180 research outputs found

    On the Size of Pairing-Based Non-interactive Arguments

    Get PDF
    Non-interactive arguments enable a prover to convince a verifier that a statement is true. Recently there has been a lot of progress both in theory and practice on constructing highly efficient non-interactive arguments with small size and low verification complexity, so-called succinct non-interactive arguments (SNARGs) and succinct non-interactive arguments of knowledge (SNARKs). Many constructions of SNARGs rely on pairing-based cryptography. In these constructions a proof consists of a number of group elements and the verification consists of checking a number of pairing product equations. The question we address in this article is how efficient pairing-based SNARGs can be. Our first contribution is a pairing-based (preprocessing) SNARK for arithmetic circuit satisfiability, which is an NP-complete language. In our SNARK we work with asymmetric pairings for higher efficiency, a proof is only 3 group elements, and verification consists of checking a single pairing product equations using 3 pairings in total. Our SNARK is zero-knowledge and does not reveal anything about the witness the prover uses to make the proof. As our second contribution we answer an open question of Bitansky, Chiesa, Ishai, Ostrovsky and Paneth (TCC 2013) by showing that linear interactive proofs cannot have a linear decision procedure. It follows from this that SNARGs where the prover and verifier use generic asymmetric bilinear group operations cannot consist of a single group element. This gives the first lower bound for pairing-based SNARGs. It remains an intriguing open problem whether this lower bound can be extended to rule out 2 group element SNARGs, which would prove optimality of our 3 element construction

    Efficient Modular NIZK Arguments from Shift and Product

    Get PDF
    We propose a non-interactive product argument, that is more efficient than the one by Groth and Lipmaa, and a novel shift argument. We then use them to design several novel non-interactive zero-knowledge (NIZK) arguments. We obtain the first range proof with constant communication and subquadratic prover\u27s computation. We construct NIZK arguments for NP\mathbf{NP}-complete languages, {\textsc{Set-Partition}}, {\textsc{Subset-Sum}} and {\textsc{Decision-Knapsack}}, with constant communication, subquadratic prover\u27s computation and linear verifier\u27s computation

    Ways to improve the performance of zero-knowledge succinct non-interactivearguments of knowledge and the analysis of the rusults achieved

    Get PDF
    Рассматриваются способы повышения производительности кратких неинтерактивных аргументов с нулевым разглашением на основе полиномиальных наборов с использованием различных вычислительных методов. Проводится сравнительный анализ протоколов по размерам главных ссылочных строк и доказательств достоверности вычислений, затратам формирования доказательств и их верификации

    Efektiivsed mitteinteraktiivsed nullteadmusprotokollid referentssõne mudelis

    Get PDF
    Väitekirja elektrooniline versioon ei sisalda publikatsioone.Koos digitaalse ajastu võidukäiguga on interneti vahendusel võimalik sooritada üha ulmelisemana näivaid tegevusi. Täielikule krüpteeringule ehitatud mobiilsed rakendused, nagu näiteks WhatsApp, suudavad tagada, et kõne või sõnum jõuaksid üksnes õige adressaadini. Enamik pangasüsteeme garanteerivad TLS protokolli kasutades, et arvete maksmisel ja ülekannete tegemisel poleks nende andmeid kellelgi võimalik lugeda ega muuta. Mõned riigid pakuvad võimalust elektroonilisel teel hääletada (näiteks Eesti) või referendumeid läbi viia (näiteks Šveits), tagades sealjuures traditsioonilise paberhääletuse tasemel turvalisuse kriteeriumid. Kõik eelnevalt kirjeldatud tegevused vajavad kasutajate turvalisuse tagamiseks krüptograafilist protokolli. Tegelikkuses ei saa me kunagi eeldada, et kõik protokolli osapooled järgivad protokolli spetsifikatsiooni. Reaalses elus peab protokolli turvalisuseks iga osapool tõestama, et ta seda järgis ilma privaatsuse ohverdamiseta. Üks viis seda teha on nullteadmusprotokolli abil. Nullteadmusprotokoll on tõestus, mis ei lekita mingit informatsiooni peale selle, et väide on tõene. Tihti tahame, et nullteadmusprotokoll oleks mitteinteraktiivne. Sellisel juhul piisab, kui tõestus on arvutatud ainult ühe korra ning verifitseerijatel on igal ajal võimalik seda kontrollida. On kaks peamist mudelit, mis võimaldavad mitteinteraktiivsete nullteadmusprotokollide loomist: juhusliku oraakli (JO) mudel ja referentssõne mudel. JO mudeli protokollid on väga efektiivsed, kuid mõningate piirangute tõttu eelistame referentssõne mudelit. Selles töös esitleme kolme stsenaariumit, milles mitteinteraktiivne nullteadmus on asjakohane: verifitseeritav arvutamine, autoriseerimine ja elektrooniline hääletamine. Igas stsenaariumis pakume välja nullteadmusprotokolli referentssõne mudelis, mis on seni efektiivseim ning võrreldava efektiivsusega protokollidega JO mudelis.In the current digital era, we can do increasingly astonishing activities remotely using only our electronic devices. Using mobile applications such as WhatsApp, we can contact someone with the guarantee, using an end-to-end encryption protocol, that only the recipient can know the conversation's contents. Most banking systems enable us to pay our bills and perform other financial transactions, and use the TLS protocol to guarantee that no one can read or modify the transaction data. Some countries provide an option to vote electronically in an election (e.g. Estonia) or referendum (e.g. Switzerland) with similar privacy guarantees to traditional paper voting. In all these activities, a cryptographic protocol is required to ensure users' privacy. In reality, some parties participating in a protocol might not act according to what was agreed in the protocol specification. Hence, for a real world protocol to be secure, we also need each party to prove that it behaves honestly, but without sacrificing privacy of its inputs. This can be done using a zero-knowledge argument: a proof by a polynomial-time prover that gives nothing else away besides its correctness. In many cases, we want a zero-knowledge argument to be non-interactive and transferable, so that it is computed only once, but can be verified by many verifiers at any future time. There are two main models that enable transferable non-interactive zero-knowledge (NIZK) arguments: the random oracle (RO) model and the common reference string (CRS) model. Protocols in the RO model are very efficient, but due to some of its limitations, we prefer working in the CRS model. In this work we provide three scenarios where NIZK arguments are relevant: verifiable computation, authorization, and electronic voting. In each scenario, we propose NIZK arguments in the CRS model that are more efficient than existing ones, and are comparable in efficiency to the best known NIZK arguments in the RO model

    Practical Zero-Knowledge Arguments from Structured Reference Strings

    Get PDF
    Zero-knowledge proofs have become an important tool for addressing privacy and scalability concerns in cryptographic protocols. For zero-knowledge proofs used in blockchain applications, it is desirable to have small proof sizes and fast verification. Yet by design, existing constructions with these properties such as zk-SNARKs also have a secret trapdoor embedded in a relation dependent structured reference string (SRS). Knowledge of this trapdoor suffices to break the security of these proofs. The SRSs required by zero-knowledge proofs are usually constructed with multiparty computation protocols, but the resulting parameters are specific to each individual circuit. In this thesis, we propose a model for constructing zero-knowledge arguments (i.e. zero-knowledge proofs with computational soundness) in which the generation of the SRS is directly considered in the security analysis. In our model the same SRS can be used across multiple applications. Further, the model is updatable i.e. users can update the universal SRS and the SRS is considered secure provided at least one of these users is honest. We propose two zero-knowledge arguments with updatable and universal SRSs, as well as a third which is neither updatable nor universal, but which through similar techniques achieves simulation extractability. The proposed arguments are practical, with proof sizes never more than a constant number of group elements. Verification for two of our constructions consist of a small number of pairing operations. For our other construction, which has the desirable property of a linear sized updatable and universal SRS, we describe efficient batching techniques so that verification is fast in the amortised setting

    Efficient Zero-Knowledge Argument in Discrete Logarithm Setting: Sublogarithmic Proof or Sublinear Verifier

    Get PDF
    We propose three interactive zero-knowledge arguments for arithmetic circuit of size NN in the common random string model, which can be converted to be non-interactive by Fiat-Shamir heuristics in the random oracle model. First argument features O(logN)O(\sqrt{\log N}) communication and round complexities and O(N)O(N) computational complexity for the verifier. Second argument features O(logN)O(\log N) communication and O(N)O(\sqrt{N}) computational complexity for the verifier. Third argument features O(logN)O(\log N) communication and O(NlogN)O(\sqrt{N}\log N) computational complexity for the verifier. Contrary to first and second arguments, the third argument is free of reliance on pairing-friendly elliptic curves. The soundness of three arguments is proven under the standard discrete logarithm and/or the double pairing assumption, which is at least as reliable as the decisional Diffie-Hellman assumption

    Assumptions, Efficiency and Trust in Non-Interactive Zero-Knowledge Proofs

    Get PDF
    Vi lever i en digital verden. En betydelig del av livene våre skjer på nettet, og vi bruker internett for stadig flere formål og er avhengig av stadig mer avansert teknologi. Det er derfor viktig å beskytte seg mot ondsinnede aktører som kan forsøke å utnytte denne avhengigheten for egen vinning. Kryptografi er en sentral del av svaret på hvordan man kan beskytte internettbrukere. Historisk sett har kryptografi hovedsakelig vært opptatt av konfidensiell kommunikasjon, altså at ingen kan lese private meldinger sendt mellom to personer. I de siste tiårene har kryptografi blitt mer opptatt av å lage protokoller som garanterer personvern selv om man kan gjennomføre komplekse handlinger. Et viktig kryptografisk verktøy for å sikre at disse protokollene faktisk følges er kunnskapsløse bevis. Et kunnskapsløst bevis er en prosess hvor to parter, en bevisfører og en attestant, utveksler meldinger for å overbevise attestanten om at bevisføreren fulgte protokollen riktig (hvis dette faktisk er tilfelle) uten å avsløre privat informasjon til attestanten. For de fleste anvendelser er det ønskelig å lage et ikke-interaktivt kunnskapsløst bevis (IIK-bevis), der bevisføreren kun sender én melding til attestanten. IIK-bevis har en rekke ulike bruksområder, som gjør de til attraktive studieobjekter. Et IIK-bevis har en rekke ulike egenskaper og forbedring av noen av disse fremmer vår kollektive kryptografiske kunnskap. I den første artikkelen i denne avhandlingen konstruerer vi et nytt ikke-interaktivt kunnskapsløst bevis for språk basert på algebraiske mengder. Denne artikkelen er basert på arbeid av Couteau og Hartmann (Crypto 2020), som viste hvordan man omformer et bestemt interaktivt kunnskapsløst bevis til et IIK-bevis. Vi følger deres tilnærming, men vi bruker et annet interaktivt kunnskapsløst bevis. Dette fører til en forbedring sammenlignet med arbeidet deres på flere områder, spesielt når det gjelder både formodninger og effektivitet. I den andre artikkelen i denne avhandlingen studerer vi egenskapene til ikke-interaktive kunnskapsløse bevis som er motstandsdyktige mot undergraving. Det er umulig å lage et IIK-bevis uten å stole på en felles referansestreng (FRS) generert av en pålitelig tredjepart. Men det finnes eksempler på IIK-bevis der ingen lærer noe privat informasjon fra beviset selv om den felles referansestrengen ble skapt på en uredelig måte. I denne artikkelen lager vi en ny kryptografisk primitiv (verifiserbart-uttrekkbare enveisfunksjoner) og viser hvordan denne primitiven er relatert til IIK-bevis med den ovennevnte egenskapen.We live in a digital world. A significant part of our lives happens online, and we use the internet for incredibly many different purposes and we rely on increasingly advanced technology. It therefore is important to protect against malicious actors who may try to exploit this reliance for their own gain. Cryptography is a key part of the answer to protecting internet users. Historically, cryptography has mainly been focused on maintaining the confidentiality of communication, ensuring that no one can read private messages sent between people. In recent decades, cryptography has become concerned with creating protocols which guarantee privacy even as they support more complex actions. A crucial cryptographic tool to ensure that these protocols are indeed followed is the zero-knowledge proof. A zero-knowledge proof is a process where two parties, a prover and a verifier, exchange messages to convince the verifier that the prover followed the protocol correctly (if indeed the prover did so) without revealing any private information to the verifier. It is often desirable to create a non-interactive zero-knowledge proof (NIZK), where the prover only sends one message to the verifier. NIZKs have found a number of different applications, which makes them an attractive object of study. A NIZK has a variety of different properties, and improving any of these aspects advances our collective cryptographic knowledge. In the first paper in this thesis, we construct a new non-interactive zero-knowledge proof for languages based on algebraic sets. This paper is based on work by Couteau and Hartmann (Crypto 2020), which showed how to convert a particular interactive zero-knowledge proof to a NIZK. We follow their approach, but we start with a different interactive zero-knowledge proof. This leads to an improvement compared to their work in several ways, in particular in terms of both assumptions and efficiency. In the second paper in this thesis, we study the property of subversion zero-knowledge in non-interactive zero-knowledge proofs. It is impossible to create a NIZK without relying on a common reference string (CRS) generated by a trusted party. However, a NIZK with the subversion zero-knowledge property guarantees that no one learns any private information from the proof even if the CRS was generated dishonestly. In this paper, we create a new cryptographic primitive (verifiably-extractable one-way functions) and show how this primitive relates to NIZKs with subversion zero-knowledge.Doktorgradsavhandlin

    Exploring Constructions of Compact NIZKs from Various Assumptions

    Get PDF
    A non-interactive zero-knowledge (NIZK) protocol allows a prover to non-interactively convince a verifier of the truth of the statement without leaking any other information. In this study, we explore shorter NIZK proofs for all NP languages. Our primary interest is NIZK proofs from falsifiable pairing/pairing-free group-based assumptions. Thus far, NIZKs in the common reference string model (CRS-NIZKs) for NP based on falsifiable pairing-based assumptions all require a proof size at least as large as O(Ck)O(|C| k), where CC is a circuit computing the NP relation and kk is the security parameter. This holds true even for the weaker designated-verifier NIZKs (DV-NIZKs). Notably, constructing a (CRS, DV)-NIZK with proof size achieving an additive-overhead O(C)+poly(k)O(|C|) + poly(k), rather than a multiplicative-overhead Cpoly(k)|C| \cdot poly(k), based on any falsifiable pairing-based assumptions is an open problem. In this work, we present various techniques for constructing NIZKs with compact proofs, i.e., proofs smaller than O(C)+poly(k)O(|C|) + poly(k), and make progress regarding the above situation. Our result is summarized below. - We construct CRS-NIZK for all NP with proof size C+poly(k)|C| + poly(k) from a (non-static) falsifiable Diffie-Hellman (DH) type assumption over pairing groups. This is the first CRS-NIZK to achieve a compact proof without relying on either lattice-based assumptions or non-falsifiable assumptions. Moreover, a variant of our CRS-NIZK satisfies universal composability (UC) in the erasure-free adaptive setting. Although it is limited to NP relations in NC1, the proof size is wpoly(k)|w| \cdot poly(k) where ww is the witness, and in particular, it matches the state-of-the-art UC-NIZK proposed by Cohen, shelat, and Wichs (EPRINT\u2718) based on lattices. - We construct (multi-theorem) DV-NIZKs for NP with proof size C+poly(k)|C|+poly(k) from the computational DH assumption over pairing-free groups. This is the first DV-NIZK that achieves a compact proof from a standard DH type assumption. Moreover, if we further assume the NP relation to be computable in NC1 and assume hardness of a (non-static) falsifiable DH type assumption over pairing-free groups, the proof size can be made as small as w+poly(k)|w| + poly(k). Another related but independent issue is that all (CRS, DV)-NIZKs require the running time of the prover to be at least Cpoly(k)|C|\cdot poly(k). Considering that there exists NIZKs with efficient verifiers whose running time is strictly smaller than C|C|, it is an interesting problem whether we can construct prover-efficient NIZKs. To this end, we construct prover-efficient CRS-NIZKs for NP with compact proof through a generic construction using laconic functional evaluation schemes (Quach, Wee, and Wichs (FOCS\u2718)). This is the first NIZK in any model where the running time of the prover is strictly smaller than the time it takes to compute the circuit CC computing the NP relation. Finally, perhaps of an independent interest, we formalize the notion of homomorphic equivocal commitments, which we use as building blocks to obtain the first result, and show how to construct them from pairing-based assumptions

    Polymath: Groth16 Is Not The Limit

    Get PDF
    Shortening the argument (three group elements or 1536 / 3072 bits over the BLS12-381/BLS24-509 curves) of the Groth16 zk-SNARK for R1CS is a long-standing open problem. We propose a zk-SNARK Polymath for the Square Arithmetic Programming constraint system using the KZG polynomial commitment scheme. Polymath has a shorter argument (1408 / 1792 bits over the same curves) than Groth16. At 192-bit security, Polymath\u27s argument is nearly half the size, making it highly competitive for high-security future applications. Notably, we handle public inputs in a simple way. We optimized Polymath\u27s prover through an exhaustive parameter search. Polymath\u27s prover does not output G2\mathbb{G}_{2} elements, aiding in batch verification, SNARK aggregation, and recursion. Polymath\u27s properties make it highly suitable to be the final SNARK in SNARK compositions

    Impossibilities in Succinct Arguments: Black-box Extraction and More

    Get PDF
    The celebrated result by Gentry and Wichs established a theoretical barrier for succinct non-interactive arguments (SNARGs), showing that for (expressive enough) hard-on-average languages, we must assume non-falsifiable assumptions. We further investigate those barriers by showing new negative and positive results related to the proof size. 1. We start by formalizing a folklore lower bound for the proof size of black-box extractable arguments based on the hardness of the language. This separates knowledge-sound SNARGs (SNARKs) in the random oracle model (that can have black-box extraction) and those in the standard model. 2. We find a positive result in the non-adaptive setting. Under the existence of non-adaptively sound SNARGs (without extractability) and from standard assumptions, it is possible to build SNARKs with black-box extractability for a non-trivial subset of NP. 3. On the other hand, we show that (under some mild assumptions) all NP languages cannot have SNARKs with black-box extractability even in the non-adaptive setting. 4. The Gentry-Wichs result does not account for the preprocessing model, under which fall several efficient constructions. We show that also, in the preprocessing model, it is impossible to construct SNARGs that rely on falsifiable assumptions in a black-box way. Along the way, we identify a class of non-trivial languages, which we dub “trapdoor languages”, that bypass some of these impossibility results
    corecore