1,901 research outputs found

    Facilitating modular property-preserving extensions of programming languages

    Get PDF
    We will explore an approach to modular programming language descriptions and extensions in a denotational style. Based on a language core, language features are added stepwise on the core. Language features can be described separated from each other in a self-contained, orthogonal way. We present an extension semantics framework consisting of mechanisms to adapt semantics of a basic language to new structural requirements in an extended language preserving the behaviour of programs of the basic language. Common templates of extension are provided. These can be collected in extension libraries accessible to and extendible by language designers. Mechanisms to extend these libraries are provided. A notation for describing language features embedding these semantics extensions is presented

    Modular Composition of Language Features through Extensions of Semantic Language Models

    Get PDF
    Today, programming or specification languages are often extended in order to customize them for a particular application domain or to refine the language definition. The extension of a semantic model is often at the centre of such an extension. We will present a framework for linking basic and extended models. The example which we are going to use is the RSL concurrency model. The RAISE specification language RSL is a formal wide-spectrum specification language which integrates different features, such as state-basedness, concurrency and modules. The concurrency features of RSL are based on a refinement of a classical denotational model for process algebras. A modification was necessary to integrate state-based features into the basic model in order to meet requirements in the design of RSL. We will investigate this integration, formalising the relationship between the basic model and the adapted version in a rigorous way. The result will be a modular composition of the basic process model and new language features, such as state-based features or input/output. We will show general mechanisms for integration of new features into a language by extending language models in a structured, modular way. In particular, we will concentrate on the preservation of properties of the basic model in these extensions

    From Event-B models to code: sensing, actuating, and the environment

    No full text
    The Event-B method is a formal approach for modelling systems in safety-, and business-critical, domains. We focus, in this paper, on multi-tasking, embedded control systems. Initially, system specification takes place at a high level of abstraction; detail is added in refinement steps as the development proceeds toward implementation. In previous work, we presented an approach for generating code, for concurrent programs, from Event-B. Translators generate program code for tasks that access data in a safe way, using shared objects. We did not distinguish between tasks of the environment and those of the controller. The work described in this paper offers improved modelling and code generation support, where we separate the environment from the controller. The events in the system can participate in actuating or sensing roles. In the resulting code, sensing and actuation can be simulated using a form of subroutine call; or additional information can be provided to allow a task to read/write directly from/to a specfied memory location

    Tools for producing formal specifications : a view of current architectures and future directions

    Get PDF
    During the last decade, one important contribution towards requirements engineering has been the advent of formal specification languages. They offer a well-defined notation that can improve consistency and avoid ambiguity in specifications. However, the process of obtaining formal specifications that are consistent with the requirements is itself a difficult activity. Hence various researchers are developing systems that aid the transition from informal to formal specifications. The kind of problems tackled and the contributions made by these proposed systems are very diverse. This paper brings these studies together to provide a vision for future architectures that aim to aid the transition from informal to formal specifications. The new architecture, which is based on the strengths of existing studies, tackles a number of key issues in requirements engineering such as identifying ambiguities, incompleteness, and reusability. The paper concludes with a discussion of the research problems that need to be addressed in order to realise the proposed architecture
    • ā€¦
    corecore