e., derivation of the detection probability of spectrum

sensing methods over fading channels), accuracies of two or

three significant figures are sufficient. In this case, the values

of interest of Q(x) are of a more similar order of magnitude

(i.e., from 100 to 10−2 or 10−3) and therefore the absolute

error constitutes an adequate metric of accuracy.

Fig. 1 compares the absolute error of the sigmoid and other

existing approximations [2]–[10]. The results are shown with

the ordinates axes in linear (top) and logarithmic (bottom)

scales for different details of appreciation. As discussed in

Section I, most of the existing approximations are valid for

positive arguments and, as expected, are characterised by high
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Fig. 1. Absolute error of the sigmoid and other approximations [2]–[10].

estimation errors when evaluated at negative arguments. For

these approximations, the property Q(−x) = 1 − Q(x) can

be used to evaluate the Q-function for negative arguments.

With this strategy, the absolute errors for negative arguments

would be a symmetric reproduction of the absolute errors

shown in Fig. 1 for positive arguments. There are a few cases

(Chiani, Loskot and Olabiyi) for which this strategy would

still lead to relatively high estimation errors as a result of

the inaccuracy of these approximations for positive arguments

close to zero. For other approximations, this strategy would

enable an accurate evaluation of the Q-function over the whole

range of arguments at the expense of an increased complexity

of analytical manipulations as discussed in Section I. As it

can be appreciated, only the approximations proposed by Chen

and in (2) are able to provide an absolute error of less than

10−2 (which is sufficient for the problem considered in this

paper) over the whole range of arguments without resorting to

strategies that lead to an increased analytical complexity. How-

ever, as mentioned in Section I, the approximation proposed

by Chen was specifically envisaged for analytical derivations

of error rates in log-normal channels and its complex form (see

[6, eq. (4)]) is unsuitable for the scenario considered in this

paper. Therefore, only the approximation in (2) provides an

adequate level of accuracy for any real (positive or negative)

argument of the Gaussian Q-function with a reasonable level

of analytical complexity.

In summary, while some of the existing approximations can

provide a better accuracy than the approximation in (2), they

require the use of the property Q(−x) = 1−Q(x) for negative

arguments of the Q-function (thus leading to an increased

complexity in the resulting algebraic manipulations) and/or are

characterised by expressions that are in general too complex

to be employed in scenarios other than those for which they

were conceived. On the other hand, the approximation in (2)

provides the required level of accuracy at an affordable level

of analytical complexity as it will be illustrated below.



IV. APPLICATIONS

In contrast to previous studies where the purpose of ap-

proximating the Gaussian Q-function was the derivation of

bit/symbol error rates over fading channels, this section uses

the sigmoid approximation in (2) to compute the probability

of detection of an energy detector over fading channels. The

main difference between both problems is that a much lower

level of accuracy is sufficient in the latter case but evaluation

over both positive and negative arguments is required.

The probability of detection of an energy detector in an ad-

ditive white Gaussian noise (AWGN) channel can be expressed

as Pd(γ) = Q(ζ(γ)), with ζ(γ) given by [14]:

ζ(γ) =
Q−1(Pfa)

√
2N −Nγ√

2N(1 + γ)
≈ Q−1(Pfa)−

√
N

2
γ (4)

where N is the number of signal samples collected during the

sensing interval, Pfa is the target probability of false alarm and

γ is the instantaneous signal-to-noise ratio (SNR) per symbol

of the channel. The approximation in the right-hand side of (4)

assumes the common case of low SNR regime (i.e., γ ≪ 1).

Pd(γ) gives the probability of detection conditioned on the

instantaneous SNR, γ. Under varying SNR, a more useful

performance parameter is the average probability of detection

P d experienced for an average SNR γ, which can be obtained

by averaging Pd(γ) over the SNR statistics [12]:

P d(γ) = E {Pd(γ)} =

∫ ∞

0

Pd(γ)fγ(γ)dγ (5)

=

∫ ∞

0

Q (ζ(γ)) fγ(γ)dγ (6)

≈
∫ ∞

0

1

1 + eαζ(γ)
fγ(γ)dγ (7)

where fγ(γ) is the probability density function (PDF) of the

received SNR. Notice that the argument of Q(x) in (6), ζ(γ),
can take both positive and negative values even though γ ≥ 0.

Some of the existing approximations could be employed to

solve (6) by splitting the integral into one integral for ζ(γ) ≥
0, where Q(ζ(γ)) is used, and another integral for ζ(γ) <
0, where 1 − Q(−ζ(γ)) is used, which in turn leads to two

integrals. The resulting three integrals have different algebraic

forms and require individual resolutions (see the example in

[8]). On other hand, the approximation in (2), which is valid

for positive and negative arguments, can be introduced into

(6) without further rearrangements, leading to a single integral

as shown in (7). As appreciated, the sigmoid approximation

greatly simplifies the resolution of the integral.

The following subsections illustrate the resolution of the

integral in (7) for several cases of practical interest.

A. Rayleigh fading

Under Rayleigh fading, the instantaneous SNR per symbol

follows an exponential distribution given by [12, eq. (2.7)]:

fγ(γ) =
1

γ
exp

(
−γ

γ

)
, γ ≥ 0 (8)

where γ is the average SNR per symbol.

Introducing (8) into (7) leads to the following integral:

P d(γ) ≈
∫ ∞

0

1
γ
e−

γ
γ

1 + e
α
[

Q−1(Pfa)−
√

N
2
γ
] dγ (9)

Applying the change of variable υ = e−α
√

N
2
γ , the resulting

integral on υ can be solved with the aid of [15, eq. (3.194.5)]:

P d(γ) ≈ 2F1


1,

1

α
√

N
2 γ

; 1 +
1

α
√

N
2 γ

;−eαQ
−1(Pfa)




(10)

where 2F1(·) represents the Gauss hypergeometric function,

whose definition can be found in [15, eqs. (9.14) & (9.111)].

The performance of energy detection under Rayleigh fading

has also been studied in [8], applying the property Q(ζ(γ)) =
1 − Q(−ζ(γ)) for ζ(γ) < 0, and in [16], obtaining in

both cases mathematical expressions of notable complexity

(see [8, eq. (21)] and [16, eq. (9)]). However, the sigmoid

approximation yields the much simpler result shown in (10).

B. Nakagami-m fading

Under Nakagami-m fading, the instantaneous SNR per

symbol follows a gamma distribution given by [12, eq. (2.21)]:

fγ(γ) =
mmγm−1

γmΓ(m)
exp

(
−mγ

γ

)
, γ ≥ 0 (11)

where m ≥ 1/2 is the Nakagami-m fading parameter and Γ(·)
is the gamma function [1, 6.1.1].

Introducing (11) into (7) leads to the integral in (13), where:

I(γ) =
∫

γm−1e−
mγ
γ

1 + e
α
[

Q−1(Pfa)−
√

N
2
γ
] dγ (12)

The integral in (12) can be solved for individual integer values

of m (m = 1, 2, . . .) and, based on the obtained solutions, the

pattern for any integer m can be inferred, leading to the result

in (14) where sgn(x) = x
|x| is the sign function and k+1Fk(·)

is the generalised hypergeometric function [15, eq. (9.14.1)].

When γ → 0, all the terms of the sum in (14) are zero

except for k = m, hence (15). When γ → ∞, the limit of the

terms of the sum in (14) alternates between ±∞ for even/odd

values of k, which hinders the calculation of limγ→∞ I(γ).
However, it can be verified that there exists an SNR value

γ = ξ above which the value of the integral in (14) remains

constant such that limγ→∞ I(γ) ≈ I(ξ). The value of ξ can

be obtained based on the SNR distribution. Notice that the

integral in (12) is implicitly associated with the integral of the

SNR PDF and therefore its result in (14) can be associated with

the corresponding cumulative distribution function (CDF) of

the SNR. If the SNR CDF is set equal to a sufficiently high

percentile ρ (e.g., ρ = 0.9999), then the corresponding SNR

value γ = ξ guarantees that the CDF remains nearly constant

(equal to one) for any SNR greater than ξ and so does the



P d(γ) ≈
mm

γmΓ(m)

∫ ∞

0

γm−1e−
mγ
γ

1 + e
α
[

Q−1(Pfa)−
√

N
2
γ
] dγ =

mm

γmΓ(m)
[I(γ)]∞0 =

mm

γmΓ(m)

[
lim
γ→∞

I(γ)− lim
γ→0

I(γ)
]

(13)

I(γ) =−
(
e−

mγ
γ

−αζ(γ)
) m∑

k=1




max(0,k−2)∏

j=0

(m− j − 1)
sgn(k−

3
2 )+1

2


 γm−k

(
m
γ
− α

√
N
2

)k
·

· k+1Fk


1, 1− m

√
2
N

αγ
, . . . , 1− m

√
2
N

αγ︸ ︷︷ ︸
k times

; 2− m
√

2
N

αγ
, . . . , 2− m

√
2
N

αγ︸ ︷︷ ︸
k times

; −e−αζ(γ)


 (14)

I(0) = lim
γ→0

I(γ) =− e−αQ−1(Pfa)

(
m
γ
− α

√
N
2

)m




max(0,m−2)∏

j=0

(m− j − 1)
sgn(m−

3
2 )+1

2


 ·

· m+1Fm


1, 1− m

√
2
N

αγ
, . . . , 1− m

√
2
N

αγ︸ ︷︷ ︸
m times

; 2− m
√

2
N

αγ
, . . . , 2− m

√
2
N

αγ︸ ︷︷ ︸
m times

; −e−αQ−1(Pfa)


 (15)

result in (14). The CDF of the instantaneous SNR per symbol

under Nakagami-m fading is given by:

Fγ(γ) = P

(
m,

mγ

γ

)
=

1

Γ(m)

∫ mγ
γ

0

e−ttm−1dt, γ ≥ 0

(16)

where P (·) is the regularised lower incomplete gamma func-

tion [1, eq. (6.5.1)]. Setting Fγ(γ) = ρ and solving for γ, the

corresponding value of ξ is obtained as:

ξ =
γ

m
P−1(m, ρ) (17)

where P−1(·) is the inverse of P (·).
Finally, the introduction of the value of the limits in (13)

yields the detection probability under Nakagami-m fading:

P d(γ) ≈
mm

γmΓ(m)
[I(ξ)− I(0)] (18)

C. Numerical Results and Discussion

Fig. 2 (Rayleigh), Fig. 3 (Nakagami, m = 2), Fig. 4 (Nak-

agami, m = 3) and Fig. 5 (Nakagami, m = 4) compare the

results in (10) and (18), obtained based on the approximation

in (2), with their exact counterparts, obtained by integrating

(6) numerically with the corresponding PDFs shown in (8) and

(11). In each figure, the graph on the top shows the average

probability of detection P d(γ) as a function of the average

SNR (only for Pfa = 0.01 for the sake of clarity), while the

graph on the bottom shows the absolute error with respect to

the exact values (for Pfa = 0.01 and Pfa = 0.10). The graphs

show groups of three curves, which correspond to N = 102

(right), N = 103 (middle) and N = 104 (left).

As appreciated, the results obtained with (10) and (18) are

highly accurate, with approximation errors of less than 1% in

all cases (for Pfa = 0.01) or even less (for Pfa = 0.10).

This level of accuracy is more than enough for most practical

applications. It is interesting to highlight that for the typical

operation point of spectrum sensing algorithms (i.e., high

values of detection probability), the results in (10) and (18)

are nearly exact. These results demonstrate the applicability

and benefits of the sigmoid approximation to the Q-function.

V. CONCLUSIONS

This paper has evaluated a sigmoid approximation to the

Gaussian Q-function. As opposed to most existing approxi-

mations, which have been designed to provide high accuracy

for large (positive only) arguments of the function, the sigmoid

approximation has been proven to be a more suitable alterna-

tive for applications that do not require such high levels of

accuracy (e.g., up to the second or third decimal figure) but

need to be evaluated over both positive and negative arguments

(something for which most existing approximations are not

suitable as they result in significantly more complex algebraic

manipulations). The applicability of the sigmoid approxima-

tion has been illustrated in the context of performance analysis

of spectrum sensing in cognitive radio over fading channels.

Nevertheless, it may also find applications in other areas with

similar requirements as those of the example here considered.
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Fig. 2. Approximated and exact detection probabilities (Rayleigh).
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