27 research outputs found

    MUBs: From finite projective geometry to quantum phase enciphering

    Full text link
    This short note highlights the most prominent mathematical problems and physical questions associated with the existence of the maximum sets of mutually unbiased bases (MUBs) in the Hilbert space of a given dimensionComment: 5 pages, accepted for AIP Conf Book, QCMC 2004, Strathclyde, Glasgow, minor correction

    Distributed Storage Systems based on Equidistant Subspace Codes

    Full text link
    Distributed storage systems based on equidistant constant dimension codes are presented. These equidistant codes are based on the Pl\"{u}cker embedding, which is essential in the repair and the reconstruction algorithms. These systems posses several useful properties such as high failure resilience, minimum bandwidth, low storage, simple algebraic repair and reconstruction algorithms, good locality, and compatibility with small fields

    Abstract algebra, projective geometry and time encoding of quantum information

    Full text link
    Algebraic geometrical concepts are playing an increasing role in quantum applications such as coding, cryptography, tomography and computing. We point out here the prominent role played by Galois fields viewed as cyclotomic extensions of the integers modulo a prime characteristic pp. They can be used to generate efficient cyclic encoding, for transmitting secrete quantum keys, for quantum state recovery and for error correction in quantum computing. Finite projective planes and their generalization are the geometric counterpart to cyclotomic concepts, their coordinatization involves Galois fields, and they have been used repetitively for enciphering and coding. Finally the characters over Galois fields are fundamental for generating complete sets of mutually unbiased bases, a generic concept of quantum information processing and quantum entanglement. Gauss sums over Galois fields ensure minimum uncertainty under such protocols. Some Galois rings which are cyclotomic extensions of the integers modulo 4 are also becoming fashionable for their role in time encoding and mutual unbiasedness.Comment: To appear in R. Buccheri, A.C. Elitzur and M. Saniga (eds.), "Endophysics, Time, Quantum and the Subjective," World Scientific, Singapore. 16 page

    Equidistant Codes in the Grassmannian

    Full text link
    Equidistant codes over vector spaces are considered. For kk-dimensional subspaces over a large vector space the largest code is always a sunflower. We present several simple constructions for such codes which might produce the largest non-sunflower codes. A novel construction, based on the Pl\"{u}cker embedding, for 1-intersecting codes of kk-dimensional subspaces over \F_q^n, n(k+12)n \geq \binom{k+1}{2}, where the code size is qk+11q1\frac{q^{k+1}-1}{q-1} is presented. Finally, we present a related construction which generates equidistant constant rank codes with matrices of size n×(n2)n \times \binom{n}{2} over \F_q, rank n1n-1, and rank distance n1n-1.Comment: 16 page

    Bandwidth-Efficient Parallel Visualization for Mobile Devices

    Get PDF

    Sign rank versus VC dimension

    Full text link
    This work studies the maximum possible sign rank of N×NN \times N sign matrices with a given VC dimension dd. For d=1d=1, this maximum is {three}. For d=2d=2, this maximum is Θ~(N1/2)\tilde{\Theta}(N^{1/2}). For d>2d >2, similar but slightly less accurate statements hold. {The lower bounds improve over previous ones by Ben-David et al., and the upper bounds are novel.} The lower bounds are obtained by probabilistic constructions, using a theorem of Warren in real algebraic topology. The upper bounds are obtained using a result of Welzl about spanning trees with low stabbing number, and using the moment curve. The upper bound technique is also used to: (i) provide estimates on the number of classes of a given VC dimension, and the number of maximum classes of a given VC dimension -- answering a question of Frankl from '89, and (ii) design an efficient algorithm that provides an O(N/log(N))O(N/\log(N)) multiplicative approximation for the sign rank. We also observe a general connection between sign rank and spectral gaps which is based on Forster's argument. Consider the N×NN \times N adjacency matrix of a Δ\Delta regular graph with a second eigenvalue of absolute value λ\lambda and ΔN/2\Delta \leq N/2. We show that the sign rank of the signed version of this matrix is at least Δ/λ\Delta/\lambda. We use this connection to prove the existence of a maximum class C{±1}NC\subseteq\{\pm 1\}^N with VC dimension 22 and sign rank Θ~(N1/2)\tilde{\Theta}(N^{1/2}). This answers a question of Ben-David et al.~regarding the sign rank of large VC classes. We also describe limitations of this approach, in the spirit of the Alon-Boppana theorem. We further describe connections to communication complexity, geometry, learning theory, and combinatorics.Comment: 33 pages. This is a revised version of the paper "Sign rank versus VC dimension". Additional results in this version: (i) Estimates on the number of maximum VC classes (answering a question of Frankl from '89). (ii) Estimates on the sign rank of large VC classes (answering a question of Ben-David et al. from '03). (iii) A discussion on the computational complexity of computing the sign-ran

    A Geometric View of the Service Rates of Codes Problem and its Application to the Service Rate of the First Order Reed-Muller Codes

    Get PDF
    Service rate is an important, recently introduced, performance metric associated with distributed coded storage systems. Among other interpretations, it measures the number of users that can be simultaneously served by the storage system. We introduce a geometric approach to address this problem. One of the most significant advantages of this approach over the existing approaches is that it allows one to derive bounds on the service rate of a code without explicitly knowing the list of all possible recovery sets. To illustrate the power of our geometric approach, we derive upper bounds on the service rates of the first order Reed-Muller codes and simplex codes. Then, we show how these upper bounds can be achieved. Furthermore, utilizing the proposed geometric technique, we show that given the service rate region of a code, a lower bound on the minimum distance of the code can be obtained
    corecore