115,196 research outputs found

    Reasoning about Synchrony Illustrated on Three Models of Concurrency

    Get PDF
    This paper presents a model of concurrency (Dynamic Synchrony) whose distinctive feature is a novel formal treatment of synchronization. Synchrony is defined as the coordinated execution of two or more actions. The dynamic aspect comes from the fact that the definition of which actions must be executed synchronously can change freely during the execution of the program. This unique modeling capability comes with a UNITY-stype assertional logic that can be applied to program verification and derivation. This paper shows that the proposed proof logic can be used to verify programs expressed using other models of foncurrency without having to translate them to our notation. This capability is illustrated by verifying three versions of a parallel array summation problem, each written using a different model and notation - Swarm, Concurrent Processes, and Input/Output Automata. The new model makes UNITY-stype proofs feasible for a broad range of models of concurrency regardless of the way they handle synchronization and even if they lack an associated proof logic

    Verification of a Prolog compiler - first steps with KIV

    Get PDF
    This paper describes the first steps of the formal verification of a Prolog compiler with the KIV system. We build upon the mathematical definitions given by Boerger and Rosenzweig in [BR95]. There an operational semantics of Prolog is defined using the formalism of Evolving Algebras, and then transformed in several systematic steps to the Warren Abstract Machine (WAM). To verify these transformation steps formally in KIV, a translation of deterministic Evolving Algebras to Dynamic Logic is defined, which may also be of general interest. With this translation, correctness of transformation steps becomes a problem of program equivalence in Dynamic Logic. We define a proof technique for verifying such problems, which corresponds to the use of proof maps in Evolving Algebras. Although the transfor- mation steps are small enough for a mathematical analysis, this is not sufficient for a successful formal correctness proof. Such a proof requires to explicitly state a lot of facts, which were only impli- citly assumed in the analysis. We will argue that these assumptions cannot be guessed in a first proof attempt, but have to be filled in incrementally. We report on our experience with this `evolutionary\u27 verification process for the first transformation step, and the support KIV offers to do such incremental correctness proofs

    Synthesizing Short-Circuiting Validation of Data Structure Invariants

    Full text link
    This paper presents incremental verification-validation, a novel approach for checking rich data structure invariants expressed as separation logic assertions. Incremental verification-validation combines static verification of separation properties with efficient, short-circuiting dynamic validation of arbitrarily rich data constraints. A data structure invariant checker is an inductive predicate in separation logic with an executable interpretation; a short-circuiting checker is an invariant checker that stops checking whenever it detects at run time that an assertion for some sub-structure has been fully proven statically. At a high level, our approach does two things: it statically proves the separation properties of data structure invariants using a static shape analysis in a standard way but then leverages this proof in a novel manner to synthesize short-circuiting dynamic validation of the data properties. As a consequence, we enable dynamic validation to make up for imprecision in sound static analysis while simultaneously leveraging the static verification to make the remaining dynamic validation efficient. We show empirically that short-circuiting can yield asymptotic improvements in dynamic validation, with low overhead over no validation, even in cases where static verification is incomplete

    Fifty years of Hoare's Logic

    Get PDF
    We present a history of Hoare's logic.Comment: 79 pages. To appear in Formal Aspects of Computin

    Efficient Symmetry Reduction and the Use of State Symmetries for Symbolic Model Checking

    Full text link
    One technique to reduce the state-space explosion problem in temporal logic model checking is symmetry reduction. The combination of symmetry reduction and symbolic model checking by using BDDs suffered a long time from the prohibitively large BDD for the orbit relation. Dynamic symmetry reduction calculates representatives of equivalence classes of states dynamically and thus avoids the construction of the orbit relation. In this paper, we present a new efficient model checking algorithm based on dynamic symmetry reduction. Our experiments show that the algorithm is very fast and allows the verification of larger systems. We additionally implemented the use of state symmetries for symbolic symmetry reduction. To our knowledge we are the first who investigated state symmetries in combination with BDD based symbolic model checking

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Abstract State Machines 1988-1998: Commented ASM Bibliography

    Get PDF
    An annotated bibliography of papers which deal with or use Abstract State Machines (ASMs), as of January 1998.Comment: Also maintained as a BibTeX file at http://www.eecs.umich.edu/gasm
    • …
    corecore