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Abstract— We investigate the problem of characterizing the
service rate region of a coded storage system by introducing
a novel geometric approach. The service rate is an important
performance metric that measures the number of users that
can be simultaneously served by the storage system. One of
the most significant advantages of our introduced geometric
approach over the existing approaches is that it allows one to
derive bounds on the service rate of a code without explicitly
knowing the list of all possible recovery sets. As an illustration of
the power of our geometric approach, we derive upper bounds
on the service rate of the first order Reed-Muller codes and
the simplex codes. Then, we show how these upper bounds can
be achieved. Moreover, utilizing the same geometric technique,
we show that given the service rate region of a code, a lower
bound on the minimum distance of the code can be obtained.

I. INTRODUCTION

Amongst the most significant considerations in the design
of the cloud storage systems, has been always serving a large
number of users concurrently, which is also very important
in several emerging applications such as distributed learning
and fog computing. The service rate has been very recently
recognized as an important performance metric that measures
the number of users that can be simultaneously served by the
storage system [1]–[4]. Maximizing the service rate reduces
the latency experienced by users, particularly in high traffic.

The service rate problem considers a distributed storage
system where k files, f1, . . . , fk are stored across n servers
using a linear [n, k]q code such that the requests to download
file fi arrive at rate λi, and server l can serve the requests
at rate µl. The service rate problem seeks to determine the
service rate region of this coded storage system which is the
set of all request arrival rates λ = (λ1, . . . , λk) that can be
served by this system. So far, this problem has been studied
only for a few cases. The service rate region of maximum
distance separable codes when n ≥ 2k and binary simplex
codes have been characterized in [2]. The service rate region
of a system with arbitrary numbers of systematic and coded
nodes when k = 2 and k = 3 are respectively, determined
in [2] and [3]. For the determination of the service rate region
using the existing approaches, one require to enumerate all
possible recovery sets, which becomes increasingly complex
when the number of files k increases. Thus, introducing a
technique not depending on the enumeration of recovery sets
is of great significance. Towards this goal, we introduce a
novel geometric approach to study the service rate problem.

A. Previous and Related Work

Special codes have been designed for providing efficient
maintenance of storage under possible failures of a subset of
nodes (see e.g., [5]–[9]). The locality and availability of code
matter in such scenarios. This line of studies mainly assumes
immediate (infinite rate) service for servers, and thus is not
concerned with serving a large number of simultaneous users.

Another line of work is focused on caching (see e.g., [10]–
[12]). In these work, the limited capacity of the backhaul link
is considered as the main bottleneck of the system, and the
goal is to minimize the backhaul traffic by prefetching the
popular contents at the storage nodes of limited size. These
work mostly assume that the requests are asynchronous, and
thus they do not address the scenarios such as live streaming,
where many users wish to get the same content concurrently.

By appearing several delay-sensitive applications such as
video streaming, particular codes have been developed that
provide fast content download by minimizing the download
latency (see e.g., [13]–[20]). Although they consider a finite
service rate for each server, analyzing the download latency
in general has shown to be quite challenging, and the optimal
strategies are known only in some special cases.

B. Main Contributions

We study the problem of determining the service rate of a
code by introducing a novel geometric approach. We show
that in general the service rate problem can be formulated as
a sequence of linear programs. The main drawback of this
approach is that for enumerating the constraints in each linear
program (LP), one must exactly know all possible recovery
sets and also must be able to optimally solve all the LPs.

Leveraging our novel geometric technique, we take initial
steps towards deriving bounds on the service rate of some
parametric classes of linear codes without explicitly knowing
the set of all possible recovery sets. In particular, we derive
upper bounds on the service rate of first order Reed-Muller
codes and simplex codes as two classes of codes which are
most important in theory as well as in practice. Subsequently,
we show how the derived upper bounds can be achieved.
Moreover, utilizing the same geometric technique, we show
that given the service rate region of a code, a lower bound
on the minimum distance of the code can be derived. To the
best of our knowledge, this is the first work to study the
service rate problem using a geometric approach.
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All the proofs for the Lemmas and the Corollaries can be
found in the Appendix.

II. PROBLEM STATEMENT

A. Notation
Throughout this work, we denote vectors and matrices by

bold-face small and capital letters, respectively. Let N denote
the set of the non-negative integer numbers. Let Fq be a finite
field for some prime power q, and Fn

q be the n-dimensional
vector space over Fq . Let us denote a q-ary linear code C of
length n, dimension k and minimum distance d by [n, k, d]q .
We denote the Hamming weight of x ∈ Fn

q by w(x). For
a positive integer i, define [i] , {1, . . . , i}. For a positive
integer k, let 0 and 1 denote the all-zero and all-one column
vectors of length k, respectively. Let ei denotes a unit vector
of length k, having a one at position i and zeros elsewhere.
Let us denote the cardinality of a set or multiset S by #S.

B. Service Rate of Codes
Consider a storage system in which k files f1, . . . , fk are

stored over n servers, labelled 1, . . . , n, using a linear [n, k]q
code with generator matrix G ∈ Fk×n

q . Let gj denote the jth
column of G. A recovery set for the file fi is a set of stored
symbols which can be used to recover file fi. With respect
to G, a set R ⊆ [n] is a recovery set for file fi if there exist
αj’s ∈ Fq such that

∑
j∈R αjgj = ei, i.e., the unit vector ei

can be recovered by a linear combination of the columns of
G indexed by the set R. W.l.o.g., we restrict our attention to
the reduced recovery sets obtained by considering non-zero
coefficients αj’s and linearly independent columns gj’s.

Let Ri = {Ri,1, . . . , Ri,ti} be the ti ∈ N recovery sets for
file fi. Let µl ∈ R≥0 be the average rate at which the server
l ∈ [n] resolves received file requests. We denote the service
rates of servers 1, . . . , n by a vector µ = (µ1, . . . , µn). We
further assume that the requests to download file fi arrive at
rate λi, i ∈ [k]. We denote the request rates for files 1, . . . , k
by the vector λ = (λ1, . . . , λk). We consider the class of
scheduling strategies that assign a fraction of requests for a
file to each of its recovery sets. Let λi,j be the portion of
requests for file fi that are assigned to the recovery set Ri,j ,
j ∈ [ti]. The service rate region S(G,µ) ⊆ Rk

≥0 is defined
as the set of all request vectors λ that can be served by a
coded storage system with generator matrix G and service
rate µ. Alternatively, S(G,µ) can be defined as the set of
all vectors λ for which there exist λi,j ∈ R≥0, i ∈ [k] and
j ∈ [ti], satisfying the following constraints:

ti∑
j=1

λi,j = λi, for all i ∈ [k], (1a)

k∑
i=1

∑
j∈[ti]
l∈Ri,j

λi,j ≤ µl, for all l ∈ [n], (1b)

λi,j ∈ R≥0, for all i ∈ [k], j ∈ [ti]. (1c)

The constraints (1a) guarantee that the demands for all files
are served, and constraints (1b) ensure that no node receives
requests at a rate in excess of its service rate.

Lemma 1. The service rate region S(G,µ) is a non-empty,
convex, closed, and bounded subset of Rk

≥0.

Proposition 1. [21] For any set A = {v1, . . . ,vp} ⊆ Rk,
the convex hull of the set A, denoted by conv(A), consists of
all convex combinations of the elements of A, i.e., all vectors
of the form

∑p
i=1 γivi, with γi ≥ 0,

∑p
i=1 γi = 1.

Corollary 1. The service rate region S(G,µ) ⊆ Rk
≥0 forms

a polytope which can be expressed in two forms: as the
intersection of a finite number of half spaces or as the convex
hull of a finite set of vectors (vertices of the polytope).

The service rate problem seeks to determine the service
rate region S(G,µ) of a coded storage system with generator
matrix G and service rate µ. Based on Corollary 1, the first
algorithm for computing the service rate region that comes
to mind is enumerating all vertices of the polytope S(G,µ)
and then computing the convex hull of the resulting vertices.
As we indicate shortly, this problem can be formulated as an
optimization problem consisting of a sequence of LPs.

Given that any k − 1 request arrival rates, λi1 , . . . , λik−1
,

are zeros, there exists a maximum value of λik , denoted by
λ?ik , where 0 ≤ λ?ik ≤

∑n
l=1 µl such that λ?ik .eik ∈ S(G,µ)

and all vectors λik .eik with λik > λ?ik are not in S(G,µ).
Thus, these constrained optimization problems of finding the
maximum value λ?ik are all LPs. For i ∈ [k], let vi = λ?i ei.
Since J = {0,v1,v2, . . . ,vk} ⊆ S(G,µ), as an immediate
consequence of Lemma 1 and Proposition 1, the set conv(J )
is contained in S(G,µ). Starting with J , we can iteratively
enlarge J until the subsequent procedure stops. We choose
a facet H of conv(J ) described by a vector h ∈ Rk

≥0
and

η ∈ R≥0, as follows:

H =
{
x ∈ Rk

≥0 : h>x = η
}
∩ conv(J )

With this, we solve maxh>λ, where λ ∈ Rk
≥0 satisfies the

demand constraints (1a) and the capacity constraints (1b). If
the optimal target value is strictly larger than η, then we add
the solution vector λ? to J and continue. Note that for any
h = (h1, . . . , hk), the primal LP is given by

max

k∑
i=1

hiλi s.t. (1) holds. (2)

The corresponding dual LP is given by

min

n∑
l=1

γlµl (3)

s.t. hi ≤ βi ∀i ∈ [k]

βi ≤
∑

l∈Ri,j

γl ∀i ∈ [k],∀j ∈ [ti]

βi ∈ R, γl ∈ R≥0 ∀i ∈ [k],∀l ∈ [n]

According to the Duality Theorem, if both the primal LP
and the corresponding dual LP have feasible solutions, then
their optimal target values coincide. A feasible solution for
the primal LP (2) can be given by λi,j = 0 and λi = 0, and a
feasible solution for the dual LP (3) can be given by βi = hi
and γl =

∑k
i=1 hi.
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Given a generator matrix G of a linear code and a service
rate µ, the LP (2) can be utilized to compute the maximum
value of η =

∑k
i=1 hiλi, denoted by η?, for every h ∈ Rk

≥0.
Having η? at hand, we know that all λ ∈ S(G,µ) satisfy∑k

i=1 hiλi ≤ η?, which is a valid inequality for S(G,µ).
The downside of this approach is that we have to exactly
know the set of all possible recovery sets for each file and
also have to be able to optimally solve all the LP (2). Using
the dual LP (3), we run into a similar problem since in order
to formulate the inequalities in (3). Again we require to know
the elements of all the recovery sets for each file.

Therefore, determining the service rate region of a code is
a challenging problem, and in general we have to be pleased
with lower and upper bounds. Thus, characterizing the exact
service rate region of some parametric classes of linear codes
or deriving some bounds on the service rate of a code without
knowing explicitly all recovery sets is of great significance,
which we seek to address in this paper. We apply a novel
geometric approach for characterizing the service rate region
of the first order Reed-Muller codes and simplex codes.

C. Geometric View on Linear Codes [22]–[24]

Definition 1. For a vector space V of dimension v over Fq ,
ordered by inclusion, the set of all Fq-subspaces of V forms a
finite modular geometric lattice with meet X ∧ Y = X ∩ Y ,
join X∨Y = X+Y , and rank function X 7→ dim(X). This
subspace lattice of V is known as the projective geometry of
V , denoted by PG(V).

For a vector space V of dimension v over Fq , the 1-
dimensional subspaces of V are the points of PG(V), the 2-
dimensional subspaces of V are the lines of PG(V), and the
v−1 dimensional subspaces of V are called the hyperplanes
of PG(V). The projective geometry PG(V) is denoted by
PG(v − 1, q), referred to as the v − 1 dimensional projective
space over Fq . This notion makes sense considering the fact
that, up to isomorphism, PG(V) only depends on the order q
of the base field and the (algebraic) dimension v, justifying
the notion PG(v − 1, q) of (geometric) dimension v−1 over
Fq .

Let V be a vector space of dimension v over Fq . The set of
all k-dimensional subspaces of V , referred to as k-subspaces,
will be denoted by

[V
k

]
q
. The cardinality of this set is given

by the Gaussian binomial coefficient as[
v

k

]
q

=

{
(qv−1)(qv−1−1)···(qv−k+1−1)

(qk−1)(qk−1−1)···(q−1) if 0 ≤ k ≤ v;

0 otherwise.

A multiset is a modification of the concept of a set that,
unlike a set, allows for multiple instances for each of its
elements. The positive integer number of instances, given
for each element is called the multiplicity of this element in
the multiset. More formally, a multiset S on a base set X can
be identified with its characteristic function χS : X → N,
mapping x ∈ X to the multiplicity of x in S. The cardinality
of S is #S =

∑
x∈X χS(x). S is also called #S-multiset.

Definition 2. Let V be a vector space of dimension v over
Fq , P be a multiset of points p in PG(V) with characteristic

function χP : PG(V) → N, and H denotes a hyperplane
in PG(V). The restricted multiset P ∩ H is defined via its
characteristic function as

χP∩H(p) =

{
χP(p) if p ∈

[H
1

]
q
;

0 otherwise.

Then #(P ∩H) =
∑

p∈[H1 ]q
χP(p).

Let G ∈ Fk×n
q be the generator matrix of a linear [n, k]q

code C, a k-subspace of the n-dimensional vector space Fn
q .

Let gi ∈ Fk
q , i ∈ [n] denotes the ith column of G. Suppose

that none of the gi’s is 0. (The code C is said to be of full
length.) Then each gi determines a point in the projective
space PG(k − 1, q), and G := {g1,g2, . . . ,gn} is a set of
n points in PG(k − 1, q) if the gi happen to be pair-wise
independent. When dependence occurs, G is interpreted as
a multiset and each point is counted with the appropriate
multiplicity. In general, G is called n-multiset induced by C.

Proposition 2. Different generator matrices of a code yield
projectively equivalent codes. In other words, there exist a
bijective correspondence between the equivalence classes of
full-length q-ary linear codes and the projective equivalence
classes of multisets in finite projective spaces.

Note that the importance of this correspondence lies in the
fact that it relates the coding-theoretic properties of C to the
geometric or the combinatorial properties of G.

Proposition 3. Let G ∈ Fk×n
q be the generator matrix of a

linear [n, k, d]q code C, and G be the n-multiset induced by
code C. The minimum distance d of code C is given by

d = n−max#(G ∩ H),

where H runs through all the hyperplanes of PG(k − 1, q).

Proof: For an arbitrary non-zero row vector a of dimension
k, the Hamming weight of codeword aG ∈ C is given by

w(aG) = n−#{j ∈ [n];a · gj = 0} = n−#(G ∩ a⊥),

where a · b = a1b1 + · · ·+ akbk, and a⊥ is the hyperplane
in PG(k − 1, q) with equation a1x1 + · · ·+ akxk = 0. The
codeword with minimum Hamming weight is resulted from
hyperplaneH in PG(k − 1, q) with maximum #(G∩H).

Example 1. Consider the k-dimensional simplex code C over
Fq . In PG(k − 1, q), the multiset G induced by code C has[
k
1

]
q

points, and all hyperplanes contain
[
k−1
1

]
q

points. Thus,
as an immediate consequence of Proposition 3, each non-zero
codeword of the corresponding linear code has a Hamming
weight of exactly qk−1, which indicates that the minimum
distance of code C is qk−1. Let H be an arbitrary hyperplane
in PG(k − 1, q) and P be the set of all qk−1 points of Fk

q

that are not contained in H. The corresponding code which
P induced by is known as a first order Reed-Muller code or
as an affine k-dimensional simplex code.
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D. First Order Reed-Muller Codes [25]–[28]

In this paper, we consider binary first order Reed-Muller
codes RM2(1, k− 1) with the integer parameter k ≥ 2. It is
known that RM2(1, k − 1) is a linear [2k−1, k, 2k−2]2 code.
For a given k, one way of obtaining this code is to evaluate all
multilinear polynomials with the binary coefficients, k − 1
variables and the total degree of one on the elements of Fk−1

2 .
The encoding polynomial for RM2(1, k−1) can be written as
c1+c2 ·Z1+c3 ·Z2+ · · ·+ck ·Zk−1 where Z1, . . . , Zk−1 are
the k−1 variables, and c1, . . . , ck are the binary coefficients
of this polynomial. Indeed, the data symbols f1, . . . , fk are
used as the coefficients of the encoding polynomial, and the
codeword symbols are obtained by evaluating the encoding
polynomial on all vectors (Z1, . . . , Zk−1) ∈ Fk−1

2 .
Another way of describing a Reed-Muller RM2(1, k − 1)

is based on the generator matrix which can be constructed as
follows. Let write the set of all (k − 1)-dimensional binary
vectors as X = Fk−1

2 = {x1, . . . ,xn} where n = 2k−1 and
for i ∈ [n], xi = (xik−1

, . . . , xi1) with xij ∈ F2, j ∈ [k−1].
For any A ⊆ X , define the indicator vector IA ∈ Fk−1

2 as,

(IA)i =

{
1 if xi ∈ A;
0 otherwise.

For the k rows of the generator matrix of RM2(1, k− 1),
define k row vectors of length 2k−1 as r0 = (1, . . . , 1) and
rj = IHj

, j ∈ [k − 1], where Hj = {xi ∈ X | xij = 0}. It
should be noted that the set {rk−1, . . . , r1, r0} gives the rows
of a non-systematic generator matrix of the RM2(1, k − 1).
For a systematic generator matrix of the RM2(1, k − 1), the
set of rows {rk−1, . . . , r1,

∑k−1
i=0 ri} can be considered.

Example 2. Consider RM2(1, 3) which is a linear [8, 4, 4]2
code. Define X = F3

2 = {(0, 0, 0), (0, 0, 1), . . . , (1, 1, 1)}.
According to the definition,H3 = {x1,x2,x3,x4} that gives
r3 = (1, 1, 1, 1, 0, 0, 0, 0), and H2 = {x1,x2,x5,x6} which
gives r2 = (1, 1, 0, 0, 1, 1, 0, 0), and H1 = {x1,x3,x5,x7}
which results r1 = (1, 0, 1, 0, 1, 0, 1, 0). Let r0 be all-one row
vector of dimension eight. The set {r3, r2, r1, r0} defines the
rows of a non-systematic generator matrix of the RM2(1, 3).

G =


1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1


Also,

∑3
i=0 ri = (0, 1, 1, 0, 1, 0, 0, 1). Hence, a systematic

generator matrix of the RM2(1, 3) is given by:

G =


1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
0 1 1 0 1 0 0 1


III. GEOMETRIC VIEW ON SERVICE RATE OF CODES

In this section, we use the geometric description of linear
codes. For a linear code C with generator matrix G ∈ Fk×n

q ,
we consider the n-multiset G induced by C in PG(k − 1, q)
with the characteristic function χG as defined in section II-C.

Thus, each point p ∈ PG(k− 1, q) has a certain multiplicity
χG(p) ∈ N. In this language, the reduced recovery sets are
subsets of G, where each point can be taken once in a reduced
recovery set. Also, the service rate of each point p, denoted
by µ(p), can be defined as the sum of the service rates of the
nodes (columns of G) corresponding to the point p. Based
on this definition, µ(p) =

∑
l∈Lp

µl where Lp is the set of
nodes that correspond to the same point p ∈ PG(k − 1, q).
Since #Lp = χG(p), if all nodes in the set Lp have the same
service rate, say µp, then we have µ(p) = χG(p) · µp.

Lemma 2. Let G ∈ Fk×n
q be the generator matrix of a linear

[n, k]q code C, and G be the n-multiset induced by code C
with service rate µ(p) of each point p ∈ PG(k − 1, q). If
for some i ∈ [k], s · ei ∈ S(G,µ) and a hyperplane H of
PG(k − 1, q) is not containing ei, then we have

s ≤
∑

p∈PG(k−1,q)\H

µ(p).

Corollary 2. Let G ∈ Fk×n
q be the generator matrix of a

linear [n, k, d]q code C with service rate µl = 1 of all nodes
l ∈ [n], and G be the n-multiset induced by code C. If for
all i ∈ [k], s · ei ∈ S(G,µ), then the minimum distance d
of code C is at least dse.

Corollary 3. Let G ∈ Fk×n
q be the generator matrix of a lin-

ear [n, k]q code C, and G be the n-multiset induced by code
C with service rate µ(p) of each point p ∈ PG(k − 1, q).
Let I ⊆ [k]. If for all i ∈ I, there exist si ∈ R≥0 such that∑

i∈I si ·ei ∈ S(G,µ) and a hyperplane H of PG(k−1, q)
is not containing ei for all i ∈ I, then

s ≤
∑

p∈PG(k−1,q)\H

µ(p).

where s =
∑

i∈I si.

Note that Corollary 3 enables us to derive upper bounds
on the service rate of the first order Reed-Muller and simplex
codes. In what follows, without loss of generality, we assume
that the service rate of all servers in the coded storage system
is 1, i.e., µl = 1 for all l ∈ [n]. Thus, by this assumption, the
service rate region of a code only depends on the generator
matrix G of the code and can be denoted by S(G).

IV. SERVICE RATE REGION OF SIMPLEX CODES

In this section, by leveraging a novel geometric approach,
we characterize the service rate region of the binary simplex
codes which are special rate-optimal subclass of availability
codes that are known as an important family of distributed
storage codes. As we will show, the determined service rate
region coincides with the region derived in [2, Theorem 1].

Theorem 1. For each integer k ≥ 1, the service rate region
of the k-dimensional binary simplex code C, which is a linear
[2k − 1, k, 2k−1]2 code with generator matrix G is given by

S(G) =

{
λ ∈ Rk

≥0 :

k∑
i=1

λi ≤ 2k−1

}
.
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Proof: Note that the simplex code is projective. Since the
projective space PG(k−1, 2) contains exactly 2k−1 points,
the generator matrix G consists of all non-zero vectors of Fk

2 .
(Up to column permutations the generator matrix is unique.)
Given an arbitrary i ∈ [k], we partition the columns of G
into ei and {x,x+ ei} for all 2k−1 − 1 non-zero vectors
x ∈ Fk

2 with ith coordinate being equal to zero. Thus, for
all i ∈ [k], 2k−1 · ei ∈ S(G). Let vi = 2k−1 · ei for i ∈ [k].
Since J = {0,v1,v2, . . . ,vk} ⊆ S(G), based on Lemma 1
and Proposition 1, the conv(J ) is contained in S(G), i.e.,

S(G) ⊇

{
λ ∈ Rk

≥0 :

k∑
i=1

λi ≤ 2k−1

}
For the other direction, we consider the hyperplane H given
by
∑k

i=1 xi = 0, which does not contain any unit vector ei.
Thus, for any demand vector λ = (λ1, . . . , λk) in the service
rate region, the Corollary 3 results in

∑k
i=1 λi ≤ 2k−1. The

reason is that half of the vectors in Fk
2 which are the columns

of G and so the elements of G, are not contained in H.

V. SERVICE RATE REGION OF REED-MULLER CODES

This section seeks to characterize the service rate region of
the RM2(1, k−1) code with a non-systematic and systematic
generator matrix G constructed as described in section II-D.

A. Non-Systematic First Order Reed-Muller Codes

Theorem 2. For each integer k ≥ 2, the service rate region
of the first order Reed-Muller code RM2(1, k−1) (or binary
affine k-dimensional simplex code) with a non-systematic
generator matrix G constructed as described in section II-D,
if k ∈ {2, 3} is given by

S(G) =

{
λ ∈ Rk

≥0 :

k∑
i=1

λi ≤ 2k−2

}
= conv ({0,v1, . . . ,vk})

and if k ≥ 4, S(G) is given by{
λ ∈ Rk

≥0 :

k∑
i=1

λi ≤ 2k−2,

k−1∑
i=1

λi +
3

2
λk − 1 ≤ 2k−2

}
= conv ({0,v1, . . . ,vk−1,uk,w1, . . . ,wk−1}) ,

where vi = 2k−2 · ei and wj = (2k−2 − 2) · ej + 2 · ek for
i ∈ [k] and j ∈ [k−1], respectively. Also, uk = 2k−1+2

3 ·ek.

Proof: The proof consists of a converse and an achievability.
Converse: The unit vector ei for all i ∈ [k − 1] is not a

column of G which means that file fi does not have any
systematic recovery set. Therefore, for file fi, i ∈ [k − 1], all
recovery sets have cardinality at least two, and the minimum
system capacity utilized by λi, i ∈ [k − 1], is 2λi. For file
fk, the cardinality of every reduced recovery set is odd since
all columns of generator matrix G has one in the last row.
Hence, for file fk, the unit vector ek that is a column of G,
forms a systematic recovery set of cardinality one, while all
other recovery sets have cardinality at least three. Hence, the
minimum capacity used by λk ≥ 1 is 1 + 3(λk − 1). Since

the system has 2k−1 servers, each of service rate (capacity) 1,
based on the capacity constraints, the total capacity utilized
by the requests for download must be less than 2k−1. Thus,
any vector λ = (λ1, . . . , λk) in the service rate region must
satisfy the following valid constraint,

k−1∑
i=1

λi +
3

2
λk − 1 ≤ 2k−2 (4)

Consider the hyperplane H given by
∑k

i=1 xi = 0, which
does not contain any unit vector ei. The columns of generator
matrix G and so the elements of G which are not contained
inH, are the vectors in Fk

2 with one in the last coordinate that
satisfy

∑k−1
i=1 xi = 0. It is easy to see that there are 2k−2 such

vectors. Thus, applying Corollary 3 for hyperplaneH impose
another valid constraint as follows that any demand vector
λ = (λ1, . . . , λk) in the service rate region must satisfy,

k∑
i=1

λi ≤ 2k−2 (5)

It should be noted that for λk < 2, the Inequality (5) is tighter
than (4), while for λk > 2 Inequality (4) is tighter than (5).
This means that for k ∈ {2, 3} Inequality (4) is redundant.

Achievability: For the other direction, we have to provide
constructions for the vertices of the corresponding polytope.
To this end let R′ ⊆ Fk

2 , |R′| = 2k−1 denotes the columns
of G which are the set of vectors in Fk

2 with one in the last
coordinate. For all i ∈ [k − 1], consider all the 2k−2 vectors
x ∈ R′ with zero in the ith coordinate, then x+ ei ∈ R′,
and so {x,x + ei} constitutes a recovery set of cardinality
two for file fi. Thus, for each file fi, i ∈ [k − 1], the columns
of G can be partitioned into 2k−2 pairs {x,x+ ei} which
determines 2k−2 disjoint recovery sets for file fi, i ∈ [k − 1].
Thus, the demand vectors 2k−2 · ei for all i ∈ [k−1] can be
satisfied, i.e., 2k−2 · ei ∈ S(G). For file fk, there are exactly
one systematic recovery set of cardinality one which is the
column ek of G, and (2k−1 − 1).(2k−1 − 2)/6 recovery sets
of cardinality three which are the sets {x,x′,x+ x′ + ek}
for all pairs x,x′ ∈ R′ \ ek. Note that for k = 2, according
to Inequality (5), one can readily confirm that λk ≤ 1. Thus,
for k = 2 the systematic recovery set of file fk can be utilized
for satisfying the demand vector 1 · ek. For k ≥ 3, it should
be noted that that each column x ∈ R′ \ ek is contained in
exactly (2k−1 − 2)/2 recovery sets of file fk of cardinality
three. Since the capacity of each node is one, from each
recovery set the request rate of 1/(2k−2 − 1) can be satisfied
without violating the capacity constraints. Thus, the demand
vector 2k−1+2

3 · ek can be satisfied. For the remaining part,
we consider k ≥ 4. Let i, j ∈ [k − 1] with i 6= j be arbitrary.
With this {ek, ei + ek} and {ej + ek, ei + ej + ek} are two
of 2k−2 recovery sets of cardinality two for file fi. Thus, the
elements in R′\ {ek, ei + ek, ej + ek, ei + ej + ek} can be
partitioned into 2k−2 − 2 recovery sets for file fi, i ∈ [k − 1].
Also, the sets {ek} and {ei + ek, ej + ek, ei + ej + ek} can
be utilized as two disjoint recovery sets for file fk. Therefore,
the demand vector

(
2k−2 − 2

)
· ei + 2 · ek can be satisfied.
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B. Systematic First Order Reed-Muller Codes

Theorem 3. For each integer k ≥ 2, the service rate region
S(G) of the first order Reed-Muller code RM2(1, k − 1) (or
binary affine k-dimensional simplex code) with a systematic
generator matrix G constructed as described in section II-D,
if k = 2 is given by

S(G) =
{
λ ∈ Rk

≥0 : λ1 ≤ 1, λ2 ≤ 1
}
= conv (0, e1 + e2)

if k = 3, is given by

S(G) =
{
λ ∈ Rk

≥0 : −λi +
3∑

j=1

λj ≤ 2,∀i ∈ [k]
}

= conv (0, 2 · e1, 2 · e2, 2 · e3, e1 + e2 + e3)

if k = 4, S(G) is given by{
λ ∈ Rk

≥0 :−λi +
k∑

j=1

λj ≤ 4, 2λi +

k∑
j=1

λj ≤ 10∀i ∈ [k]
}

= conv
(
0,pi ∀i ∈ [k],qi,j ∀i, j ∈ [k] with i 6= j, 43 · 1

)
and if k ≥ 5, S(G) lies inside the region given by{
λ ∈ Rk

≥0 :
∑

i∈[k]\S

λi +
∑
j∈S

(3λj − 2) ≤ 2k−1 ∀S ⊆ [k]
}
.

where pi =
10
3 · ei and qi,j = 3 · ei + 1 · ej for i, j ∈ [k].

Proof: Based on the construction described in section II-D
for a systematic generator matrix G of the RM2(1, k − 1), it
can be confirmed that the number of ones in each column of
G is odd, and the constructed systematic generator matrix,
up to column permutations, is unique. Let the columns of G
which are the set of vectors in Fk

2 with odd number of ones,
be denoted by R′ ⊆ Fk

2 , |R′| = 2k−1.
Converse: For an arbitrary file fi, i∈ [k], the unit vector

ei is a column of G that forms a systematic recovery set of
cardinality 1, while all other recovery sets have cardinality at
least three. The proof is based on the contradiction approach.
Let x,x′ ∈ R′ \ ei. Assume that {x,x′} forms a recovery set
of cardinality two for file fi, i.e., x+ x′ = ei. Since both x
and x′ have an odd number of ones, their sum must have an
even number of ones which is a contradiction. Indeed, for
all pairs x,x′ ∈ R′ \ ei, the set {x,x′,x+ x′ + ei} forms
a recovery set of cardinality three for file fi, i ∈ [k]. Thus,
if λi ≤ 1, the requests for file fi can be fully satisfied by the
systematic recovery set {ei} and the system capacity utilized
by λi is λi. However, for λi ≥ 1, the system capacity utilized
by λi is at least 1 + 3(λi − 1) = 3λi − 2. Since the system
has 2k−1 servers of capacity 1, the following constraints are
valid constraints so that any vector λ = (λ1, . . . , λk) in the
service rate region must satisfy:∑

i∈[k]\S

λi +
∑
j∈S

(3λj − 2) ≤ 2k−1 ∀S ⊆ [k] (6)

Applying Corollary 3 on all hyperplanesHj , j ∈ [k], given
by
∑

i∈[k]\j xi = 0, where each hyperplane Hj , j ∈ [k] does
not contain any unit vectors ei, i ∈ [k] \ j, yields another set

of valid constraints on any demand vector λ = (λ1, . . . , λk)
in the service rate region as follows:∑

i∈[k]\j

λi ≤ 2k−2 ∀j ∈ [k] (7)

Note that for k ∈ {2, 3}, Inequality (7) is tighter than (6).
For k = 2, Inequality (7) gives λ1 ≤ 1 and λ2 ≤ 1. For
k = 3, Inequality (7) gives

∑3
i=1 λi − λi ≤ 2 for all i ∈ [3].

Summing up these three inequalities and dividing them by
two results

∑3
i=1 λi ≤ 3. For k = 4, Inequality (7) yields∑4

i=1 λi − λi ≤ 4 for all i ∈ [4]. Summing up these four
inequalities and dividing by three gives

∑4
i=1 λi ≤

16
3 . Also,

for k = 4, Inequality (6) gives a set of constraints, among
which the constraints

∑4
i=1 λi + 2 · λi ≤ 10 for all i ∈ [4],

are tighter than the ones already obtained from (7) in some
region. For k ≥ 5, Inequality (6) is always tighter than (7).

Achievability: For k ≤ 4, we have to provide constructions
for the vertices of the corresponding polytope. As discussed,
for each file fi, with i ∈ [k], there are exactly one systematic
recovery set of cardinality one which is the column ei of
G, and (2k−1 − 1).(2k−1 − 2)/6 recovery sets of cardinality
three which are the sets of the form {x,x′,x+ x′ + ei} for
all pairs x,x′ ∈ R′ \ ei. For k = 2, the two disjoint recovery
sets {e1} and {e2}, which are the only recovery sets for files
f1 and f2, respectively, can be used to satisfy the demand
vector e1 + e2. Now, consider k ≥ 3. Since each column
x ∈ R′ \ ei is contained in exactly (2k−1 − 2)/2 recovery
sets of file fi, i ∈ [k] of cardinality three, and the capacity
of each node is one, from each recovery set the request
rate of 1/(2k−2 − 1) can be satisfied without violating the
capacity constraints. Thus, the demand vector 2k−1+2

3 · ei for
all i ∈ [k] can be satisfied. This means that for k = 3 and
k = 4, respectively the the demand vectors 2 · ei for all
i ∈ [3], and 10

3 · ei for all i ∈ [4] can be satisfied. Also, for
k = 3, the demand vector e1 + e2 + e3 can be achieved by
the disjoint systematic recovery sets {e1}, {e2}, and {e3}.
Now, let assume k ≥ 4. Let i, j ∈ [k] with i 6= j be arbitrary.
The systematic recovery sets {ei} and {ej} can be used for
files fi and fj , respectively. Additionally, consider all the
(2k−2 − 1).(2k−1 − 4)/3 recovery sets {x,x′,x+ x′ + ei}
of cardinality three for file fi that do not contain ej , each of
which can satisfy the request rate of 1/(2k−2 − 2) for file fi
without violating the capacity constraints. Thus, the demand
vector 2k−1+1

3 · ei + 1 · ej can be achieved. Therefore, for
k = 4 the demand vector 3 · ei + 1 · ej for all i, j ∈ [k] with
i 6= j can be satisfied. For achieving the demand vector 4

3 ·1,
one can use all the systematic recovery sets {e1}, {e2}, {e3},
{e4} with capacity 1. Moreover, the remaining four columns
can be used to build up four recovery sets consisting of a
unique recovery set of cardinality 3 for each file fi, i ∈ [4],
and from each of these sets the rate of 1

3 can be satisfied.
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APPENDIX
PROOF OF LEMMAS AND THEOREMS

Proof of Lemma 1: It can be easily observed that for ev-
ery service rate vector µ, setting λi,j = 0, where i ∈
[k] and j ∈ [ti], satisfies the set of constraints in (1) for
the all-zero demand vector of dimension k denoted by
0 = (0, . . . , 0) ∈ Rk. Thus, 0 always belongs to the service
rate region S(G,µ). It proves that the service rate region
S(G,µ) is a non-empty subset of Rk

≥0. Based on the
definition of the convex set, we need to show that for all
λ and λ̃ in S(G,µ) and for all 0 ≤ π ≤ 1, all vectors
πλ + (1 − π)λ̃ are in S(G,µ). Since λ ∈ S(G,µ), there
exist λi,j’s, where i ∈ [k] and j ∈ [ti], that satisfy the set of
constraints in (1) for the demand vector λ and the service
rate vector µ. Also, since λ̃ ∈ S(G,µ), there exist λ̃i,j’s,
where i ∈ [k] and j ∈ [ti], that satisfy the set of constraints
in (1) for the demand vector λ̃ and the service rate vector µ.
One can easily confirm that (πλi,j + (1− π)λ̃i,j)’s, where
i ∈ [k] and j ∈ [ti], also satisfy the set of constraints in (1)
for the demand vector πλ+ (1− π)λ̃ for all 0 ≤ π ≤ 1,
and the service rate vector µ. Thus, πλ+ (1− π)λ̃ belongs
to S(G,µ) for all 0 ≤ π ≤ 1. This completes the proof of
convexity of the service rate region S(G,µ). Summing up
the set of constraints in (1b) leads us to:

n∑
l=1

k∑
i=1

∑
j∈[ti]
l∈Ri,j

λi,j ≤
n∑

l=1

µl

Changing the order of the sums and utilizing the fact that∑n
l=1

∑
j∈[ti]
l∈Ri,j

λi,j =
∑ti

j=1 λi,j , we obtain

k∑
i=1

ti∑
j=1

λi,j ≤
n∑

l=1

µl.

Using (1a), we rewrite the last inequality to
k∑

i=1

λi ≤
n∑

l=1

µl (8)
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The equation (8) indicates that the elements of every vector
λ ∈ S(G,µ) are bounded. It also shows that all demand
vectors λ = (λ1, . . . , λk) with

∑k
i=1 λi >

∑n
l=1 µl are not

in S(G,µ). Hence, S(G,µ) is closed and bounded.

Proof of Corollary 1: Based on Lemma 1, the service rate
region S(G,µ) is a convex and bounded subset of the Rk

≥0,
which indicates that S(G,µ) is a polytope. Thus, according
to [29, Theorem 4], it can be described as the two mentioned
forms, i.e., the intersection of a finite number of half spaces
or the convex hull of a finite set of vectors (the vertices of
the polytope).

Proof of Lemma 2: Since s ·ei ∈ S(G,µ), it means that the
request rate of s for file fi is satisfied by the storage system.
Whatever the used recovery sets for file fi are, some point
outside of H have to be used since the points in H are not
able to generate ei. Thus, replacing each recovery set in
Ri by an arbitrary contained point outside of hyperplane H,
completes the proof.

Proof of Corollary 2: Since for all i ∈ [k], s · ei ∈ S(G,µ)
holds, this means that for all files fi, i ∈ [k], the request rate
of s can be satisfied by the coded storage system. Thus, if
we consider any hyperplane H in PG(k − 1, q), it does not
contain at least one of the ei’s for i ∈ [k]. In the special case
of unit service rate of all servers, based on Lemma 2 results
in

s ≤ #(G\H) := #G −#(G ∩ H) = n−#(G ∩ H) .

Since for every hyperplane H in PG(k − 1, q), s ≤ n −
#(G ∩ H) holds, according to the Proposition 3 and based
on the fact that the minimum distance d is integer, we have
dse ≤ d.

Proof of Corollary 3: Since
∑

i∈I si · ei ∈ S(G,µ), based
on Lemma 1, si · ei ∈ S(G,µ) holds for all i ∈ I. On the
other hand, the hyperplane H of PG(k − 1, q) does not
contain any ei for all i ∈ I. Thus, by applying Lemma 2 for
each i ∈ I, we get si ≤

∑
p∈PG(k−1,q)\H µ(p). Summing up

all these inequalities gives

s =
∑
i∈I

si ≤
∑

p∈PG(k−1,q)\H

µ(p).
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