
Efficient Modular NIZK Arguments
from Shift and Product

Prastudy Fauzi1, Helger Lipmaa1, and Bingsheng Zhang2

1 University of Tartu, Estonia
2 National and Kapodistrian University of Athens, Greece

Abstract. We propose a non-interactive product argument, that is more efficient than the one
by Groth and Lipmaa, and a novel shift argument. We then use them to design several novel
non-interactive zero-knowledge (NIZK) arguments. We obtain the first range proof with constant
communication and subquadratic prover’s computation. We construct NIZK arguments for NP-
complete languages, Set-Partition, Subset-Sum and Decision-Knapsack, with constant com-
munication, subquadratic prover’s computation and linear verifier’s computation.
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1 Introduction

By using a zero knowledge proof [GMR85], a prover can prove the correctness of a statement without
leaking any side information. Efficient non-interactive zero knowledge (NIZK, [BFM88]) proofs are crucial
in the design of cryptographic protocols. A typical application is e-voting, where the voters must prove the
correctness of encrypted ballots and the servers must prove the correctness of the tallying process. Since
the voters may not be available every time when one verifies the ballots, one cannot rely on interactive
zero knowledge. Moreover, it is important to have succinct (e.g., logarithmic in input size) NIZK proofs
with efficient verification. For example, in e-voting, correctness proofs are collected and stored, and then
verified by many independent observers.

It is well-known that NIZK proofs are impossible in the standard model without any trust assump-
tions. One usually constructs NIZK proofs in the common reference string (CRS, [BFM88]) model, where
all parties have access to a CRS generated by a trusted third party. (We do not consider the random
oracle model, since random oracles cannot always be instantiated [CGH98,GK03].) Moreover, one can
only construct succinct computationally sound proofs, also known as arguments [BCC88].

Only a few generic techniques of constructing succinct NIZK arguments for non-trivial languages
are known, unless P = NP. In [Gro10], Groth constructed non-interactive witness-indistinguishable
(and weakly sound, see [Gro10]) product and permutation arguments. He used them, together with
some other arguments, to construct the first succinct NIZK argument for an NP-complete language,
Circuit-SAT. The latter argument is modular, i.e., it is in a black-box way based on a small number
of basic arguments. Let n = |C| be the circuit size. Groth’s product and permutation arguments have
CRS length and prover’s computation Θ(n2), while the communication and verifier’s computation are
constant. (The communication is given in group elements, and the computation is in group operations.)
His Circuit-SAT argument has the same complexity parameters, except that the verifier’s computation
is Θ(n), see Table 1. (The verifier’s computation in Lipmaa’s argument in Table 1 differs from what was
claimed in [Lip12]. The slightly incorrect claim from [Lip12] was also replicated in [CLZ12]. See Remark 1
on page 12.)

Lipmaa [Lip12] improved Groth’s basic arguments. Let r3(N) = N1−o(1) be the size of the largest
known progression-free subset [Elk11] of [N ] = {1, . . . , N}. (See Sect. 2.) Lipmaa’s basic arguments have
CRS length Θ(r−1

3 (n)) = n1+o(1), and slightly better prover’s computation. This results straightforwardly
in a more efficient modular Circuit-SAT argument. Another important property of Lipmaa’s arguments
is the flexibility in choosing the progression-free set. For small values of N the value r3(N) is much smaller
than predicted by Elkin, [Dyb12,ET36]. For practically all interesting values of n, one should choose the
Erdős-Turán progression-free set [ET36], which results in the CRS length Θ(nlog2 3), with a very small
constant. Given any progress in the theory of progression-free sets, Lipmaa’s arguments can become



even more efficient. Thus, Groth’s and Lipmaa’s basic arguments offer essentially optimal communication
and verifier’s computation, but they are quite inefficient in other parameters. We estimate that due to
quadratic prover’s computation, they can only handle circuits of size ≤ 210.

The basic arguments of [Gro10,Lip12] can be used to construct other modular arguments. E.g., a
modular range argument was constructed in [CLZ12]. As shown in [LZ12], following the same framework,
one can construct other basic arguments — for example, 1-sparsity in [LZ12] — and use them to construct
efficient modular arguments (shuffle in [LZ12]). It is an important open problem to increase the library
of basic arguments even further, and to investigate for which (complex) languages one can construct
efficient arguments by using the basic arguments in a modular manner. Moreover, the basic arguments
of Groth and Lipmaa are computationally intensive for the prover. It is desirable that the new basic
arguments (that at the same time have meaningful applications) were more efficient.

We construct a more efficient variant of Lipmaa’s product argument, and we propose a new efficient
shift-by-ξ argument. We then demonstrate the power of the modular approach, by using the product
argument and the shift argument — together with some other, even simpler, arguments — to make the
modular range argument of [CLZ12] more efficient, and then to construct efficient modular arguments for
Set-Partition, Subset-Sum and Decision-Knapsack (all NP-complete languages). All new argu-
ments have constant communication, and significantly improved prover’s computation (Θ(r−1

3 (n) log n)
versus Θ(n2) in previous work). By using the same basic arguments, one can clearly construct modular
NIZK arguments for other languages.

More precisely, we first modify the commitment scheme from [Lip12]. In that commitment scheme
(and thus also in all related NIZK arguments), one uses a progression-free set Λ of odd positive integers.
When the new commitment scheme is used, Λ can be an arbitrary progression-free set. This is important
conceptually, making it clear that one requires progression-freeness of Λ (and nothing else) in similar
arguments.

We then construct a more efficient product argument by applying two unrelated algorithmic tech-
niques to the product argument of [Lip12]. While not new, these techniques help us to significantly speed
up the product argument, and thus also other arguments that we build on top of it. First, we use Fast
Fourier Transform (FFT, [CT65]) based polynomial multiplication [GS66] to reduce the prover’s com-
putation from Θ(n2) to n1+o(1) Zp-multiplications. In addition, one has to evaluate two Θ(n)-wide and
two Θ(r−1

3 (n))-wide bilinear-group multi-exponentiations. Due to this, the new product argument has
prover’s computation and CRS length n1+o(1). We note that FFT-based techniques are not applicable
to optimize the arguments of Groth [Gro10], since there the largest element of Λ is Θ(n2).

Second, we use Pippenger’s [Pip80] algorithm to speed up multi-exponentiations. More precisely, the
prover must perform Θ(r−1

3 (n)) bilinear-group multiplications to evaluate two Θ(r−1
3 (n))-wide bilinear-

group multi-exponentiations needed in Lipmaa’s product argument. This is smaller than the number
of Zp-multiplications but since bilinear-group multiplications are more expensive, we will count them
separately.

We were unable to apply FFT to the permutation argument from [Lip12]; this is since Lipmaa’s
product argument has an FFT-friendly construction while the permutation argument has a more complex
structure. (Thus, the idea of using FFT is not as straightforward as it may seem initially.) Instead,
we propose shift-by-ξ and rotation-by-ξ arguments that have constant communication and verifier’s
computation, and linear prover’s computation and CRS length. None of these complexities depends on
ξ. Thus, the new shift and rotation arguments are (in some parameters) Θ(n) times more efficient than
Groth’s permutation argument. As a drawback, we prove their security only by reduction to the Φ-PSDL
assumption [CLZ12] (see Sect. 3), which is a generalization of the Λ-PSDL assumption from [Lip12]. To
show that the Φ-PSDL assumption is reasonable, we prove that the Φ-PSDL assumption is secure in the
generic group model.

We show that based on the product and shift arguments, one can build efficient modular arguments
for several important languages. All our applications use an intermediate scan argument that verifies
that one vector is the scan [Ble90] (or sum-of-all-prefixes) of another vector. While the scan argument
can be straightforwardly constructed from the shift argument, it serves as a very useful intermediate
building block.

In a range argument (or a range proof, see [Bou00,LAN02,Lip03,CCs08,CLs10]), the prover aims to
convince the verifier that the committed value belongs to an integer range [L,H]. Range arguments
are needed in many cryptographic applications, typically in cases where for the security of the master
protocol (e.g., e-voting or e-auctions) it is necessary to show that the encrypted or committed values
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Table 1. Comparison of modular NIZK arguments for NP-complete languages with (worst-case) sublinear ar-
gument size. Here, n is the size of circuit, N = r−1

3 (n), and N∗ = r−1
3 (
√
n), and m is the balancing parameter.

Moreover, g corresponds to 1 group element and a/m/mb/e/p correspond to 1 addition/Zp-multiplication/bilinear-
group multiplication/exponentiation/pairing.

m |CRS| |Argument| Prover comp. Verifier comp.

Circuit-SAT arguments from [Gro10]

1 Θ(n2)g Θ(1)g Θ(n2)e Θ(n)mb +Θ(1)p

n1/3 Θ(n
2
3 )g Θ(n

2
3 )g Θ(n4/3)e Θ(n)mb +Θ(n

2
3 )p

Circuit-SAT arguments from [Lip12]

1 Θ(N)g Θ(1)g Θ(n2)a +Θ(N)e Θ(n)e + 62p√
n Θ(N∗)g Θ(

√
n)g Θ(n3/2)a +Θ(

√
n ·N∗)e Θ(n)e +Θ(

√
n)p

Set-Partition, Subset-Sum and Decision-Knapsack arguments from the current paper

1 Θ(N)g Θ(1)g Θ(N logn)m +Θ(N)mb Θ(n)mb +Θ(1)p√
n Θ(N∗)g Θ(

√
n)g Θ(

√
n ·N∗ logn)m +Θ(

√
n ·N∗)mb Θ(n)mb +Θ(

√
n)p

come from a correct range. Construction of non-interactive range arguments has only taken off dur-
ing the last few years [RKP09,CLZ12]. In [CLZ12], Chaabouni, Lipmaa and Zhang used the product
and permutation arguments of [Lip12] to construct the first known constant-communication (interac-
tive or non-interactive) range argument over prime-order groups. They achieved this by combining the
basic arguments of [Gro10,Lip12] with several different (and unrelated) techniques that were developed
specifically for range arguments in [LAN02,CLs10].

We use the new basic arguments to optimize the range argument from [CLZ12], reducing the prover’s
computation from Θ(h2) to Θ(r−1

3 (h) · log r−1
3 (h)) multiplications in Zp, and from Θ(r−1

3 (h)) bilinear-
group exponentiations to Θ(r−1

3 (h)) bilinear-group multiplications. Here, h = log2(H − L). The new
argument is the first range argument at all (i.e., not only in prime-order groups) that has constant-
length arguments and subquadratic-in-h prover’s computation. See Sect. 6. We also note that [CLZ12]
replicated the small mistake of [Lip12] (see Remark 1) and thus the computational complexity of the
argument of [CLZ12] is larger than claimed in [CLZ12]. We propose another modification of the range
argument of [CLZ12] to make it even more efficient. We also discuss balanced versions of the new range
argument with better prover’s computation but larger communication.

We then proceed to demonstrate the power of the “shift-and-multiply” modular approach. We also
construct an efficient NIZK argument for the NP-complete language Set-Partition (the prover knows
a partition of the given set of integers to two sets that have the same sum), where the communication
and computation are dominated by two product arguments and one shift argument. The new argument
has parameters outlined in Table 1. In this case, n denotes the cardinality of the public set. We also
construct an NIZK argument for the NP-complete language Subset-Sum (the prover knows a non-zero
subset of the given set of integers that sums to 0), with parameters outlined in Table 1. In this case, n
denotes the size of the input domain, that is, the public set S is known to belong to [n]. As the final
example, we show that one can combine Subset-Sum and range arguments to construct an argument
for Decision-Knapsack, another NP-complete language.

When using the balancing techniques of [Gro10,Lip12] (briefly, instead of applying the basic arguments
to length n-vectors, apply them in parallel to m length-(n/m) vectors), if m =

√
n, we obtain balanced

NIZK arguments with the parameters, given in the last row of Table 1. (This means that by using the
techniques of [Gro10], one can construct a perfect zap with the same complexity.)

Gennaro et al [GGPR13] recently proposed an efficient Circuit-SAT argument based either on
quadratic span programs or quadratic arithmetic programs. Their argument has prover’s computation
Θ(n log3 n), which is larger than Θ(nlog2 3 log n) for all practical values of n. Subsequently, Lipmaa [Lip13]
improved the prover’s computation to Θ(n log2 n). See also [BCI+13,BSCG+13]. Since these arguments
explicitly rely on the efficient arithmetic-circuit representation of the underlying language, it is unclear if
they can be used to construct arguments with subquadratic prover’s computation for other NP-complete
languages. (Using polynomial-time reductions between NP-complete languages is usually not an option
since we are interested in subquadratic complexity.) Since we are considering different NP-complete
languages, direct efficiency comparison between [GGPR13,Lip13] and the current work is not possible.
Moreover, our approach seems to be more flexible, enabling one to construct direct NIZK arguments
without a reduction to Circuit-SAT.
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2 Preliminaries

Let [L,H] = {L,L+ 1, . . . ,H} and [H] = [1, H]. By a, we denote the vector a = (a1, . . . , an). Since for
groups G and H, their direct product G×H is also a group, we use freely notation like (g, h)a = (ga, ha).
If y = hx, then logh y := x. Let κ be the security parameter. We abbreviate probabilistic polynomial-
time as PPT, non-uniform PPT by NUPPT. Let poly(κ)/ negl(κ) be an arbitrary polynomial/negligible
function.

If Λ1 and Λ2 are subsets of some additive group (Z or Zp in this paper), then Λ1 + Λ2 = {λ1 + λ2 :
λ1 ∈ Λ1 ∧ λ2 ∈ Λ2} is their sum set and Λ1 − Λ2 = {λ1 − λ2 : λ1 ∈ Λ1 ∧ λ2 ∈ Λ2} is their difference set.
If Λ is a set, then kΛ = {λ1 + · · ·+ λk : λi ∈ Λ} is an iterated sumset, k · Λ = {kλ : λ ∈ Λ} is a dilation
of Λ, and 2̂Λ = {λ1 + λ2 : λ1 ∈ Λ ∧ λ2 ∈ Λ ∧ λ1 6= λ2} ⊆ Λ+ Λ is a restricted sumset. See [TV06].

A set Λ = {λ1, . . . , λn} is progression-free (or non-averaging, [ET36,TV06]), if no three elements of
Λ are in arithmetic progression, that is, λi + λj = 2λk only if i = j = k. That is, 2̂Λ ∩ 2 · Λ = ∅. Let
r3(N) be the cardinality of the largest progression-free set Λ ⊆ [N ]. Recently, Elkin [Elk11] proved that

r3(N) = Ω((N · log1/4N)/22
√

2 log2N ) .

Thus, for any n > 0, there exists N = o(n22
√

2 log2 n), such that [N ] contains an n-element progression-
free subset. However, for say N ≤ 225, the Erdős-Turán progression-free subset [ET36], of size ≈ N log3 2,
is larger. For N ≤ 123, the optimal values of r3(N) were recently computed in [Dyb12]. For any N , the
currently best upper bound was proven by Sanders [San11].

Polynomial factorization in Zp[X] can be done in polynomial time [LLL82,vHN10]. Let PolyFact be
an efficient polynomial factorization algorithm that on input a degree-d polynomial f outputs all d + 1
roots of f .

Let y1, . . . , yM be monomials over the indeterminates x1, . . ., xN . For every y = (y1, . . . , yM ), let
L(y) be the minimum number of multiplications sufficient to compute y1, . . . , yM from x1, . . . , xN and
the identity 1. Let L(M,N,B) denote the maximum of L(y) over all y for which the exponent of any
indeterminate in any monomial is at most B. In [Pip80], Pippenger proved that

Fact 1 Assume that h = MN · log(B + 1)→∞. Then L(M,N,B) = min{M,N} logB + h/ log h · (1 +
O((log log h/ log h)1/2)) +O(max{M,N}).

A bilinear group generator Gbp outputs a description of a bilinear group [SOK00,Jou00,BF01] gk :=
(p,G1,G2,GT , ê) ← Gbp(1κ), s.t. p is a κ-bit prime, G1, G2 and GT are multiplicative cyclic groups of
order p (with identity elements denoted by 1), ê : G1×G2 → GT is a bilinear pairing such that ∀a, b ∈ Z,
g1 ∈ G1 and g2 ∈ G2, ê(ga1 , g

b
2) = ê(g1, g2)ab. If gz generates Gz for z ∈ {1, 2}, then ê(g1, g2) generates

GT . Also, it is efficient to decide membership in G1, G2 and GT , group operations and the pairing are
efficiently computable, generators are efficiently sampleable, and the descriptions of the groups and group
elements each are O(κ) bits long. An optimal Ate pairing [HSV06] over a subclass of Barreto-Naehrig
curves can be implemented efficiently. Then, at security level of 128 bits, an element of G1/G2/GT can
be represented in respectively 256/512/3072 bits.

A trapdoor commitment scheme [BCC88] Γ consists of five PPT algorithms: a randomized common
reference string (CRS) generation algorithm Gcom, a randomized commitment algorithm Com, a random-
ized trapdoor CRS generation algorithm Gcomtd, a randomized trapdoor commitment algorithm Comtd,
and a trapdoor opening algorithm Opentd. Here, (1) the CRS generation algorithm Gcom(1κ) produces a
CRS ck, (2) the commitment algorithm Com(ck;a; r), with a new randomizer r, outputs a commitment
value A. A commitment Com(ck;a; r) is opened by revealing (a, r), (3) the trapdoor CRS generation
algorithm Gcomtd(1

κ) outputs a CRS cktd, which has the same distribution as Gcom(1κ), and a trap-
door td, (4) the randomized trapdoor commitment algorithm Comtd(cktd; r) takes cktd and a randomizer
r as inputs, and outputs Com(cktd; 0; r), and (5) the trapdoor opening algorithm Opentd(cktd, td;a; r)
outputs an rtd, such that Com(cktd; 0; r) = Com(cktd;a; rtd).

Γ is computationally binding, if no NUPPT adversary can open a commitment to two different values.
That is, for every NUPPT A,

Pr

[
ck← Gcom(1κ), (a1, r1,a2, r2)← A(ck) :

(a1, r1) 6= (a2, r2) ∧ Com(ck;a1; r1) = Com(ck;a2; r2)

]
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is negligible in κ. Γ is perfectly hiding, if the commitments of any two messages have the same distribution.
That is, for any ck ∈ Gcom(1κ) and any a1,a2, the distributions Com(ck;a1; ·) and Com(ck;a2; ·) are
equal.

The new commitment scheme allows committing to vectors of predetermined length n. Thus, one
must input n (or a reasonable upper bound on n) as an additional parameter for the (trapdoor) CRS
generation algorithms. We assume that the value of n is implicitly obvious while committing and trapdoor
opening.

Let R = {(C,w)} be an efficiently computable binary relation with |w| = poly(|C|). Here, C is a
statement, and w is a witness. Let L = {C : ∃w, (C,w) ∈ R} be an NP-language. Let n = |C| be the
input length. For fixed n, we have a relation Rn and a language Ln. A non-interactive argument for R
consists of three PPT algorithms: a common reference string (CRS) generator Gcrs, a prover P, and a
verifier V. For crs ← Gcrs(1κ, n), P(crs;C,w) produces an argument π, and V(crs;C, π) outputs either 1
(accept) or 0 (reject).

Π is perfectly complete, if for all n = poly(κ),

Pr[crs← Gcrs(1κ, n), (C,w)← Rn : V(crs;C,P(crs;C,w)) = 1] = 1 .

Π is computationally sound, if for all n = poly(κ) and NUPPT A,

Pr[crs← Gcrs(1κ, n), (C, π)← A(crs) : C 6∈ L ∧ V(crs;C, π) = 1] = negl(κ) .

Π is perfectly witness-indistinguishable, if for all n = poly(κ), if crs ∈ Gcrs(1κ, n) and ((C,w0), (C,w1)) ∈
R2
n, then the distributions P(crs;C,w0) and P(crs;C,w1) are equal. Π is perfectly zero-knowledge, if there

exists a PPT simulator S = (S1,S2), such that for all stateful NUPPT adversaries A and n = poly(κ)
(with tdπ being the simulation trapdoor),

Pr


crs← Gcrs(1κ, n),

(C,w)← A(crs),

π ← P(crs;C,w) :

(C,w) ∈ Rn ∧ A(π) = 1

 = Pr


(crs; tdπ)← S1(1κ, n),

(C,w)← A(crs),

π ← S2(crs;C, tdπ) :

(C,w) ∈ Rn ∧ A(π) = 1

 .

3 New Commitment Scheme

Let Λ = (λ1, . . . , λn) ∈ Zn and υ ∈ Z. Next, we define the (Λ, υ) trapdoor commitment scheme in group

Gz, z ∈ {1, 2}. See Prot. 1. Intuitively, a = (a1, . . . , an) is committed to as g
rσυ+

∑
aiσ

λi

z , where r is the
randomness, gz is a generator of Gz, and σ is the secret key. Groth [Gro10] proposed a variant of this
commitment scheme with Λ = [n] and υ = 0, while Lipmaa [Lip12] generalized Λ to any set Λ with
0 < λi < λi+1 and λn = poly(κ) (while still letting υ = 0).

We use the following security assumptions from [CLZ12]. Let p be as output by Gbp. Let Φ ⊂ Zp[X],
with d := maxϕ∈Φ degϕ, be a set of linearly independent polynomials, such that |Φ|, all coefficients of
all ϕ ∈ Φ, and d are polynomial in κ. Let 1 be the polynomial with 1(x) = 1 for all x ∈ Zp.

Definition 1. Gbp is Φ-PDL secure in Gz, if for any NUPPT A,

Pr

[
gk := (p,G1,G2,GT , ê)← Gbp(1κ), gz ← Gz \ {1}, σ ← Zp :

A(gk; (gϕ(σ)
z )ϕ∈{1}∪Φ) = σ

]
= negl(κ) .

Gbp is Φ-PSDL secure, if for any NUPPT A,

Pr

[
gk := (p,G1,G2,GT , ê)← Gbp(1κ), g1 ← G1 \ {1},

g2 ← G2 \ {1}, σ ← Zp : A(gk; (g
ϕ(σ)
1 , g

ϕ(σ)
2 )ϕ∈{1}∪Φ) = σ

]
= negl(κ) .

A much stronger version of the P(S)DL assumption was recently used in [BCI+13].

Theorem 1. Let Φ and d be as in above. Φ-PSDL holds in the generic group model. Any successful
generic adversary for Φ-PSDL requires time Ω(

√
p/d).
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(See App. A for a proof.) As shown in [GW11], sublinear NIZK proofs are only possible under non-
standard (e.g., knowledge) assumptions. We use the following knowledge assumption from [CLZ12]. For
algorithms A and XA, we write (y; yX)← (A||XA)(σ) if A on input σ outputs y, and XA on the same
input (including the random tape of A) outputs yX .

Definition 2. Let z ∈ {1, 2}. Gbp is Φ-PKE secure in Gz if for any NUPPT A there exists an NUPPT
extractor XA, s.t. the following probability is negligible:

Pr


gk := (p,G1,G2,GT , ê)← Gbp(1κ), gz ← Gz \ {1}, (α, σ)← Z2

p,

crs← (gk; ((gz, g
α
z )φ(σ))φ∈Φ), (c, ĉ; r, (aφ)φ∈Φ)← (A||XA)(crs) :

ĉ = cα ∧ c 6= grz ·
∏
φ∈Φ

ga`φ(σ)
z

 .

One can generalize the proof from [Gro10] to show that Φ-PKE holds in the generic group model. Let
z = 1. Consider a CRS ck that in particular specifies g2, ĝ2 ∈ G2. A commitment (A, Â) ∈ G2

1 is valid, if
ê(A, ĝ2) = ê(Â, g2). The case z = 2 is dual. The following theorem generalizes the corresponding results
from [Gro10,Lip12].

Theorem 2. Let z ∈ {1, 2}. Let Λ = (λ1, . . . , λn) with λi < λi+1 and λi = poly(κ). Let υ > λn be linear
in λn − λ1. Let Γ be the (Λ, υ) knowledge commitment scheme in Gz of Prot. 1. Let

ΦΓ := {Xυ} ∪ {X`}`∈Λ .

Then
(a) Γ is perfectly hiding, and computationally binding under the ΦΓ -PDL assumption in Gz. The reduc-

tion overhead is dominated by the time to factor a degree-(υ − λ1) polynomial in Zp[X].
(b) If ΦΓ -PKE holds in Gz, then for any NUPPT A that outputs a valid commitment C, there exists

an NUPPT extractor XA that, given the input of A together with A’s random coins, extracts the
contents of C.

Proof. Perfect hiding: follows since the output of Com is a random element of G1. Computational
binding: Assume ACom is an adversary that can break the binding property with non-negligible prob-
ability. We construct the following adversary Apdl, see Prot. 1, against the ΦΓ -PDL assumption in G1

that works with the same probability. Here, C is the challenger of the PDL game.
Assume that on step 1, ACom is successful with some probability εc. Thus, with probability εc,

(a, ra) 6= (b, rb) and

graσ
υ

z ·
∏
i∈[n]

gaiσ
λi

z = grbσ
υ

z ·
∏
i∈[n]

gbiσ
λi

z .

But then

g
(ra−rb)συ+

∑n
i=1(ai−bi)σλi

z = 1 ,

and thus

(ra − rb)συ +

n∑
i=1

(ai − bi)σλi ≡ 0 (mod p) ,

or equivalently,

(ra − rb)συ−λ1 +

n∑
i=1

(ai − bi)σλi−λ1 ≡ 0 (mod p) .

System parameters: Gbp, n = poly(κ), Λ = {λ1, . . . , λn} with λi < λi+1, λi = poly(κ), and υ > maxi λi;
Gcomtd(1

κ, n): Set gk := (p,G1,G2,GT , ê)← Gbp(1κ), gz ← Gz \{1}, (σ, α̂)← Z2
p; For i ∈ [n] do: (gz,λi , ĝz,λi)←

(gz, g
α̂
z )σ

λi
; Set (hz, ĥz)← (gz, g

α̂
z )σ

υ

; Let ck← (gk; (gz,λi ĝz,λi)i∈[n], hz, ĥz); Return (ck; td← σ);
Gcom(1κ, n): (ck; td)← Gcom(1κ); return ck;
Com(ck;a; ·), a = (a1, . . . , an) ∈ Znp : r ← Zp; return (hz, ĥz)

r ·
∏n
i=1(gz,λi , ĝz,λi)

ai ;

Comtd(cktd; ·): r ← Zp; return (hz, ĥz)
r;

Opentd(cktd, td;a, r): return rtd ← r −
∑n
i=1 aiσ

λi−υ;

Protocol 1: The (Λ, υ) trapdoor commitment scheme in Gz for z ∈ {1, 2}
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C sets gk← Gbp(1κ), gz ← Gz \ {1}, and σ ← Zp;
C sends (gk; (gσ

`

z )`∈{υ}∪Λ) to Apdl;
Apdl sets α̂∗ ← Zp;
Apdl sets ck← (gk; ((gz, g

α̂∗
z )σ

`

)`∈Λ, (gz, g
α̂∗
z )σ

υ

);
1 Apdl obtains (a, ra, b, rb)← ACom(ck);

if a 6∈ Znp ∨ b 6∈ Znp ∨ ra 6∈ Zp ∨ rb 6∈ Zp ∨ (a, ra) = (b, rb) ∨ Com(ck;a, ra) 6= Com(ck; b, rb) then Apdl
aborts ;
else

2 Apdl sets δ(X)← (ra − rb)Xυ−λ1 +
∑n
i=1(ai − bi)Xλi−λ1 .

Apdl sets (t1, . . . , tυ−λ1+1)← PolyFact(δ);

3 Apdl finds by an exhaustive search a root σ0 ∈ {ti}υ−λ1+1
i=1 , s.t. gσ

λ1

z = g
σ
λ1
0
z ;

Apdl returns σ ← σ0 to the challenger;

end

Algorithm 1: Adversary in Thm. 2

Since υ > λn, δ(X), as defined on step 2 is a degree-(υ − λ1) non-zero polynomial.
Thus, the adversary has generated a non-trivial degree-(υ−λ1) polynomial f(X) such that f(σ) ≡ 0

(mod p). Hence, Apdl can use polynomial factorization to find all roots of δ, and one of those roots must
be equal to σ. On step 3, Apdl finds the correct root by an exhaustive search among all roots returned
in the previous step. Thus, clearly Apdl returns the correct value of sk (and thus violates the ΦΓ -PDL
assumption) with probability εc. Finally, the time of Apdl is clearly dominated by the execution time of
ACom and the time to factor δ.

Extractability: By the ΦΓ -PKE assumption in group Gz, for every committer A there exists an
extractor XA that can open the commitment in group Gz, given access to A’s inputs and random tape.
Since Γ is computationally binding, then the extracted opening has to be the same that A used. ut

Sometimes, we use the same commitment scheme in both G1 and G2. In such cases, we will emphasize
the underlying group by having a different CRS, but we will not change the name of the commitment
scheme.

Let α = ||a||∞ = maxi ai, and n ≥ 2. When using Pippenger’s algorithm, the computation of
Com(ck;a; r) is dominated by L(2, n, α) = 2 log2 α + (2 + o(1)) · n log2 α/ log2(n log2 α) + O(n) Gz-
multiplications. In our applications, n � log2 α (e.g., α = 2, α = n, or even α = p given that n is
reasonably large), and thus we get a simpler bound of (2 + o(1)) log2 α · n/ log2 n + O(n) multiplica-
tions. This can be compared to 3n log2 α multiplications on average when using the square-and-multiply
exponentiation algorithm.

4 Improved Hadamard Product Argument

Next, we propose a version of the product argument of [Lip12] with respect to the (Λ, υ) commitment
scheme of Sect. 3. As we will see (both in this section and in Sect. 5), the value of υ depends on the
construction of the argument. E.g., while the commitment scheme is binding for υ > λn, for the product
argument to be (weakly3) sound we need υ > 2λn − λ1. If one uses several such arguments together
(e.g., to construct a range argument or a Subset-Sum argument), one has to choose a value of υ that is
secure for all basic arguments. We also show that one can use FFT and Pippenger’s multi-exponentiation
algorithm to make the product argument more efficient.

Assume that Γ is a trapdoor commitment scheme that commits to a = (a1, . . . , an) ∈ Znp for n ≥ 1.
In an Hadamard product argument, the prover aims to convince the verifier that given commitments A, B
and C, he can open them as A = Com(ck;a; ra), B = Com(ck; b; rb), and C = Com(ck; c; rc), s.t. ci = aibi
for i ∈ [n]. A product argument has n constraints ci = aibi for i ∈ [n].

Lipmaa [Lip12] constructed a product argument for the (Λ, 0) commitment scheme with communica-
tion of 5 group elements, verifier’s computation Θ(n), prover’s computation of Θ(n2) multiplications in
Zp, and the CRS of Θ(r−1

3 (n)) group elements. Prot. 2 presents a more efficient variant of this argument

3 For an explanation and motivation of weak soundness, we refer the reader to [Gro10,Lip12]
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for the (Λ, υ) commitment scheme Γ . Similarly to [Lip12], we use Γ in both G1 (to commit to a, b,

and c) and G2 (to commit to b and 1). Let ĉk be the CRS in group G1, and ĉk
∗

be the dual CRS in

group G2 (i.e., ĉk
∗

is defined as ĉk, but with g1 replaced by g2). Thus, e.g., (B, B̂) = Com(ĉk; b; rb).
Then, logg1 A = raσ

υ +
∑n
i=1 aiσ

λi , logg1 B = rbσ
υ +

∑n
i=1 biσ

λi , and logg1 C = ciσ
υ +

∑n
i=1 rcσ

λi . The

prover also computes an element B2, s.t. ê(g1, B2) = ê(B, g2). Thus, for (D, D̂) = Com(ĉk
∗
; 1; 0) (in G2),

logê(g1,g2)(ê(A,B2)/ê(C,D)) = (raσ
υ+
∑n
i=1 aiσ

λi)(rbσ
υ+
∑n
i=1 biσ

λi)−(rcσ
υ+
∑n
i=1 ciσ

λi)(
∑n
i=1 σ

λi)
can be written — after substituting σ with a formal variable X — as a sum of two formal polyno-
mials Fcon(X) and Fπ(X), s.t. Fcon(X) (the constraint polynomial) has one monomial per constraint
(aibi = ci) and is 0 if the prover is honest, while Fπ(X) has many more monomials. More precisely,
Fπ has Θ(r−1

3 (n)) monomials, and the CRS has length Θ(r−1
3 (n)). The honest prover has to compute

(π, π̂)← (g
Fπ(σ)
2 , ĝ

Fπ(σ)
2 ). The PSDL and the PKE assumptions guarantee that he cannot do it if at least

one of the n constraints is not satisfied.
In [Lip12], for soundness, one had to assume that the used set Λ is a progression-free set of odd positive

integers. By using such Λ, [Lip12] proved that the polynomials Fcon(X) and Fπ(X) were spanned by two
non-intersecting sets of powers of X. From this, [Lip12] then deduced (weak) soundness.

We will show that by using the (Λ, υ) commitment scheme (for a well-chosen value of υ), one can
without any loss in efficiency assume that Λ is just a progression-free set. This makes the product
argument slightly more efficient. More importantly, it makes it clear that the property that Λ has to
satisfy is really progression-freeness, and not say having only odd integers as its members.

For a set Λ and an integer υ, define

Λ̂ := {2υ} ∪ (υ + Λ) ∪ 2̂Λ . (1)

(In [Lip12], this definition was only given for υ = 0. Then, Λ̂ = {0} ∪ Λ ∪ 2̂Λ.)

Lemma 1. Assume that Λ = (λ1, . . . , λn) with λi+1 > λi, and υ > 2λn − λ1. Λ is a progression-free set
if and only if 2 · Λ ∩ Λ̂ = ∅.

Proof. Assume Λ is progression-free. Then 2̂Λ∩2 ·Λ = ∅. Since υ > 2λn−λ1, ({2υ}∪(υ+Λ))∩2 ·Λ = ∅.
(In [Lip12], υ = 0, and ({0} ∪ Λ) ∩ 2 · Λ = ∅ was guaranteed by assuming that every integer in Λ is odd
and non-zero.) Assume now that 2 ·Λ∩ Λ̂ = ∅. Thus, 2 ·Λ∩ 2̂Λ = ∅, and Λ is a progression-free set. ut

Lemma 2. For any n > 0, there exists a progression-free set Λ = {λ1, . . . , λn}, with λi < λi+1 and
λn = poly(κ), and an integer υ > 2λn − λ1, υ linear in λn − λ1, such that |Λ̂| = Θ(r−1

3 (n)).

Proof. Let Λ be the progression-free set from [Elk11], seen as a subset of [λ1, λn] (with λ1 possibly
being negative), with λn − λ1 ≈ r−1

3 (n). Since υ > 2λn − λ1 is linear in λn − λ1, Λ̂ ⊂ [2λ1, 2υ] and

|Λ̂| = Θ(r−1
3 (n)). ut

One can add any constant to all members of Λ and υ, so that the previous results still hold. In particular,
according to the previous two lemmas, the best value (in the sense of efficiency) of λn might be 0.

We state and prove the security of the new product argument when using the (Λ, υ) knowledge com-
mitment scheme by closely following the claim and the proof from [Lip12]. The (knowledge) commitments
are (A, Â), (B, B̂) and (C, Ĉ). For efficiency (and backwards compatibility) reasons, following [Lip12],
we include another element B2 to the statement of the Hadamard product language.

Since for any a and b, (C, Ĉ) is a commitment of (a1b1, . . . , anbn) for some value of rc, Prot. 2 cannot
be computationally sound (even under a knowledge assumption). Instead, as in [Gro10,Lip12], we prove
a weaker version of soundness that is sufficient to achieve soundness of the more complex arguments. The
last statement of Thm. 3 basically says that no efficient adversary can output an input to the product
argument together with an accepting argument and openings to all commitments and all other pairs of
type (y, ŷ) that are present in the argument, s.t. aibi 6= ci for some i ∈ [n]. See App:prodsec for the proof.

Theorem 3. Let n = poly(κ). Let Λ = (λ1, . . . , λn) be a progression-free set with λi+1 > λi, λi =
poly(κ), υ > 2λn − λ1, and υ = poly(κ). Let Γ be the (Λ, υ) commitment scheme in G1. Let Φ× :=
{Xυ} ∪ {X`}`∈Λ̂.
1. Prot. 2 is perfectly complete and perfectly witness-indistinguishable.
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CRS generation Gcrs(1κ, n):

Set gk := (p,G1,G2,GT , ê)← Gbp(1κ), (g1, g2)← (G1 \ {1},G2 \ {1});
Set σ, α̂← Zp, ĝ1 ← gα̂1 ;

For each ` ∈ {υ} ∪ Λ do: (g1,`, ĝ1,`)← (g1, ĝ1)σ
`

;

For each ` ∈ {υ} ∪ Λ̂ do: (g2,`, ĝ2,`)← (g2, g
α̂
2 )σ

`

;

Set D ←
∏n
i=1 g2,λi , ĉk← (gk; (g1,`, ĝ1,`)`∈{υ}∪Λ);

Return crs← (ĉk, g1, ĝ1, (g2,`, ĝ2,`)`∈Λ̂, D);

Argument generation P×(crs; (A, Â,B, B̂, B2, C, Ĉ), (a, ra, b, rb, c, rc)):

Define I1(`) := {(i, j) : i, j ∈ [n] ∧ i 6= j ∧ λi + λj = `};
For each ` ∈ 2̂Λ do: µ` ←

∑
(i,j)∈I1(`)(aibj − ci);

(π, π̂)← (g2,2υ, ĝ2,2υ)rarb ·
∏n
i=1(g2,υ+λi , ĝ2,υ+λi)

rabi+rbai−rc ·
∏
`∈2̂Λ(g2,`, ĝ2,`)

µ` ;
Return π× ← (π, π̂) ∈ G2

2;
Verification V×(crs; (A, Â,B, B̂, B2, C, Ĉ), π×):

If ê(A,B2)/ê(C,D) = ê(g1, π) and ê(g1, π̂) = ê(ĝ1, π) then accept, else reject.

Protocol 2: New product argument [[(A, Â)]] ◦ [[(B, B̂,B2)]] = [[(C, Ĉ)]]

2. If Gbp is Φ×-PSDL secure, then an NUPPT adversary against Prot. 2 has negligible chance, given

crs← Gcrs(1κ, n) as an input, of outputting inp× ← (A, Â,B, B̂, B2, C, Ĉ) and an accepting argument
π× ← (π, π̂) together with a witness w× ← (a, ra, b, rb, c, rc, (f

∗
` )`∈Λ̂), such that

(a) a, b, c ∈ Znp , ra, rb, rc ∈ Zp, and f∗` ∈ Zp for ` ∈ Λ̂,

(b) (A, Â) = Com(ĉk;a; ra), (B, B̂) = Com(ĉk; b; rb), B2 = grb2,υ ·
∏n
i=1 g

bi
2,λi

, and (C, Ĉ) =

Com(ĉk; c; rc),
(c) logg2 π = logĝ2 π̂ =

∑
`∈Λ̂ f

∗
` σ

`, where ĝ2 = gα̂2 , and
(d) for some i ∈ [n], aibi 6= ci.
The reduction overhead is dominated by the time to factor a degree-(2υ − 2λ1) polynomial in Zp[X].

Next, we will show that the product argument of this section (and also the product argument
of [Lip12]) is computationally much more efficient than it was claimed in [Lip12]. In [Lip12], the prover
was said to require computing Θ(n2) multiplications in Zp and Θ(r−1

3 (n)) exponentiations in G2. We
optimize the prover’s computation so that it will require a significantly smaller number of multiplications
and no exponentiations at all.

Theorem 4. The communication (argument size) of Prot. 2 is 2 elements from G2. The prover’s com-
putation is dominated by Θ(r−1

3 (n) · log r−1
3 (n)) multiplications in Zp and two Θ(r−1

3 (n))-wide multi-
exponentiations in G2. The verifier’s computation is dominated by 5 bilinear pairings and 1 bilinear-group
multiplication. The CRS consists of Θ(r−1

3 (n)) group elements.

Proof. By Lem. 2, the size of the CRS is Θ(|Λ̂|) = Θ(r−1
3 (n)). From the CRS, the verifier only needs

to access g1, ĝ1, and D. Since 2̂Λ ⊆ Λ̂, the statement about the prover’s computation follows from
Fast Fourier Transform [CT65] based polynomial multiplication [GS66] techniques. To compute all the
coefficients of the polynomial µ(X) :=

∑n
i=1

∑n
j=1:j 6=i(aibj−ci)Xλi+λj , the prover executes Alg. 2. Here,

FFTMult denotes an FFT-based polynomial multiplication algorithm.

For i← 0 to λn do: a†i ← 0, b†i ← 0, c†i ← 0, d†i ← 0;
For i← 1 to n do: a†λi ← ai, b

†
λi
← bi, c

†
λi
← ci, d

†
λi
← 0;

Denote a†(X) :=
∑λn
i=0 a

†
iX

i and b†(X) :=
∑λn
i=0 b

†
iX

i;

Denote c†(X) :=
∑λn
i=0 c

†
iX

i and d†(X) :=
∑λn
i=0 d

†
iX

i;
Let µ(X)← FFTMult(a†(X), b†(X)); Let ν(X)← FFTMult(c†(X), d†(X));
For i← 1 to n do: µ2λi ← µ2λi − aibi;
Let µ(X)← µ(X)− ν(X);

Algorithm 2: FFT-based prover’s computation of {µ`}
After using FFTMult to compute the initial version of µ(X) and ν(X), µ` =

∑
(i,j)∈[n]2:λi+λj=`

aibj
and ν` =

∑
(i,j)∈[n]2:λi+λj=`

ci. Thus, after the penultimate step of Alg. 2, µ` =
∑

(i,j)∈I1(`) aibj , and

after the last step, µ` =
∑

(i,j)∈I1(`) aibj − ci, as required by Prot. 2. Since FFT takes time Θ(N logN),
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where N = r−1
3 (n) is the input size, we have shown the part about the prover’s computational complexity.

The verifier’s computational complexity follows from the description of the argument. ut

FFT does not help to speed up Groth’s product argument [Gro10], since there λn = Θ(n2). FFT
does also not seem to be useful in the case of the permutation argument from [Lip12]. Finally, it may
be possible to speed up Alg. 2, by taking into account the fact that all a†, b†, c† and d† have only n
non-zero monomials.

Next, we use efficient multi-exponentiation for additional speed-up. Let α :=
max(||a||∞, ||b||∞, ||c||∞), where the prover has committed to a and b. (See Sect. 6 for the con-
crete values of α.) The number of bilinear-group operations the prover has to perform (on top of
computing the exponents by using the FFT-based polynomial multiplication) to compute π is domi-
nated by L(2, n, p) + L(2, r−1

3 (n), Θ((αn)2)). The very conservative value Θ((αn)2) follows from |µ`| =
|
∑

(i,j)∈I1(`)(aibj − ci)| ≤
∑

(i,j)∈I1(`) |aibj − ci| ≤
∑

(i,j)∈I1(`)(α
2 + α) < (n2 − n)(α2 + α) = Θ((αn)2).

Due to Fact 1, for n = Ω(log p), L(2, n, p) = 2 log2 p + (2 + o(1)) · n log2(p + 1)/(log2(2n log2(p +
1))) + O(n) = (2 + o(1)) · log2 p · n/ log2 n, and, since in our applications, n � log2Θ((αn)2),

L(2, r−1
3 (n), Θ((αn)2)) = 2 log2(αn2)+

(2+o(1))r−1
3 (n) log2 Θ((αn)2)

(log2(2r−1
3 (n) log2 Θ((αn)2)))

+O(r−1
3 (n)) =

(2+o(1))r−1
3 (n)

(log2 r
−1
3 (n))

·2 log2(αn).

Thus, the prover has to compute (2 + o(1)) · ( n
log2 n

· log2 p+
r−1
3 (n)

log2 r
−1
3 (n)

· 2 log2(αn)) bilinear-group mul-

tiplications. We will instantiate α and other values in Sect. 6.

5 Shift And Rotation Arguments

In a right shift-by-ξ argument (resp., right rotation-by-ξ argument), the prover aims to convince the
verifier that for two commitments A and B, he knows how to open them as A = Com(ck;a; ra) and B =
Com(ck; b; rb), such that ai = bi+ξ for i ∈ [n−ξ] and an−ξ+1 = · · · = an = 0 (resp., an−ξ+1 = b1, . . . an =
bξ). That is, (an, . . . , a1) = (0, . . . , 0, bn, . . . , bξ+1) (resp., (an, . . . , a1) = (bξ, . . . , b1, bn, . . . , bξ+1)). Left
shift and left rotation arguments are defined dually, we omit their descriptions.

Groth [Gro10] and Lipmaa [Lip12] defined NIZK arguments for arbitrary permutation % (i.e., a%(i) = bi
for public %). However, their permutation arguments are quite complex and computationally intensive.
Moreover, many applications do not require arbitrary permutations. We give examples of the latter in
Sect. 6.

We now describe the new right shift-by-ξ argument rsftξ([[(A, Ã)]]) = [[(B, B̃)]], that is much simpler
and significantly more computation-efficient than the generic permutation arguments of Groth and Lip-
maa. One can design a very similar rotation argument, see App. D. Let logg1 A = raσ

υ +
∑n
i=1 aiσ

λi

and logg1 B = rbσ
υ +

∑n
i=1 biσ

λi . We replace σ with a formal variable X. If the prover is honest

(full derivation of this is given in the proof of Thm. 5), then F (X) := Xξ · logg1 A − logg1 B =

−
∑ξ
i=1 biX

λi +
∑n
i=ξ+1 bi(X

λi−ξ+ξ − Xλi) + raX
υ+ξ − rbXυ. Thus, one can verify that A is a right

shift-by-ξ of B by checking that ê(A, gσ
ξ

2 )/ê(B, g2) = ê(g1, π), where π = g
F (σ)
2 is defined as in Prot. 3.

As seen from the proof of the following theorem, the actual security proof, especially for the (weaker
version of) soundness, is more complicated. Complications arise from the use of polynomials of type
Xi−Xj in the verification equation; because of this we must rely on a less straightforward variant of the
PSDL assumption than before. One has also to be careful in the choice of the set Λ: if say λn−ξ+ξ = λn,
then some of the monomials of F (X) will collapse, and the security proof will not go through.

Theorem 5. Let n = poly(κ). Let Λ = (λ1, . . . , λn) ⊂ Z, s.t. λi+1 > λi, λi 6= λj + ξ for i 6= j, and
λi = poly(κ). Let υ > λn + ξ be an integer, s.t. υ = poly(κ). Let Γ be the (Λ, υ) commitment scheme in
G1.
(1) Prot. 3 is perfectly complete and perfectly witness-indistinguishable.
(2) Let

Φξrsft := {Xυ, Xυ+ξ} ∪ {Xλi}ξi=1 ∪ {X
λi+ξ −Xλi+ξ}n−ξi=1 .

If Gbp is Φξrsft-PSDL secure, then an NUPPT adversary against Prot. 3 has negligible chance, given

crs← Gcrs(1κ, n) as an input, of outputting inprsft ← (A, Ã,B, B̃) and an accepting argument πrsft ←
(π, π̃) together with a witness wrsft ← (a, ra, b, rb, (f

∗
φ)φ∈Φξrsft

), such that

(a) a, b ∈ Znp , ra, rb ∈ Zp, and f∗φ ∈ Zp for φ ∈ Φξrsft,
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CRS generation Gcrs(1κ, n):

Set gk := (p,G1,G2,GT , ê)← Gbp(1κ), g1 ← G1 \ {1}, g2 ← G2 \ {1}, σ, α̃← Zp;
For each z ∈ {1, 2} do: g̃z ← gα̃z ;

For each ` ∈ {υ} ∪ Λ do: (g1,`, g̃1,`)← (g1, g̃1)σ
`

;

Set g2,ξ ← gσ
ξ

2 ;

For each i ∈ {λ1, , . . . , λξ, υ, υ + ξ} do: (g2,i, g̃2,i)← (g2, g̃2)σ
i

;

For each i ∈ [1, n− ξ] do: (h2,i, h̃2,i)← (g2, g̃2)σ
λi+ξ−σλi+ξ ;

Set c̃k← (gk; (g1,`, g̃1,`)`∈{υ}∪Λ);

Return crs← (c̃k, g1, g̃1, g2, g2,ξ, (g2,i, g̃2,i)i∈{λ1,...,λξ,υ,υ+ξ}, (h2,i, h̃2,i)i∈[1,n−ξ]);

Argument generation Prsft(crs; (A, Ã,B, B̂, B̃), (a, ra, b, rb)):

(π, π̃)←
∏n−ξ
i=1 (h2,i, h̃2,i)

bi+ξ
∏ξ
i=1(g2,λi , g̃2,λi)

−bi(g2,υ+ξ, g̃2,υ+ξ)
ra · (g2,υ, g̃2,υ)−rb ;

Return πrsft ← (π, π̃) ∈ G2
2;

Verification Vrsft(crs; (A, Ã,B, B̂, B̃), πrsft):

If ê(A, g2,ξ)/ê(B, g2) = ê(g1, π) and ê(g1, π̃) = ê(g̃1, π) then accept, else reject;

Protocol 3: New right shift-by-ξ argument rsftξ([[(A, Ã)]]) = [[(B, B̃)]]

(b) (A, Ã) = Com(c̃k;a; ra), (B, B̃) = Com(c̃k; b; rb),
(c) logg2 π = logg̃2 π̃ =

∑
φ∈Φξrsft

f∗φ · φ(σ), and

(d) (an, an−1, . . . , a1) 6= (0, . . . , 0, bn, . . . , bξ+1).
The reduction time is dominated by the time it takes to factor a degree-(υ+ 1) polynomial in Zp[X].

(See App. C for a proof.) In an upper level argument, the verifier must check that ê(A, g̃2) = ê(Ã, g2),
and ê(B, g̃2) = ê(B̃, g2). A simple valid choice of Λ is the initial segment of Zξ∪(Zξ+2ξ)∪(Zξ+4ξ)∪· · · .

Theorem 6. Let Λ and υ be as defined in Thm. 5. Let β ← ||b||∞, β < p. Assume n > log2 β.
The argument size of Prot. 3 is 2 elements from G2. The prover’s computation is dominated by Θ(n)
Zp-multiplications and (2 + o(1)) · log2 β · n/ log2 n + O(n) bilinear-group multiplications. The verifier’s
computation is dominated by 5 bilinear pairings. The CRS consists of Θ(n) group elements.

Proof. The prover computes two multi-exponentiations in L(2, n, β) = 2 log2 β + (1 + o(1)) ·
2n log2(β+1)

(log2(2n log2(β+1))) + O(n) = (2 + o(1)) · n log2 β
log2 n

+ O(n) bilinear-group multiplications. Other claims are

straightforward. ut

6 Applications

We will now describe how to use the new product and shift arguments to improve on the range argument
of [CLZ12], and to construct new Set-Partition and Subset-Sum arguments. Then, we combine the
Subset-Sum and range arguments to construct a Decision-Knapsack argument. In all three cases,
the shift argument is mainly used to construct an intermediate scan argument. Recall that vector b is
a scan [Ble90] of vector a, if bi =

∑
j>i aj . As abundantly demonstrated in [Ble90], vector scan (also

known as all-prefix-sums) is a powerful operator that can be used to solve many important computational
problems. In the context of zero knowledge, we will only need to be able to verify that one vector is a
scan of the second vector.

In a scan argument, the prover aims to convince the verifier that given two commitments A and
B, he knows how to open them as A = Com(ck;a; ra) and B = Com(ck; b; rb), s.t. bi =

∑
j>i aj .

A scan argument is just equal to a right shift-by-1 argument rsft1([[B]]) = [[A + B]], that proves that
bi = ai+1 + bi+1, for i < n, and bn = 0. Thus, bn = 0, bn−1 = an, bn−2 = an−1 + bn−1 = an−1 + an, and
in general, bi =

∑
j>i aj .

6.1 Improved Range Argument

Since the used commitment scheme is homomorphic, the generic range argument (prove that the com-
mitted value x belongs to the interval [L,H] for L < H) is equivalent to proving that the committed
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value y = x−L belongs to the interval [0, H −L]. In what follows, we will therefore concentrate on this
simpler case.

In [CLZ12], the authors proposed a range argument that is based on the product and permutation
arguments from [Lip12]. Interestingly, [CLZ12] makes use of the permutation argument only to show that
a vector is a scan of another vector. More precisely, they first apply a permutation argument, followed
by a product argument (meant to modify a rotation to a right shift-by-1 by clearing out one of the
elements). Hence, we can replace the permutation and product arguments from [Lip12] with the right
shift-by-1 (or scan) and product arguments from the current paper. Thus, it suffices for Λ to be an
arbitrary progression-free set. The resulting range argument is also shorter by one product argument.
The security proof does not change significantly. To show that the range argument is computationally
sound, one has to assume that the product argument and the right shift-by-1 argument are weakly sound
(and that the PKE assumption holds).

The use of the new basic arguments will decrease the number of Zp-multiplications — except when
computing the multi-exponentiations — in the main range argument from Θ(n2nv), where nv ≈ log2 u, to

Θ(r−1
3 (n) · log r−1

3 (n) ·nv) = o(logH ·22
√

2 log2 loguH · log loguH). By using Pippenger’s algorithm [Pip80],
the cost of the multi-exponentiation decreases to (2 + o(1)) ·2r−1

3 (n) log2(un)/ log2 r
−1
3 (n) bilinear-group

multiplications. The communication decreases by 4+2+3 = 9 group elements, due to the replacement of
the permutation argument with the right shift-by-1 argument (minus 4), having one less product argu-
ment (minus 2), and also because one needs to commit to one less element ((Crrot, Ĉrrot, C̃rrot) in [CLZ12],
minus 3). The verifier also has to perform 7 + 5 + 4 = 16 less pairings, due to the replacement of the per-
mutation argument with the right shift-by-1 argument (minus 7) and one less product argument (minus
5). Also, it is not necessary to verify the correctness of (Crrot, Ĉrrot, C̃rrot) (minus 4). One can analogously
compute the verifier’s computation, see Table 2.

Remark 1. In the permutation argument of [Lip12], the verifier also has to compute a certain triple
(T ∗, T̂ ∗, T ∗2 ) by using 3 multi-exponentiations. This is not included in the comparison table (or the
claims) in [Lip12], and the same mistake was replicated in [CLZ12]. Table 1 and Table 2 correct this
mistake, by giving the correct complexity estimation of the arguments from [Lip12,CLZ12]. The range
argument from [CLZ12] only uses the permutation argument with one fixed permutation (rotation), and
thus the value (T ∗, T̂ ∗, T ∗2 ), that corresponds to this concrete permutation, can be put to the CRS. After
this modification, the verifier’s computational complexity actually does not increase compared to what
was claimed in [CLZ12]. Since [CLZ12] itself did not mention this, we consider it to be an additional
small contribution.

Since the non-balanced range argument only uses one permutation argument, the corrected permutation
argument of this paper makes the argument shorter by 4 group elements, and decreases the verifier’s
workload by 7 pairings.

One can consider now several settings. The setting u = 2 minimizes the communication and the

verifier’s computational complexity. The setting u = 2
√

log2H minimizes the total length of the CRS
and the argument. The setting u = H minimizes the prover’s computational complexity. See Table 2.

Here, n ≈ loguH, nv = blog2(u− 1)c, h = log2H, N = r−1
3 (h) = o(h22

√
2 log2 h), and N∗ = r−1

3 (
√
h) =

o(
√
h · 22

√
log2 h). The rest of the notation is as in Table 1.

Theorem 7. Let Γ be the (Λ, υ) commitment scheme in group G1. Let Λ = (λ1, . . . , λn) ∈ Zn be
progression-free, s.t. λi+1 > λi + 1 and λi = poly(κ). Let

Φ := Φ× ∪ Φ1
rsft = {Xυ, Xυ+1, Xλ1} ∪ {Xλi−1+1 −Xλi}ni=2 ∪ {X`}`∈Λ̂ . (2)

Let υ > max(2λn − λ1, λn + 1) be linear in λn − λ1. The modified range argument is complete and
computationally zero knowledge. Also, if Gbp is Φ-PSDL secure and the Φ-PKE assumption holds in G1

and the Φ-PKE assumption holds in G2, then the range argument is computationally sound.

The proof is similar to [CLZ12]. Note that λi+1 > λi + 1 guarantees that both λi+1 > λi and λj 6= λi + 1
for i 6= j.
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Table 2. Comparison of NIZK range arguments

|CRS| |Argument| Prover comp. Verifier comp.

[RKP09] Θ(1)g Θ(h)g Θ(h) Θ(h)
[RKP09] Θ(h/ log h)g Θ(h/ log h)g Θ(h/ log h) Θ(h/ log h)

Chaabouni, Lipmaa, and Zhang [CLZ12]

General Θ(r−1
3 (n))g (5nv + 40)g Θ(n2nv)m +Θ(r−1

3 (n)nv)e Θ(n)e + (9nv + 81)p

u = 2 Θ(N)g 40g Θ(h2)m +Θ(N)e Θ(h)e + 81p

u = 2
√
h Θ(N∗)g ≈ (5

√
h+ 40)g Θ(h3/2)m +Θ(

√
h ·N∗)e Θ(

√
h)e + (9

√
h+ 81)p

u = H Θ(1)g ≈ (5h+ 40)g Θ(h)m +Θ(h)e Θ(1)e + (9h+ 81)p

The current paper

General Θ(r−1
3 (n))g (5nv + 31)g Θ(r−1

3 (n) log r−1
3 (n) · nv)m +

Θ(r−1
3 (n)nv)mb

(9nv + 65)p

u = 2 Θ(N)g 31g Θ(N · logN)m +Θ(N)mb 65p

u = 2
√
h Θ(N∗)g ≈ (5

√
h+ 31)g Θ(

√
h·N∗ · logN∗)m+Θ(

√
h·N∗)mb ≈ (9

√
h+ 65)p

u = H Θ(1)g (≈ 5h+ 31)g Θ(h)m +Θ(h)mb ≈ (9h+ 65)p

6.2 Arguments for NP-Complete Languages

Finally, we construct efficient modular arguments, that only use product and shift arguments,
for some NP-complete languages. Circuit-SAT seems to require the use of permutation argu-
ments [Gro10,Lip12], so we will find other problems.

Set-Partition. Let n � p. Given a multiset S = (s1, . . . , sn), with si ∈ Zp, and a commitment
B, in the Set-Partition argument, the prover has to convince the verifier that he knows how to
open the commitment as B = Com(ck; b; rb), such that bi ∈ {−1, 1}, and

∑n
i=1 bisi = 0. If we define

V = {i : bi = 1}, then
∑n
i=1 bisi = 0 is equivalent to

∑
i∈V si =

∑
i∈S\V si. The prover computes the

Set-Partition argument as follows.

Compute a product argument π1 for bi · bi = 1, showing that bi ∈ {−1, 1};
Compute a product argument π2 for ci = bi · si;
Compute a scan argument π3 showing that d is the scan of c;
Compute a restriction argument π4 showing the first coordinate of c + d is 0;
The Set-Partition argument is equal to (B,C,D, π1, . . . , π4);

Here, C commits to c = (b1s1, . . . , bnsn), S commits to s, and D commits to d, the scan of c. That
is, di =

∑
j>i cj , and in particular, d1 =

∑
j>1 ci and c1 + d1 =

∑
j≥1 cj . We omit the security proof of

this argument since it is similar to the proof of the Subset-Sum argument.

Subset-Sum. Another example is Subset-Sum, where the prover aims to prove that he knows a non-
zero subset of the input set S that sums to 0. In a Subset-Sum argument, the prover aims to convince
the verifier that given S = (s1, . . . , sn) ⊆ Zp, n� p, and a commitment B, he knows how to open it as
B = Com(ck; b; rb), s.t. b is non-zero and Boolean, and

∑n
i=1 bisi = 0. That is, bi = 1 iff si belongs to

the subset of S that sums to 0. (As always, the committed elements belong to Zp. Thus,
∑n
i=1 bisi = 0

holds modulo p.)

In the new Subset-Sum argument, both parties compute a commitment S to s. The prover commits
to a Boolean vector b and to a vector c, s.t. ci = bisi. He computes a commitment D to the scan d
of vector c. I.e., di =

∑
j>i cj , and in particular, d1 =

∑
j>1 ci and c1 + d1 =

∑
j≥1 cj . The resulting

Subset-Sum argument can be seen as a slight modification of the Set-Partition argument. The main
conceptual difference is that we also need to prove b 6= 0 (not necessary in the Set-Partition argument).

Compute a product argument π1 for b2i = bi, showing that b is Boolean;
Compute an argument π2 showing that b 6= 0;
Compute a product argument π3 showing that ci = bi · si for i ∈ [n];
Compute a scan argument π4 showing that d is the scan of c;
Compute a restriction argument π5 showing the first coordinate of c + d is 0;
The Subset-Sum argument is equal to (B,C,D, π1, . . . , π5);
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Here, π5 is computed by using the restriction argument from [Gro10], which adds linear number of
elements to the CRS, but has a constant complexity otherwise. The subargument π2 is computed as in
Alg. 3.

Note that the verifier can check that B̊ is correct by checking that ê(B̊, g2) = ê(B, g̊2). It is straight-
forward to prove that the new Subset-Sum argument is complete and perfectly zero-knowledge. It is
also computationally sound under appropriate assumptions. See App. E for a proof.

The resulting Subset-Sum argument is simpler than the Circuit-SAT arguments of [Gro10,Lip12]
that consist of ≥ 7 product and permutation arguments. Moreover, instead of the product and permu-
tation arguments it only uses product and a more efficient right shift-by-1 argument (zero argument is
trivial).

Assume B = g
rb
1,υ

∏
gbi1,λi ; /* we want to show that b 6= 0 */

Assume that g̊1,i = gα1i and g̊2 = gα̊2 for a secret α̊;

Create B̊ ← g̊
rb
1,υ ·

∏n
i=1 g̊

bi
1,λi

and a hybrid B∗ ← g
rb
1,υ ·

∏
g̊bi1,λi ;

Show B̊/B∗ = (̊g1,υ/g1,υ)rb commits to 0 by using the zero argument [LZ12];
Verifier checks that ê(B, g̊2) 6= ê(B∗, g2);

Algorithm 3: Argument π2

Decision-Knapsack. In the NP-complete Decision-Knapsack problem one has to decide, given a
set S, integers W and B, and a benefit value bi and weight wi of every item of S, whether there exists a
subset T ⊆ S, such that

∑
i∈T wi ≤W and

∑
i∈T bi ≥ B. One can combine a version of the Subset-Sum

argument of the current section with the range argument of Sect. 6.1 to construct a Decision-Knapsack
argument, where the prover convinces the verifier that he knows such a subset T . See Alg. 6 in App. F.
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A Proof of Thm. 1

Proof. In the generic group model, an adversary A only performs generic group operations (multiplica-
tions in G1, G2 and GT , bilinear pairings, and equality tests). A generic adversary produces an element
of Zp, which depends only on gk and ((g1, g2)φ(σ))φ∈{1}∪Φ. The only time A gets any information is when
an equality (collision) between two previously computed elements of either G1, G2 or GT occurs. We
prove that finding even a single collision is difficult even if A can compute an arbitrary group element
in unit time.

Assume that A can find a collision y = y∗ in group G1. Then it must be the case that

y =
∏

φ`∈{1}∪Φ

g
a`φ`(σ)
1

and
y∗ =

∏
`∈{0}∪Λ

g
a∗`φ`(σ)
1

for some known values of a` and a∗` . But then also∑
`∈{0}∪Λ

(a` − a∗` )φ`(σ) ≡ 0 (mod p) .

Since A does not know the actual representations of the group elements, it will perform the same group
operations independently of σ. Thus a` and a∗` are independent of σ. By the Schwartz-Zippel lemma
modulo p, the probability that ∑

`∈{0}∪Λ

(a` − a∗` )φ`(σ) ≡ 0 (mod p)

is equal to d/p for randomly chosen a` and a∗` . If A works in polynomial time τ = poly(κ), it can
generate at most τ such group elements. The total probability that there exists a collision between any
two generated group elements is thus upper bounded by

(
τ
2

)
· d/p, and thus a successful A requires time

Ω(
√
p/d) to produce one collision.

A similar bound
(
τ
2

)
· d/p holds for collisions in G2. In the case of GT , the pairing enables A to

compute up to τ different values

y = ê(g1, g2)
∑
φ1i∈{1}∪Φ

∑
φ2j∈{1}∪Φ

aijφ1i(σ1)φ2j(σ)
,

and thus we get an upper bound
(
τ
2

)
· 2d/p, and thus a successful A requires time Ω(

√
p/d) to produce

one collision. ut

B Proof of Thm. 3 (Product Argument Security)

Proof. Let h ← ê(g1, g2) and F (σ) ← logh(ê(A,B2)/ê(C,D)). Witness-Indistinguishability: since
the argument π× = (π, π̂) that satisfies the verification equations is unique, all witnesses result in the
same argument, and therefore the Hadamard product argument is witness-indistinguishable.

Perfect completeness. Assume that the prover is honest. The second verification is straightfor-
ward. For the first one, note that (after replacing σ with a formal variable X)

F (X) =(raX
υ +

n∑
i=1

aiX
λi)(rbX

υ +

n∑
i=1

biX
λi)− (rcX

υ +

n∑
i=1

ciX
λi)(

n∑
i=1

Xλi)

=rarbX
2υ +

n∑
i=1

(rabi + rbai − rc)Xυ+λi +

n∑
i=1

n∑
j=1

(aibj − ci)Xλi+λj .

Thus, F (X) = Fcon(X) + Fπ(X), where

Fcon(X) =

n∑
i=1

(aibi − ci)X2λi
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and

Fπ(X) = rarbX
2υ +

n∑
i=1

(rabi + rbai − rc)Xυ+λi +

n∑
i=1

n∑
j=1:j 6=i

(aibj − ci)Xλi+λj .

Here, F (X), Fcon(X) and Fπ(X) are formal polynomials of X, and F (X) is spanned by {X`}`∈2·Λ∪Λ̂.
More precisely, Fcon(X) is the constraint polynomial that has one monomial per constraint ci = aibi.

If the prover is honest, then ci = aibi for i ∈ [n], and F (X) = Fπ(X) is spanned by {X`}`∈Λ̂.
Denoting

π ←grarb2,υ ·
n∏
i=1

grabi+rbai−rc2,υ+λi
·
n∏
i=1

n∏
j=1:j 6=i

g
aibj−ci
2,λi+λj

=grarb2,υ ·
n∏
i=1

grabi+rbai−rc2,υ+λi
·
∏

`∈2̂Λ g
µ`
2,` ,

where µ` is as in Prot. 2, we have ê(g1, π) = ê(g1, g
F (σ)
2 ) = hF (σ) = ê(A,B2)/ê(C,D). Thus, the verifica-

tion succeeds.
Weaker version of soundness. Assume that A× is an adversary that can break the last statement

of the theorem. We construct the following adversary Â against the Φ×-PSDL assumption, see Prot. 4.

C forms crs as in Prot. 2; C sends crs to Â; Â obtains (inp×, w×, π×)← A×(crs);

if the conditions (2a–2d) in Thm. 3 do not hold then Â aborts ;
else

1 Â expresses F (X) as a polynomial f(X)←
∑
`∈Λ̂∪2·Λ f`X

`;

2 Â computes a polynomial f∗(X)←
∑
`∈Λ̂ f

∗
`X

`;

Â lets δ(X)← (f(X)− f∗(X)) ·X−2λ1 ;

Â sets (t1, . . . , t2(υ−λ1))← PolyFact(δ);

3 Â finds by an exhaustive search a root σ0 ∈ (t1, . . . , t2(υ−λ1)), s.t. gσ
υ

2 = g
συ0
2 ;

Â returns σ ← σ0 to the challenger;

end

Algorithm 4: Construction of Â in the security reduction of Thm. 3

Here, C is the challenger of the PSDL game. Let us analyse the advantage of Â. First, clearly crstd
has the same distribution as Gcrs(1κ). Thus, A× gets a correct input. She aborts with some probability
1− ε. Otherwise, with probability ε, inp× = (A, Â,B, B̂, B2, C, Ĉ) and w× = (a, ra, b, rb, c, rc, (f

∗
` )`∈Λ̂),

such that the conditions (2a–2d) hold.
The steps from step 1 onwards are executed with probability ε. Since A× succeeds and 2 ·Λ∩ Λ̂ = ∅,

at least for one ` ∈ 2 ·Λ, f(X) has a non-zero coefficient a`b` − c`. Â succeeds on step 2, since logg2 π =∑
`∈Λ̂ f

∗
` σ

`. All non-zero coefficients of X` in f∗(X) correspond to ` ∈ Λ̂. Since Λ is progression-free,
υ > 2λn − λ1, and all elements of 2 · Λ are distinct, then by Lem. 1, ` 6∈ 2 · Λ. Thus, all coefficients of
f∗(X) corresponding to any X`, ` ∈ 2 · Λ, are 0. Thus,

f(X) =
∑

`∈Λ̂∪(2·Λ)

f`X
`

and

f∗(X) =
∑
`∈Λ̂

f∗`X
`

are different polynomials with f(σ) = f∗(σ) = F (σ). All coefficients of X`, for ` < 2λ1, of both f(X)
and f∗(X) are equal to 0.
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C forms crs as in Prot. 3;

C sends crs to Ã;

Ã obtains (inprsft, wrsft, πrsft)← Arsft(crs);

if the conditions (2a–2d) in the statement of Thm. 5 do not hold then Ã aborts ;
else

1 Ã expresses F (X) as a polynomial f(X) =
∑
φ∈Φπ fφ · φ(X);

2 Ã computes a polynomial f∗(X) :=
∑
φ∈Φξ

rsft
f∗φ · φ(X);

Ã lets δ(X)← f(X)− f∗(X);

Ã uses a polynomial factorization algorithm in Zp[X] to compute all ≤ (υ + 2) roots of δ(X);

3 Ã finds by an exhaustive search a root σ0, such that gσ
`

1 = g
σ`0
1 ;

Ã returns σ ← σ0;

end

Algorithm 5: Construction of Ã in the security reduction of Thm. 5

Therefore, δ(X) is a non-zero degree-(2υ − 2λ1) polynomial, such that

δ(σ) =
∑

`∈(Λ̂∪(2·Λ))−2λ1

δ`σ
` = 0 .

Â uses polynomial factorization to find all ≤ 2(υ − λ1) roots of δ. One of the roots must be equal to
σ. On step 3, Â finds which root is equal to σ by an exhaustive search among all roots returned in the
previous step. Clearly Â returns the correct value of σ (and thus violates the Φ×-PSDL assumption)
with probability ε. The execution time of Â is clearly dominated by the execution time of A× and the
time to factor δ. ut

C Proof of Thm. 5 (Shift Argument Security)

Proof. Denote h← ê(g1, g2) and

F (σ) := logh(ê(A, g2,ξ)/ê(B, g2)) .

Witness-Indistinguishability: since argument πrsft that satisfies the verification equations is unique,
all witnesses result in the same argument, and therefore the permutation argument is witness-
indistinguishable.

Perfect completeness. The second verification is straightforward. For the first verification
ê(A, g2,ξ)/ê(B, g2) = ê(g1, π), consider

F (X) := Xξ · logg1 A− logg1 B ,
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where we have replaced σ with a formal variable X. Clearly,

F (X) =

n∑
i=1

aiX
λi+ξ −

n∑
i=1

biX
λi + raX

υ+ξ − rbXυ

=

n∑
i=n−ξ+1

aiX
λi+ξ +

n−ξ∑
i=1

aiX
λi+ξ −

ξ∑
i=1

biX
λi −

n∑
i=ξ+1

biX
λi+

raX
υ+ξ − rbXυ

=

ξ∑
i=1

an−ξ+iX
λn−ξ+i+ξ +

n−ξ∑
i=1

aiX
λi+ξ −

ξ∑
i=1

biX
λi −

n−ξ∑
i=1

bi+ξX
λi+ξ+

raX
υ+ξ − rbXυ

=

n−ξ∑
i=1

(ai − bi+ξ)Xλi+ξ +

ξ∑
i=1

an−ξ+iX
λn−ξ+i+ξ

︸ ︷︷ ︸
=:Fcon(X)

+

n−ξ∑
i=1

bi+ξ(X
λi+ξ −Xλi+ξ)−

ξ∑
i=1

biX
λi + raX

υ+ξ − rbXυ

︸ ︷︷ ︸
=:Fπ(X)

.

(3)

If the prover is honest, then ai = bi+ξ for i ∈ [n − ξ] and ai = 0 for i ∈ [n − ξ + 1, n], and thus
F (X) = Fπ(X) is spanned by {φ(X)}φ∈Φξrsft . With π as defined in Prot. 3, the second verification holds
as

ê(g1, π) = ê(g1, π
F (σ)) = hF (σ) = ê(A, g2,1)/ê(B, g2) .

Weaker version of soundness. Assume that Arsft is an adversary that can break the last state-
ment of the theorem. We construct an adversary Ã against the Φξrsft-PSDL assumption, see Prot. 5. Here,
C is the challenger of the PSDL game, and

Φπ := {Xλi+ξ, Xλi}ni=1 ∪ {Xυ+ξ, Xυ}

is defined by following the first line of Eq. (3). Let us analyse the advantage of Ã. First, clearly crstd has
the same distribution as Gcrs(1κ). Thus, Arsft gets a correct input, and succeeds with some probability
SuccsoundArsft

(Πrsft). Clearly, Ã aborts with probability 1− SuccsoundArsft
(Πrsft).

Otherwise, with probability SuccsoundArsft
(Πrsft), inp

rsft = (A, Ã,B, B̃) and wrsft = (a, ra, b, rb, (f
∗
φ)φ∈Φξrsft

),

such that the conditions (2a–2d) hold. In particular, f(X) = F (X) in Eq. (3), and

f∗(X) =

ξ∑
i=1

f∗Xλi ·X
λi +

n∑
i=ξ+1

f
Xλi−ξ+ξ−Xλi (X

λi−ξ+ξ −Xλi)+

f∗Xυ+ξX
υ+ξ + f∗XυX

υ .

For the rest of the proof to go through, we need that all polynomials that are present in monomials
Fcon(X) (Φ∗ := {Xλi+ξ : i ∈ [n − ξ]} ∪ {Xλn−ξ+i+ξ : i ∈ [ξ]} = {Xλi+ξ : i ∈ [1, n − ξ]} ∪ {Xλi+ξ : i ∈
[n− ξ + 1, n]} = {Xλi+ξ : i ∈ [n]}) are different from each other and from all polynomials in Φξrsft. This
follows from the conditions (i) λj 6= λi, (ii) λj + ξ 6= λi, (iii) λi 6= υ, and (iv) λi + ξ 6= υ, for i, j ∈ [n],
i 6= j.

Since (an, an−1, . . . , a1) 6= (0, . . . , 0, bn, . . . , bξ+1), f(X) has at least one more non-zero monomial,
either of type aiX

λi+ξ or of type (ai−ξ − bi)Xλi−ξ+ξ, than f∗(X). Since Xλi−ξ+ξ cannot be represented

as a linear combination of polynomials from Φξrsft, f(X) and f∗(X) are different polynomials with f(σ) =
f∗(σ) = F (σ).

Thus, δ(X) is a non-zero degree-(υ + 1) polynomial, such that δ(σ) = 0. Therefore, Ã can use an
efficient polynomial factorization algorithm to find all roots of δ, and one of those roots must be equal
to σ. On step 3, Ã finds which root is equal to σ by an exhaustive search among all roots returned
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in the previous step. Thus, clearly Ã returns the correct value of σ (and thus violates the Φξrsft-PSDL

assumption) with probability SuccsoundArsft
(Πrsft). Finally, the execution time of Ã is clearly dominated by

the execution time of Arsft and the time to factor δ. ut

D Rotation Argument

Since the rotation argument uses basically the same underlying ideas as the shift argument of Sect. 5,
we will only comment on the differences between the new shift argument and the corresponding rotation
argument.

In the right rotation-by-ξ argument,

F (X) =

n∑
i=1

aiX
λi+ξ −

n∑
i=1

biX
λi + raX

υ+ξ − rbXυ

=

n∑
i=n−ξ+1

aiX
λi+ξ +

n−ξ∑
i=1

aiX
λi+ξ −

n∑
i=ξ+1

biX
λi −

ξ∑
i=1

biX
λi+

raX
υ+ξ − rbXυ

=

ξ∑
i=1

an−ξ+iX
λn−ξ+i+ξ +

n−ξ∑
i=1

aiX
λi+ξ −

n−ξ∑
i=1

bξ+iX
λξ+i −

ξ∑
i=1

biX
λi+

raX
υ+ξ − rbXυ

=

ξ∑
i=1

(an−ξ+i − bi)Xλn−ξ+i+ξ +

n−ξ∑
i=1

(ai − bξ+i)Xλi+ξ

︸ ︷︷ ︸
=:Fcon(X)

+

ξ∑
i=1

bi(X
λn−ξ+i+ξ −Xλi) +

n−ξ∑
i=1

bξ+i(X
λi+ξ −Xλξ+i) + raX

υ+ξ − rbXυ

︸ ︷︷ ︸
Fπ(X)

Thus, if the prover is honest then F (X) = Fπ(X).
Here, Φ is different,

Φξrot = {Xυ, Xυ+ξ} ∪ {Xλn−ξ+1+ξ −Xλi}ξi=1 ∪ {X
λi+ξ −Xλi+ξ}n−ξi=1 .

Moreover, for the proof of soundness to go through, it is necessary that all polynomials that are present
in Fcon(X) (i.e., from the set Φ∗ := {Xλn−ξ+i+ξ : i ∈ [ξ]}∪{Xλi+ξ : i ∈ [n− ξ]} = {Xλi+ξ : i ∈ [n]}), are

mutually different and also different from every polynomial in Φξrot. For this it is sufficient that exactly
the same conditions hold as in the case of the right shift-by-ξ argument, i.e., λi+1 > λi, λj 6= λi + ξ for
i 6= j, and υ > λn + ξ.

With this modification, one can construct a rotation argument that is very similar to Prot. 3.

E Subset-Sum

Recall ΦΓ = ({Xυ} ∪ (Xλi)ni=1). We will need Φres-PKE assumptions to guarantee soundness of the
restriction argument from [Gro10], where Φres depends concretely on the restricted coordinates. Since
Φres ⊆ ΦΓ (for example, in the following theorem, Φres := {Xυ} ∪ {Xλi}ni=2), we will not have to
explicitly mention it.

Theorem 8. Let Γ = (Gcom, Com,Gcomtd, Comtd,Opentd) be the be the (Λ, υ) commitment scheme in
group G1. Let Λ = (λ1, . . . , λn) be a progression-free tuple of integers, such that λi+1 > λi + 1 and
λi = poly(κ). Let Φ be as in Eq. (2). Let υ > max(2λn − λ1, λn + 1) be linear in λn − λ1. The new
Subset-Sum argument is perfectly complete and perfectly zero-knowledge. Also, Gbp is Φ-PSDL secure
and the ΦΓ -PKE assumption holds in G1 and the Φ-PKE assumption holds in G2, then the Subset-Sum
argument is computationally sound.
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Proof. Perfect completeness: Assume the prover is honest. The product arguments π1 and π3 will
correctly verify due to Theorem 3 and replacing (A,B,C) in the theorem respectively to (B,B,B) and
(B,S,C) in the Subset-Sum protocol. The correctness of the non-zero argument π2 can be seen as
follows: π2 shows that B̊ commits to the same value (and uses the same randomizer) as B. It also shows
that B∗ commits to the same value as both B and B̊. More precisely, the zero argument convinces the
verifier that B∗ is correctly computed from B̊. Therefore the last check shows that B does not commit
to 0, since otherwise ê(B, g̊2) = ê(B∗, g2). The right shift-by-1 argument π4 will also be correctly verified
due to Theorem 5. Finally, π5 correctly verifies that the first element of c + d is 0 due to the completeness
of the restriction argument [Gro10].

Adaptive computational soundness: Let A be an NUPPT adversary that produces commit-
ments B,C,D and an accepting argument (B,C,D, π1, . . . , π5). By the Φ-PKE assumption in G2 and by
Thm. 3 and Thm. 5, the product and shift arguments are weakly sound according to the statements of
corresponding theorems. (I.e., the extractor can open the inputs to the arguments to values that satisfy
required restrictions.)

By the ΦΓ -PKE assumption in G1, there exists a non-uniform PPT extractor XA that, given A’s
input and access to A’s random coins, extracts all openings of B,C, and D. From the weaker version of
soundness of the product and shift arguments (Theorem 3 and Theorem 5), and the soundness of the
non-zero argument, we have that if Gbp is Φ-PSDL secure then the following relations hold:
1. B commits to b such that b2i = bi ⇐⇒ bi ∈ {0, 1}
2. b 6= 0, so at least one of the bi’s is 1.
3. C commits to c such that ci = bisi.
4. D commits to d such that di =

∑
j>i cj .

Up to this point, it has been verified that B is a commitment of a non-zero vector of boolean elements,
and hence C is a commitment of c = (bisi) where each element is either 0 or si, and at least one of the
elements is ci = si. Now since D is verified to be the scan of c, we have that the first element of c + d is a
sum

∑
i≥1 bisi. From the Φres-PKE assumption that guarantees the soundness of the restriction argument

(Theorem 1 and Theorem 2 of [Gro10]), we have that a correct verification implies that (c + d)1 = 0, so
A has indeed committed to a correct solution of Subset-Sum.

Perfect zero knowledge: We construct a simulator S = (S1,S2). S1 will create a correctly formed
CRS together with a simulation trapdoor td = σ. The adversary then outputs a correct statement CS
together with a witness wS . The simulator S2 creates a commitment to b = (1, 1, . . . , 1) and commitments
to the corresponding vectors c,d. Due to the knowledge of trapdoor td and the commitment scheme
being computationally (not perfect) binding, all the product, scan, non-zero and restriction arguments
can be simulated correctly. This simulated NIZK argument ψ′ is perfectly indistinguishable from the real
argument ψ. ut

F Decision-Knapsack

It is clear from the description of this argument that it works correctly. The Decision-Knapsack
argument is clearly perfectly zero knowledge and computationally sound under appropriate assumptions,
see App. F. The concrete complexity of the Decision-Knapsack argument depends on both how one
defines m in Groth’s balancing technique and u in the range argument.

Theorem 9. Let Γ = (Gcom, Com,Gcomtd, Comtd,Opentd) be the be the (Λ, υ) commitment scheme in
group G1. Let Λ = (λ1, . . . , λn) be a progression-free tuple of integers, such that λi+1 > λi + 1 and
λi = poly(κ). Let Φ be as in Eq. (2). Let υ > max(2λn−λ1, λn+ 1) be linear in λn−λ1. The Decision-
Knapsack protocol described by Alg. 6 is perfectly complete and perfectly zero-knowledge. Also, if Gbp is
Φ-PSDL secure and the ΦΓ -PKE assumption holds in G1 and the Φ-PKE assumption holds in G2, then
the Decision-Knapsack protocol is computationally sound.

Proof. Perfect completeness: Assume the prover is honest. The product arguments π1, π2, π4, π5, π7

will correctly verify due to Theorem 3 and replacing (A,B,C) in the theorem respectively to (T, T, T ),
(T,W ,WT ), (A,F,C), (T,B, BT ) and (D,F,E) in the Decision-Knapsack protocol. Here, F =
{1, 0, · · · , 0}. The right shift-by-1 arguments π3, π6 will also be correctly verified due to Theorem 5.
Finally, π8 and π9 correctly verifies from the completeness of the range argument.
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Let F be a commitment of f = (1, 0, . . . , 0, 0) with randomness 0;
Let ti = 1 iff i ∈ T ;
Generate a commitment T of t;
Prove that T is Boolean by using a product argument π1;
Generate a commitment WT of wT = (w1t1, . . . , wntn);
Prove that WT was computed correctly by using a product argument π2;
Generate a scan A of WT , ai =

∑
j>i wjtj ;

Prove that A was computed correctly by using a scan argument π3;
Generate a commitment C of (

∑n
i=1 witi, 0, . . . , 0);

Prove that C was created correctly (c is a Hadamard product of f and wT + a) by using a product
argument π4;
Generate a commitment BT of bT = (b1t1, . . . , bntn);
Prove that BT was computed correctly by using a product argument π5;
Generate a scan D of BT , di =

∑
j>i bjtj ;

Prove that D was computed correctly by using a scan argument π6;
Generate a commitment E of (

∑n
i=1 biti, 0, . . . , 0);

Prove that E was created correctly (e is a Hadamard product of f and bT + d) by using a product
argument π7;
Prove that the first element of C is ≤W by using a range argument π8;
Prove that the first element of E is ≥ B by using a range argument π9;
The whole argument is (T,WT , A, C,BT , D,E, π1, . . . , π9);

Algorithm 6: The Decision-Knapsack argument

Adaptive computational soundness: Let A be a non-uniform PPT adversary that produces
commitments B,C,D and an accepting NIZK argument (T,WT , A,C,BT , D,E, π1, · · · , π9). By the Φ-
PKE assumption in G2 and by Thm. 3 and Thm. 5, the product and shift arguments are weakly sound
according to the statements of corresponding theorems. (That is, the extractor can open the inputs to the
arguments to values that satisfy required restrictions.) By Thm. 7, the range argument is computationally
sound.

By the ΦΓ -PKE assumption in G1, there exists a non-uniform PPT extractor XA that, given A’s
input and access to A’s random coins, extracts all openings of T,WT , A,C,BT , D,E, and F . From the
weaker version of soundness of the product and shift arguments (Thm. 3 and Thm. 5), and the soundness
of the non-zero argument (Thm. 7), we have that the following relations hold:
1. T commits to t such that t2i = ti ⇐⇒ ti ∈ {0, 1},
2. WT commits to wT such that (wT )i = witi,
3. A commits to a such that ai =

∑
j>i wjtj ,

4. C commits to the Hadamard product c of f and wT + a, so c = (1 · (wT +a)1, 0 · (wT +a)2, . . . , 0 ·
(wT + a)n) = (

∑n
i=1 witi, 0, · · · , 0),

5. BT commits to bT such that (bT )i = biti,
6. D commits to d such that di =

∑
j>i bjtj ,

7. E commits to the Hadamard product e of f and bT + d, so e = (1 · (bT + d)1, 0 · (bT + d)2, · · · , 0 ·
(bT + d)n) = (

∑n
i=1 biti, 0, · · · , 0).

From the soundness of the range argument, a correct verification of π8 will imply that c1 ∈ [0, B] while
a correct verification of π9 will imply that e1 ∈ [E, 2κ] for some κ.

Perfect zero knowledge: We can construct a simulator S = (S1,S2) analogous to the simulator
for Subset-Sum. ut
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