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formal treatment of synchronization. Synchrony is defined as the coordinated execution of two or more
actions. The dynamic aspect comes from the fact that the definition of which actions must be executed
synchronously can change freely during the execution of the program. This unique modeling capability
comes with a UNITY-stype assertional logic that can be applied to program verification and derivation.
This paper shows that the proposed proof logic can be used to verify programs expressed using other
models of foncurrency without having to translate them to our notation. This capability is illustrated by
verifying three versions of a parallel array summation problem, each written using a different model and
notation - Swarm, Concurrent Processes, and Input/Output Automata. The new model makes UNITY-stype
proofs feasible for a broad range of models of concurrency regardless of the way they handle
synchronization and even if they lack an associated proof logic.
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Abstract

This paper presents a model of concurrency (Dynamic Synchrony) whose distinctive feature is a novel
formal reatment of synchronization. Synchrony is defined as the coordinated execution of two or more actions. The
dynamic aspect comes from the fact that the definition of which actions must be executed synchronously can change
freely during the execution of the program. This unique modeling capability comes with a UNITY -style assertional
logic that can be applied to program verification and derivation. This paper shows that the proposed proof Iogic can
be used to verify programs expressed using other models of concurrency without having to translate them to our
notation. This capability is illustrated by verifying three versions of a parallel array summation problem, each
written using a different model and notation—~Swarm, Concurrent Processes, and Input/Output Automata. The new
model makes UNITY -style proofs feasible for a broad range of models of concurrency regardiess of the way they

handle synchronization and even if they lack an associated proof logic.
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1. Introduction

Reliability, a growing concern in the software development arena, has lead to increased dependence on
formal proofs of critical components and algorithms, The use of assertional-style proof techniques was formally
introduced for sequential algorithms by Floyd [6). This work was further developed by Hoare [10] and Manna and
Pnueli {16] for proving, respectively, the partial and total correctness of the *while’ construct. Assertional
techniques were also used in program derivation, both for program refinement (Dijkstra [5) ) and data refinement
(Gries [B]).

The correctness of concurrent programs was first tackled by Owicki and Gries [19] for proving partial
correctness, mutual exclusion, and absence of deadlock. In related but independent work, Lamport [12] describes the
use of control predicates to prove interference freedom in programs. This paper also introduced the terms safety and
liveness. Later on, Apt, Francez, and De Roever [2] extended Hoare's Communicating Sequential Processes (CSP)
[11] with an axiomatic proof system, and Andrews and Reitman [1] proposed an axiomatic proof system based on the
information flow in a program. Generalized Hoare Logic was developed by Lamport [13] to verify safety propertics

of concurrent programs by vsing an invariant to describe a program.

Because proofs are difficult and costly, especially when they involve concurrency, techniques that simplify
program verification are a welcome addition to the software designer's arsenal of conceptual tools. Qur experience
indicates that the UNITY logic [3] has the potential for reducing the effort required to reason about concurrent
computations. UNITY has shown that it is possible to reason about concurrent computations directly from the
program text, without having to consider possible execution sequences of the computation. A UNITY program
consists of a static set of deterministic multiple-assignment statements that modify a fixed set of shared variables.
The statements are executed nondeterministicly, but fairly. The UNITY proof logic is based on a restricted case of
temporal logic [15] . Program properties are expressed as assertions of the form { p } 5 { q }, where s is
universaily or existentially quantified over the statements of the program and p and g are predicates over the data
state. Safety properties characterize permissible state transitions while progress properties specify which state

transitions mnst occur.

Building upon UNITY, the Swarm model [20] and its proof system [4, 21] have extended the applicability
of assertional-style proofs to content-addressable data access, to dynamic data and actions, and to dynamic forms of
synchrony between actions. This allowed the use of assertional-style proofs in rule-based programming [7], made it

possible to reason about programs involving multiple computing paradigms (such as shared-variable, message



passing, and rule-based), and opened the possibility of verifying software which executes on networks consisting of a

mixture of synchronous and asynchronous machines,

The fact that the UNITY logic was amenable to extensions that represent such a major departure from
UNITY itself begs the question of whether it could be applied to an even broader set of models and programming
languages. One first step in this direction is to develop a proof logic which enable us to construct UNITY-like
assertional proofs for programs expressed in other models of concurrency. In this paper, we propose such a
framework, named the dynamic synchrony {DS) model, as an extension of the Swarm model and show its nsefulness
by proving the correctness of an array summation program expressed in three different models of concurrency:
Swarm, Concurrent Processes (CP) [17], and Input/Output Automata (IQA) [14]. It is important to note that neither
CP nor I/O Automata have assertional-style proof logics. We believe that the same framework will later prove

usable in conjunction with actual programming languages.

Although the three models considered here employ radically different forms of synchronization, the
verification is carried out by the same proof logic. This is because in our framework synchronization rules are
explicitly specified by employing a synchronization predicate defined over the combined data and control state of the
program. In each state, the synchronization predicate determines which actions are to be executed synchronously,
The built-in synchronization rules associated with currently-popular models of concurrency appear to have immediate
formulations in the DS model. Furthermore, since the synchronization may change from one state to the next,
highly dynamic and somewhat exotic forms of synchrony may be modeled and reasoned about in ways not previously

possible.

In the following, Section 2 describes the framework and its proof system. Section 3 contains the definition
of the array summation problem and its principal proof obligations while Sections 4, 5, and 6 contain the
representation of the program and its proofs for Swarm, Concurrent Processes, and Input/Output Automata,

respectively. Section 7 presents conclusions and indicates the direction of future research.

2. A Framework for Synchrony

Consider a concurrent program P, In the absence of synchrony, its current state ¢ is fully determined by its
data and control states. Given some possibly infinite universe of data objects D and atomic program actions A, the
data state 0.d of P is characterized by the set of data objects currently in existence, and the control state o.a by (he set
of program actions currently enabled. In the case of a sequential program operating over a set of simple variables,
for instance, the data state may be viewed as a set of name-value pairs and the control state consists of a sin gle

action, the staterent indicated by the program counter.



We define synchrony as the coordinated execution of two or more actions of program P. Any single action can
always be seen as coordinating its execution with itself. Two distinct actions that coordinate their execution are said
to be in synchrony with each other. We require actions which are in synchrony which each other to be executed
together as a group. Given an arbitrary group (set) of actions yand the current state ¢ of a program P, ymay be
executed if and only if ail its actions are enabled and in synchrony with each other. A set of actions which is
executable is called a synchronic group. We use the predicate Z(y, o) to state that a group of actions vy is executable
in state o, E(y, o} to state that all actions in y are enabled, and O(Y, o) to state that the actions in y must be
executed synchronously, ie., ¥ is said to be feasible. ®(y, ) is problem specific, By, 0) = yc o.a , and 3(3, 6)
= @(y, 0} A E(y, 6). For the sake of brevity, we overload the notation by omitting the state & whenever the state
may be deduced from the context. Finally, we often use the notation & in place of { ) for sets consisting of single
actions.

Starting from some valid initial state gy, an execution of a program P is an alternating sequence of program
states and synchronic groups:

O0Y0C017102Y2CG3Y304°*+~
Each subsequence of the form ¢y &', also called a step, corresponds to the selection of a (non-empty) synchronic
group in the state ¢ and its execution resulting in the state &’ At each step, any enabled action is selected and some
synchronic group to which it belongs is executed. By convention, the selection of an enabled action which does not
belong to any synchronic group has no effect on the computation. A computation is considered terminated once no
more synchronic groups can be selected. All executions are considered infinite by extending finite ones with pairs
consisting of an empty set of actions and the final state of the finite execution. An execution is said to be fair if any

continuously enabled action is eventually selected for execution.

All existing programming languages and models include notation and constructs that specify which actions
are enabled. Flow-of-control constructs serve this purpose in imperative languages. The availability of input
identifies enabled functions in dataflow languages. The mere presence of a statement indicates enablement in
UNITY. The predicate E (enabled) is simply an abstraction for any such mechanism uvsed to specify which actions

are enabled in the current state.

Similarly, the predicate ® (feasible) is an abstraction for mechanisms used to specify that two of more
actions must be executed synchronously. When modeling UNITY, the predicate & has to capture the *I” construct.
In the case of CSP[11], & must express the fact that matching pairs of input/output commands must execute

synchronously. When modeling an SIMD machine, & must state that all enabled statements are executed



synchronously and every processor executes the same statement. To fully appreciate the power of this model one
must note that most models (with the notable exception of Swarm) do not allow the programmer to change
dynamically the specification of which actions are in synchrony with which other actions. Given the fact that & is
state-dependent, rather than merely action dependent, our framework is fully capable of capturing dynamic changes in
the type of synchrony employed by programs. In Swarm, for instance, the programmer has the ability to bring in
and out of synchrony any actions one may desire, i.e., the same two actions may be executed either synchronously or
asynchronously under direct programmer control. Even this rather unique feature of Swarm (together with all its
idiosyncrasies) can be easily captured by a proper definition of @. We will show that the dynamic synchrony model

is much more general that Swarm.

Next we extend this framework with a proof system based on the assertional logic of Swarm[4, 21] and
indirectly on that of UNITY [3]. We use, for the most part, the notational conventions of UNITY. For the sake of
clarity, free variables appearing in properties and inference rules are assumed to be universally quantified by
implication.

The meaning of an action ¢ is specified by a Hoare triple [10]: {plalql
where p and ¢ are predicates on the computation state before and after executing o, respectively. Informally, this
assertion is true if and only if forcing the execution of action o. (whether executable or not) in a state satisfying p
could result in a state satisfying predicate 4. By extension, the meaning of a set of actions y= { oy, ..., Oy } can
be specified by a “Hoare” wiple [ p1 y{ ¢ }. These formulas reflect the potential effect of executing an action or
a group of actions, regardless of whether or not these actions are actually executable or even enabled in the current

state.

A program, however, does not execute arbitrary actions but synchronic groups, i.e., sets of actions which

are both enabled and feasible. The inference rule (IR1) states that an executable synchronic group does in fact ch ange

the program state:
(R1) Iplylqlp= 2y
{p)viaq}
Of course, a non-executable synchronic group can not change the state of the program:
(IR2) P = —(E{)
{pivip}

As in UNITY, all safety properties of a program are specified in terms of the unless relation. Given two

predicates p and g, p unless g specifies that whenever the program is in a state satisfying p but not ¢, any state



change will result in a state still satisfying either p or ¢. In the UNITY model, this has to be proven solely for
every possible statement of the program taken individually. In DS, as any group of actions can potentially be
executed together, we need to prove that any subset of the universe A of actions will either maintain p or establish g.

More formally, the inference rule needed (o establish p unless g has the form:
(IR3) (Yy:ycAu{pa-gly{pval))

p unless g

It should be obvious that any set of actions which is not executable in any state satisfying p, trivially preserves p.
This definition mirrors the one in the Swarm model if ¥ is restricted to the universe of synchronic groups rather that

the powerset of A. Based on the unless relation, we define the stable and invariant (inv.) relations as in UNITY:
stable p = p unless false
invariant p = INIT = p A stable p

where INIT is a predicate describing the initial state of the computation.

The most basic kind of progress property is expressed using the ensures relation. Given two predicates p
and g, p ensures g is true if 1) p unless ¢ holds and 2) q is eventually established. In UNITY, this is the case if
there exists one statement which, executed in a state in which p A —g is true, establishes ¢. In constrast, due to its
dynamic nature, Swarm requires that 1) some action & be enabled in the dataspace satisfying p A —q , and 2) every
synchronic group containing ¢ will, if executed, establish g. In DS, we need to further expand this definition to iake
into account that in DS an action can be removed before being executed and an enabled action need not be a member
of any synchronic group. Thus, we define the ensures relation as follows: Given two predicates p and Q. p
ensures ¢ is true if 1) p unless ¢ holds, 2) there exists an action o which remains part of some synchronic group

until g is established and, 3) any executable synchronic group containing o establishes g upon execution in a state

statisfying p A —g:
p unless q,
(IR4) {(Joa:ce A (pA—ﬂq=>(3'y:IgA/\ae7::5(7)))/\
(Yy:vcAnroeynEWa{par-qly{ql}l)

p ensures

The requirement that p must hold while g is not true is relaxed in the definition of the leads-to relation
(represented, as in UNITY, by the symbol ). The property p — q holds if and only if it can be derived from a

finite number of applications of the following inference rules:



PpP—=ag
Pryqg . gr
2) transitivity Y
3) disjunction (Ym:me Wipm)sqg)

(Idm:me W:ip(m)dresgqg

3. An example: array summation

In the following sections, we use the DS logic to prove correct three versions of a parallel array summation
program expressed, respectively, in Swarm, CP, and IOA. Because the three models employ distinct synchronization
strategies, the three programs shape the computation in distinct ways. The summation of the N clement array A is
accomplished by the successive computation of partial sums (adapted from the one given in [9]). For simplicity of
presentation we assume that NV is a power of 2. In all cases the summation process may be perceived as following a
tree structure with the leaf nodes corresponding to the initial array values and the internal nodes to partial sums (see
Fig. 1). The computation advances by computing new partial sums until the root contains the sum over all array
values. For reasons of convenience, all array values or partial sums already subsumed by nodes further in the tree are

discarded or ignored, while partial sums not yet computed are treated as undefined.

All]

position

generation

Fig. 1. The summation tree for N = 8




Let T denote the set of nodes in the summation tree. The location of each node # in the tree is defined in
terms of a generation gen(n)—powers of 2—and a position within the generation pos(r), as shown in Fig. 1. A
value val(n) is associated with each node. This value is either some value in the array A, some partial sum, or the
special symbol L indicating that the value of the node is undefined or is to be ignored. The predicate leaf(n) is true if
the node n is a leaf of T. For a non-leaf node n, lefi(n) and right(n) represent the left and right child, respectively.
Finally, the function reot(T) returns the root node of T, and ree(n) the subtree rooted at node #. The formal

definitions of gen(n), pos(n), and tree(n) are as follows:

{ 1 if leaf(n)
gen{n) =
2gen(left(n))  if —leaf(n)

N n = root(T)

pos(n) =9 pos{m)-gen{m) n = left(m)

pos{m) n = right(m)
{ {n} leaf(n)
ree(n) =
tree(left(n)) w [ n } U tree(right(n)} —leaf(n)

From these definitions, we have the following properties!:
l<gen(n)sNA(Jj:j=0: gen(n)=2i)
1 < pos(n) <N A pos(n) mod gen(n) =0

n=100lT) < gen(n) = pos(n) =N

m = left(n) < —leaf(n} A gen{m) =g~§~g—§m A pos(m)=pos(n)—gen{n)

m = right{n) < —leaf{n) A gen(m) =ge_;m) A pos(m) = pos(n)

The basic specification of the array summation problem is given by four properties which state that 1)

initially only leaf nodes have defined value, the array element corresponding to the position of the node, 2) the sum

! The three-part notation ( op quantified variables : range :: expression ) used throughout the text is defined as
follows. The variables from quantified_variables take on all possible values permitted by range. If range is missing,
the first colon is omitted and the domain of the variables is restricted by context. Each such instantiation of the
variables is snbstituted in expression producing a multiset of values to which op is applied, yielding the value of the
three-part expression. If no instantiation of the variables satisfies range, the value of the three-part expression is the

identity element for op, e.g., true when op is V, 0 when op is ¥, etc.



of the values stored in the computation tree, excluding the ignored or undefined nodes, is constant and equal (o the
sum of the array values, 3) the value at the root node of T eventually becomes the sum of the array values and 4)

once the value of the root is equal to the sum, it remains such. Formally, they are captured by the assertions:
®0) INIT = {V n:ne T: (leaf(n) = vai(n) = Alpos(n)]) A ( —leaf(n) = val(n) = 1))
(P1) inv, Sum(T) = SumA
P2) INIT t» val(root(T)) = SumA
P3) stable val(root(T)) = SumA
where Sum(T) is the sum of the nodes in tree T whose value is not 1., and SwmA is the sum of the elements of the
array 4, i.e.,
SumA=(Xi:1<ig<N:All)
Sum(={(Zn:ne tavaln)= 1 val(n) )

To prove the progrress conditions of the individual programs, we need to define a well founded metric and to
show that the metric decreases during the computation, eventnally reaching a minimum value which marks the

completion of the summation process. We chose as our metric to be:
M={Xn:ne T aval(n)# L :N-genn))

Since gen(n) is at most N, the metric is well founded. Moreover, one can easily show, based on the definition of a7
and property (P0) that:

o1 INIT = M= N*(N-1)

D) inv. M= 0= val(root(T)) = SumA
‘We take advantage of (D2) and refine (P3) to be:

(P3.1) stable & =0
As mentioned before, progress will be proven by showing that the metric decreases at each step and, eventually,
reaches zero. This suggests the following refinement of (P2):

(P2.1) M=kak>0— <k

q Proof: (P2.2) is a refinement of (P2)
M=kak>0— M<k
= [ M =0 2= 0, disjunction rale for s ]

M=kak>0vM=0—M<kv =0



= [ calculus ]

M=k M<kvM=0

=5 [ induction rule on =3 ]
M=k M=0
= [ INIT +» M= N*(N-1) from (D1}, # = 0 — val{zoot(T)) = SumA from (D2) ]
F2) O

It is this refined specification that will be used as the correctness criterion for the programs introduced in the

following sections:
151)] INIT = (Vn:ne T: (leaf(n) A val{n) = Alpos(n)]) v (—leaf(n) A val(n) = 1))
(P1) inv. Sum(T) = SumA
P2.1) M=kAak>0r M<k

(P3.1) stable 84 =0

4. Swarm

4.1. The model

The Swarm model [20] is based on the concept of a dataspace, a set of data items (data tuples) and enabled
actions (fransactions). A transaction is composed of subtransactions, each consisting of a query over the content of
the dataspace and a set of modifications which are applied to the dataspace if the query succeeds. A transaction can
only be removed from the dataspace if selected for execution. A data tuple (or transaction) present in the dataspace is
an instance of some data tuple (transaction) type and assumes the form name(values). Since the dataspace is a set,
there are no duplicates of data tuples or transactions instances. Synchronization between transactions is expressed
using a third component of the dataspace, the synchrony relation. This symmeltric, irreflexive relation is specified by
the insertion in the dataspace of entries of the form ‘71 ~ 12°, where 1 and ¢; are possible transaction instances.
These entries are part of the program state and, as such, can be freely created, queried, and removed by transactions,

A Swarm synchronic group is a group of transaction related under the reflexive wansitive closure of the synchrony
relation. When a transaction ¢ is selected for execution, all enabled transactions related to ¢ are also selected and
executed. The execution of a synchronic group involves two phases: first, the queries of all the subtransactions are
evaluated; second, for every subtransaction having a successful query, the appropriate modifications are applied to the

dataspace, with all deletions performed before any insertions.



program ArraySumSynch(N, A: (3p:p=0: N=2P), Ali: 1i<N)])

tupie types

The nodes of the tree are represented by data tuples d(gen, p, v), where genis the generation of the node, p
is the position within the generation, and v is the value associated with the node. Only defined nodes (v#1)
are present in the dataspace

{(gen,p,v:1<gen<N,1<p<N:d(gen,p,v))}
transaction types

{(gen,p:1<gen<N,0<p<N=:z
The actions are represented by Sum(gen, p) transactions. The role of a Sum{gen, p) transaction is to
compute the value of the node at generation gen and position p.
Sum(gen, p) =

The value of a node is computed by adding the values of its children nodes. The children are

removed from the dataspace.

g gen
vy, va: AT, p-E2R ), &( , P, v2) — d(gen, p, vi+vy), d( B B0 vyt dEER, p, vt
2 2 2 2 2

Upon execution, this transaction is deleted. If the corresponding node is not the root of the tree
and a node having the same position appears in the next generation, its associated transaction is
created and is synchronized through a common “dummy” transaction to all tranasctions needed to
compule the next generation.

Il gen<N,pmod (2*gen) = 0 —» Sum(2*gen, p), Sum(2*gen, p)~Sum(2*gen, 0)
)
initialization
Initially, only the leaf nodes are present in the dataspace. They contain the values from the array A

{(p:1sp<N:=d(,p, AlpD)

For every even position, a transaction is created to compute the value of the node at that position and it is
synchronized with a common “anchor” transaction (which, in this case, is never enabled but only serves to
easily specify a synchronic group). As a result, all the nodes in the second generation will have their value
computed at once.

(p:1<p<N,pmod2=0: Saum(2, p); Sum(2, p) ~ Sum(2, 0} )
end

Fig. 2. Parallel array summation in Swarm

Fig. 2 shows a Swarm version of the Array Summation problem. The nodes in the compulation tree are
represented by d(ger, p, v) tuples, where gen, p, and v correspond to the generation, the position, and the value of
the node, respectively. The computation is performed by Sum(gen, p) transactions. Each Swm(gen, p) transaction is

“responsible” for creating the corresponding d(gen, p, v) tuple. The synchronization is such that all the transactions

10



creating nodes in a given generation belong 1o the same synchronic group. As a result, the values of all nodes

equidistant from the root, i.e., having the same generation number, are computed during the same step.

4.2. Correctness Proof
Given the fact that in the Swarm program nodes having defined values are represented by tuples of the form d(gen, p,
value) while those whose values are undefined are absent from the dataspace, the following coupling invariant relates

the Swarm data representation {o the val function appearing in the specifications:
valn)=v =(v# LA d{gen(n), pos(n), v) ) v (v=La—={Iv:v=L:d(genn), posm), v) ))

In order to verify this program, we show 1) that the computation of the partial sums is performed one
generation at a time, 2) only one generation of nodes is ever present in the dataspace, and 3) at most one synchronic
group is enabled—the one computing the next generation of nodes. In the remainder of this section, we will use the
predicaie S(g) to indicate that the values of the nodes of generation g are present in the dataspace and all other node
values are undefined, and the set ¥, to represent the synchronic group that computes the nodes of the generation 2g.
The formal definitions of (g} and 7, are:

(SD1) S(@=(Vn:ne T:gen(n)=ge valin) # L)

(SD2) Tg=(setp:1<p<NApmod2g=0: Sum(2g, p))
We will show later on that at most one synchronic group is ever enabled, that this enabled synchronic group
corresponds to some g, and that the set of data tuples in the dataspace at any time is represented by some instance
of predicate S. As a result, we will only define the meaning of executing a synchronic group Yg in a state for which
S(g) is true and no other synchronic groups are enabled. Based on the description of a Sum(gen, p) transaction, the
effect of executing Yy is fourfold: 1) all data items at generation g are set to L (removed from the dataspace), 2) all
the data items at generation 2g are set to the sum of the values of their respective children, 3) all transactions
Sum(2g, p) are deleted (implicitely by being executed), and 4) when g < N all transactions necessary to create the

data items at generation 2g are inserted in the dataspace and synchronized with a common transaction Sum(4*g, 0),

thus enabling ¥zg (while leaving all other possible synchronic groups disabled), This is formally expressed as:

(SD3) {s@ A A{Y YiYcAnyeyy o —EMW)]
Tg
{502g) A "E(r) A Elr2g) & 2B<N)A(VY:YCSAATEYg = —EW )]

In order to prove that the Swarm program satisfies the earlier specifications, we first establish four

properties relating 5(g) and ¥, to the behavior of the program. These properties are later used to verify the
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correctness of the program. The first two properties, (811) and (S12), specify what transactions are enabled based on
the generation g of nodes whose values are defined. If this generation does not include the root node, there is exactly

one synchronic group, Ve in the dataspace. If the generation includes the root, there are no enabled transactions,
The other two properties constrain what data tuples can be present in a dataspace. (SI3) indicates that the values of a
generation remain in the dataspace at least until the next generation is computed and that the next generation will be
computed, if possible, while (SI4) specifies that exactly one generation is present in the dataspace at a time.
Formally, the four properties can be stated as follows:

(SI1) inv. S Ag<N&EMAL(VY:IYCAAY#Y 1 -E())

(SI2) inv. @y ag=Ne(¥Vy:vycA:-2E")

(SI3) 3(g) A g <N ensures 5(2g)

(S14) inv.{(Jg:1<g<N:s5g)
{ Proof of (SI1): inv. S(g) A g <N & EMg) A{VY:YCSAA Y#Y¥g 2

a) First, we show that (SI1) is initially true. This is the case because the initial dataspace containg only the
data tuples representing the nodes at generation 1 and the transactions necessary to create the nodes at generation 2
with all these transactions combined into the synchronic group ;. Thus:
INIT = S() A ZE(YD ALV YIYCAAY=EY 2 EY) )= (SID)

b) Second, we prove that any synchronic group 1 satisfies the property:

{511 } v { (SID) }

This property is wriviaily satisfied by any y # Yg because, since such ay is never enabled, it cannot alter the
program state. In the remainder we concern ourselves only with the execution of Y and show that the invariant is
maintained for all values of g < N. Assuming that (SI1) holds before executing Yg» from the definition of (SI1), the
pre-assertion of (SD3) is true. Thus, by applying (IR1) to the property (SD3), we get:

(SD4) {S@AEWI AV YiYSAAY2Y i =E(Y)) }

Yg
{S@) A{VY:ivcAAY2Yg:—E(N ) A Elyzg) & 22 <N) )

Based on the Jast conjunct of the post assertion of (SD4) and given that we assumed g < N, we now divide our proof
between the cases 2g < N and 2g = N. If 2¢ < N, the post assertion corresponds to (SI1) which is thus maintained

by executing Yg. If 2¢ = N, we have
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28=NASC) A{VY:IYSAAY#Y2g 2 —EM ) A E(12g) © 28<N)

=
—(52g) A28 <N) A =Elyog) A{YV VI YT A ATY# 725 1 —EW) )
=
(S11)
Combining these two cases, we have { (SI1) } ¥g { (811) } ]

§ Proof of (SI2): inv. S(2) Ag=N&(Vy:vyc A 1 -E())
a) The initial dataspace contains the synchronic group y; and its tuples satisfy $(1), making both sides of

the equivalence relation in (SI2) initially false. Thus, INIT = (SI2).

b) Similarly to (SI1), we need to prove { (SI2) } v { (SI2) } forall y. Since any group of transactions that
does not equal some Yy is never enabled, we are only concerned with proving that the invariant is maintained by

executing g for g < N. From the definition and proof of (SI1), the synchronic group Y2g is enabled after executing
Tg aslong as 2g < N,or g < %, and so will maintain (SI2) since it evaluates to “false < false”. From (SD3)if g =

%, executing Yy results in a state in which S(N) is true and no synchronic group is enabled, i.e., both sides of the

equivalence relation in (S12) become true. Finally, once SV} is established, no synchronic group is enabled and so,

from (IR2), any property is maintained. ]
q Proof of (SI3): 5(g) A g < N ensures 5(2g)
Based on properties (SI1) and (SI2), (SD4) can be simply written as
(SD3)  [s@Ag<N}v{s2e))
Moreover, from the definition of 5, we have
5(8) & S(g) A —52g)
while logic gives us
5(28) = (&) A g <N) v S(2g)
Combining these relations with (SD35) yields:
(B Ag<N)A=S2) } v {(S(B) Ag<N) v 5(2¢) )
which, from (IR3), proves 5(g) A g < N unless $(2g). Based on (SD1), (SD2), (S811), and (512}, we have:

S@ Ag<N= E(Sum(2gN)) A Sum(2g,N) € Yg A E(g) A
(Vy:ivyc A A Sum(2gN) € vA E(Y) = Y="Yg)
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Combining this property with 5(g) A g < N unless S(2g) and applying (IR4), we obtain (SI3). O
 Proof of (SI4): inv. (I g:1<gsN 5@}
To prove this property, we first expand the uniless part of (SI3):
{SI3a) S(g) A g < N unless $(2g)
with
(SI3b) S(g) A g =N unless False

which is vacuously true, since S(N) being true implies that no synchronic group is enabled and so any unless
property is established (from (IR2)). Combining (SI3a) and (SI3b), we get
S(g) unless S(2g) A 2g <N
= [ definition of 5(g) ]
(Vg:1<g <Nz 3S(g) unless (5(2g) A 2g < N} A =5(g) )
= [ general disjunction rule for unless ]
{(3g:1<g<N:uSgunless (Vg:1$g<N 5@ )A
(dg:1<g<sNu3s2g)a2gsN)
= [ calculus ]

(dg:1<g<N: S )uniess False d

{1 Proof of (P1): inv. Sum(T) = SumA

This is initially the case as the only data tuples in the dataspace are the first generation of nodes containing
the values of the array. Every execution of a synchronic group Yg sets to L the value of the nodes in the current
generation (removed from the dataspace) and a new generation is created. Each new node has a value equal to the sum
of its two children. Since every node in a generation is the child of a node in the next generation {(except for the
root) and no node is the child of two other nodes, the sum of the values of one generation is propagated to the next [
¢ Proof of (P2,1): M=kAa k>0 a2 <k

To prove (P2.1), we first relate the values of M and $ as follows:

(SI6) inv. M =k = S(g(k))
N2
N+k

where gis defined as: gk =
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Property (P2.1) is proven as follows:

1 M=kak>0=5gk) Agk) <N [from(SI6)]
2) S@ Ag<Nm-s S2g) [ from (S13) ]
3 S24(K) = M= Y 2k) <k [ from the definitions of gand 34, and calculus ] il

9 Proof of (P3.1): stable & =0

= 0 implies that only the root of T has a defined value which, in turn, implies that no group is
executable. Thus, from (IR2), the property M = 0 is maintained.
M=0
= [ definition of 4]

valfroot(T)) # LA{Vn:ne Tagen(n)<N:vai{n)=1)

= [ definition of val(n} and . (S12) ]
(Vg:1lsgsN: —Z(Yg) )
= [(R2)]
{(M=0}y{a=0}
= [ definition of stable |
P3.1) g

This concludes the correctness proof for the Swarm program. Most of the reasoning made (implicit) nse of
theorems established for UNITY. The Swarm-specific parts were captured by the properties (SI1-4) that dealt with

the relations between the data state and the actions in the Swarm program.

5. Concurrent Processes

5.1. The Model

In the Concurrent Processes (CP) [17] model proposed by Milne and Milner, a computation consists of the
evolution of a set of processes. Each process is a set of ports. A port is a triple, written oi<v, Az.f>, where ¢ is
the name of the port, v its value, and f a continuation function with one argument z. Two ports match if their
names are the same except that one has an overbar while the other does not, e.g., o and F . Since port names are
not necessarily disjoint among processes, a port in one process can match ports in several processes. A step of a CP
computation is composed of two matching ports exchanging their respective values via a synchronous bidirectional

communication, followed by the reconfiguration of the two processes involved in the exchange. Each processis
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removed and the result of evaluating the continuation of the communicating port with the value received during the

exchange is added to the current set of processes.

In DS each pair of matching ports may be treated as a synchronic group. This is possible because DS
allows an action 10 be part of multiple synchronic groups. By contrast, Swarm’s synchrony relation (~) allows only
disjoint synchronic groups because synchronic group membership is specified by an equivalence relation, the
transitive reflexive closure of the synchrony relation. Because the array summation example makes use of rather
simple processes multiple matches are not involved. Nevertheless the DS logic would have no difficulty handling
them, if they were present. Actually, we only consider processes composed of a single port. As a result, we do not
name the processes but simply represent them as singleton sets, e.g., { o<v, Az.f> }. For this reason, we use the

terms process and port interchangeably.

Processes

These are the types of processes that can exist during a computation

{ Sumy<v, dzf, o> 1 { Sum g <v, Re.d> ) Matching poris for non-root nodes
{ Result<y, Az. 1> ) The root node
Definition

For every pair of matching ports, one has a null continuation while the other handles the creation of the
parent node. If the parent is the root node, a process with a Result port is created, Otherwise, a Sum or
Sum process is created based on the position of the parent node in the tree. In any case, the process

whose continuation was evaluated is destroyed.
figp(@ = if (g =N) then { Result<v+z, Ay.1> }

else if (p mod (2*g) = 0) then { SuMyup ,<V+Z, Ay L4704 p> )

else { Sum geggup<viz, Ay 1> }

Initialization

Initially, only the processes corresponding to the leaf nodes are created. Each one holds one value of the
array and every pair of sibling nodes have matching ports.

(V i:15ig % b { Sum2,2ﬁ<A[2*i}, lz-fAEZ*i],l.Z*iz'] . 1 Sam 2’2*i<A[2*i-1], Az.i> ] >

Fig. 3. Array summation in CP

Fig. 3 shows a CP definition of the array summation problem. Each node of the computation {ree is

represented by a process whose port value is the value of the node. Each pair of sibling nodes in the tree has

matching ports Sum, , and Sum ,,, where g and p are, respectively, the generation and position of the common

parent of these nodes. The “barred” port has a null continuation (represented by 1) while the other port’s
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continuation, denoted by £, ; ;, handles the creation of the process representing the parent node with a value equal to
the sum of the two sibling values. Finally, the root node is represented by a special process having the port named

Result, This process could be used to propagate the total sum to some other computation.

Fig. 4 shows the different processes that are created during the computation of the Array Summation for N
= 8. Each process is represented by a half-circle with the name of the port. Matching ports are linked by an arc. In
the Swarm solution, a step involved the computation of the values of all the nodes in a given generation, resulting
in a highly synchronous sweep from the leaf nodes to the root of the tree. By contrast, each step of the CP solution
consists only in the evaluation of the value of one node. This makes for a more asynchronous computation. Within

a single generation some nodes may have defined values while others may not.

1

position

generation

Fig. 4. Example of process instances during an array summation

5.2, Correctness Preof

As was the case for the Swarm program, only nodes with defined values are explicitly represented by some

process, as described by the following coupling invariant:

({CD1)
Result<v, Az, L> if gen(n) = N

val(n) = v A v # L =3 SuMygenmy posy<Vs lz.fv,gm(n)vpm(np if gen(m)<N A (pos(n) mod 2gen(n) = 0)

SUm 2gentn),postny+gen(m)<Vs AZ.L> if gen(n}<N A (pos(n) mod 2gen(n) # )
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where we use the port name to denote the fact that a process having that port is present in the process set. Given the

CP execution model, the only feasible groups involve matching ports. In this example, a feasible group corresponds

to the actions denoted by the ports Sum,, and Sum ,,. For the remainder of the proof, we define such a group as
“Yn. Where n is the parent of the two nodes represented by the members of the group, and use the ports as action

names. More formally:

{CD2) Ya= { Sum gen(a)pos(my<Vs AZ.L>, SuMgengny,posm<Vs }Lz.fv’sm(n),pm(np ]
Based on (CD1), a group 1y, is enabled only if the processes associated with the children of node 7 are enabled and is
feasible only if it corresponds to a pair of matching ports. Thus, we can derive the following two invariants:

(CID) inv.{(Vy:ycAu®y)=(3In:ne Ta ~leaf(n) : y=7v,))

(CI2) inv. E(y,) « val(left(n)) = L A val(right(n)) = L
The effect of performing an exchange between two processes is captured by the following property of the synchronic
group Y, (derived from the definition of the continuation function in Fig. 3):

({CD3) [ val(n) = L A val(left(n)) = viA valfrightn)) = viAaviz LAviz L adef(T =11

Tn
[ val(n)=vi+vy A val(left(n))=1 A val(rightm))=1 A (def(T) =1 - { left(n), righi(n) } v [ n D}
where def(T) is the set of defined nodes in the ree T, i.e.:
def(Ty={setn:ne TAvaln)= L n)

q Proof of (P1): inv. Sum(T) = SumA

Initially, the only nodes defined are the leaf nodes whose values correspond to the original array. Thus
INIT = Sum(T) = SumA. As described by (CD3), each step of the computation involves two sibling nodes being
eliminated while their parent is created with a value equal to the sum of the siblings’ values. Given the definition of

Sum(T), its value is maintained after each step. O
§ Proof of (P2.1): M=k Ak>0m M <k

In order to prove (P2.1), we need a property specific to the manner in which progress is accomplished by
the CP system;
(CP2.1) val{n)= L AZE(W)AaM=kAak>0ensures M<k
Of course, we need to show that the left-hand side of (P2.1) implies the left-hand side of (CP2.1), i.e.:

M=kAak>0=(In:ne TA-leaf(n) :: E(yp) A val(n) = 1)
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This is obtained through the use of another metric, this one counting the number of nodes in the tree whose value is

defined, ie.:

(CD4) (ree(n), c) =(#m = me tree(n) Avalim)z 1L)=c
From the definition of ¢, we trivially have that a tree for which #{is not zero has some defined nodes, i.e.,

M>0=> AT, c)ac>1

What remains to be proven is the property that a tree in which more that one node is defined contains an undefined
node whose children are both defined, i.e.:

(CI3) inv, (Q(tree(n), c) Ac> 1

= {3 m:me tree(n) : val(m) = L A val(left(m)) # L A val(right(m)) # L)

which, from the definition of a group 1y, can also be expressed as

(C13%) mv. (Qree(n), ) ac>1=(Im:me tree(n) :: val{m) = L A Z(y) ) (|
We prove (CI3) by induction using properties (CI4) through (CI6) below which state that 1) a tree whose root is
defined has all undefined values for all its other nodes, 2) if only one node in a tree has a value defined, it is the root

of the tree and, 3) a tree with more than one defined value is composed of two root subtrees, each with at least one

defined value:
(Cl4) inv.{(Vn:ne Tuval(n)# L= (Vm:me tree(n) Am #n :: val{m) = L })
(CI5) inv.(Vn:ne T: (tree(n), 1) < val(n) = L)
(CI6) inv. ((ree(n), ¢) A c>1 A val(n) = L & ((ree(lefi(n)), ) A c1>0 A ((tree(right(n)), c;) A c>0
(CI5) is a corollary of (CI4).
§ Proof of (CI3): inv. C(tree(n), ¢} Ac> 1
=(3m:me tree(n) :: val(m) = L A val(left(m)) = L A val(right(m)) = L

For the base case, we use a tree with exactly two defined nodes. From (CIS), the root of this tree is
undefined and, based on (CI6), each subiree of the root has at least one defined node. Since the complete tree has
only two defined nodes, each root subtree has exactly one defined node and, from (CI5), this node is the root of the
subtree. More formally:

(tree(n), 2)
= [ (CI6) and (CI5) ]
val(n) = 1 A (Qtree(left(n)), 1) A ((tree(right(n)), 1)
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= [(CI5)]
val(n) = £ A val(lefi(n)) = L A val(right(n)) # L

For the induction part, we assume that (CI3) is established for a tree containing less than k defined nodes
(with k > 2) and consider a tree with k defined nodes. Using the same reasoning as for the base case, we can deduce
that the root of the tree is not defined and that both subtrees of the root have at least one defined node and fewer than
k defined nodes. Since the tree contains more than two nodes, one of the subtrees contains at least two defined nodes
thus satisfying the conditions for (CI3). If one of the subtrees satisfies (CI3), the complete tree also satisfies (CI3).

Otree(m), Ky Ak > 2

= [ (CI6) and (CI5) ]

(3 ey, o Aree(left(n)), o) A Clree(right(n)), c) A0 <ci<kal<cr<ka{e>1ve,>1))
= { induction ]

{(3m: me tree(left(n)):: val(m) = L A val(left(m)) = L A val(right(m)) = L) v

{3 m:me tree(right(n)):: val(m} = L A val(lefi(m)) = L A val(right(m)) = L )

= [ calculus ]

{Im:me tree(n):: val(m) = L A val(left(m)) # L A val(right(m)) = L ) -
 Proof of (CI4): inv.(Vn:ne Tuvaln)#Ll=(VYm:me tree(n) Am#n: valim)= 1))

Inidally, the only defined nodes are the leaves of the tree and (CI4) is vacuously satisfied. We now need to
prove that any group of actions maintains (CI4). As usual, we are only concerned with executable groups of actions.
If v, s a synchronic group, we can conclude that all nodes but the children of the root have defined values:

E(Yp)
= [ from (CI2) ]
val{left(p)) = L A val{right{p)) == L
= [ (CI4) assumed true before execating the synchronic group ]
{(Vm:me tree(left(p)) A m = left(p) :: val{m) = L ) A
{V m:m e tree(right(p)) A m # right(p) :: val(m) = L )
= { calculus ]
{Vm:me mee(p) A m#p A m =left(p) A m = right(p) :: val(m) = 1)
Moreover, since (CI4) is assumed to hold before executing Yp. We have val(p) = 1. From (CD3), we see that the
effect of executing , is to assign a value to the root of the tree and undefined to the children of the root. Since no

other nodes are affected, (CI4) is maintained. ]
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{ Proof of (CI6): inv. (tree(n), ©) A c>1 A val(n) = L & ((tree(lefi(n)), cp) A ¢>0 A ((tree(right(n)), cp) A ¢>0

This property is initially true since the only defined nodes are the leaves of the iree, and so any subtree with
an undefined root (an internal node) has two child subtrees with some defined nodes (the leaves). For any executable

group Yp, we have the following property:
[ Qtree(n), cp) A val(n) = vy A ((tree(lefi(n)), ¢} A (iree(right(n)), ¢,) J
Tp
[ (lree(n), cp) A val(n) = v A Qtree(left(n)), cf) A C(ree(right(n)), cb) }
a) If ¢, = 0 then the subtree rooted at » is entirely composed of undefined nodes and, from (CD2}, no synchronic
group that could modify it is enabled, thus maintaining (CI6).
b) If ¢, =1 then, from (CI4), only the root of the subtree is defined and, from (CD2) and (CD3), the only possible

modification to the subtree is the value of the root becoming undefined, maintaining (CI7).

¢) If cp > 1 then, from (CI6) holding before executing Yp» One has:
vn=LlAac>0Ac¢>0

The effect of executing v, depends on four possible locations of p in the tree:

Dpe tree(n). If n is not a child of p, then executing Yp has no effect on tree(n) and based on (CI2),

since val(n) = L, the synchronic group affecting the value of n is not enabled.
p=n From (CI2), Z(yp) = val(left(n)} # L A val(right(n)} = L. This, based on (CI4), implies
that ¢ = 1 and ¢, =1, and, from the definition of ¢, ¢, = 2. From (CD3), the effect of
executing Yp is:
wmELAacg=1lAaci=0Ac=0

3 pe tree(lefi(n)): From (CI2) and the definition of ¢, Ep) = c¢;> 1. Combined with ¢, > 0, one has

Cp > 2. From (CD3), the effect of executing Yp is:
vi=LlA(Gh=cyl>Dald=¢-150)Ac=c
4) p € tree{righi(n)): Proof similar 1o case 3). (|
{ Proof of (CP2.1): val(n) = L AE(Y,) A M=k A k>0 ensures M <k

From the rule (IR4), we can prove (CP2.1) if we have the following two properties:

(CP2.1a) val(n) = LAZ(Y) A M=k A k>0 unless 4 <k
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(CP2.1b) (Joiae A (valn)=LAE(WAM=kak>0=2(Ty:YycAAaEe YIEMN DA
(VYy:ycAAoe YAE(®)::
{val(n) = LAZE(Y) A M=kAk>0}y{ M<k)))
{ Proof of (CP2.1a): From (CD3), we see that the execution of a synchronic group ¥, results in two nodes
becoming undefined and their parent becoming defined. Any executable Y, (with m = n) has a similar effect.
{ Proof of (CP2.1b): Let o be one of the actions in y,. The first conjunct of (CP2.1b) is then trivially satisfied for
Y = Ya. Moreover, from (CD2), we know that no node belongs to more than one synchronic group. Thus, the
second conjunct of (CP2.1b) is reduced to;
{valm) = LAS(Im) A M=k Ak>0} v, { #r<k}
which is directly derived from (CD3) using (IR1). ]
§ Proof of (P3.1): stable & =0

As in the Swarm program, %= 0 implies that no group is executable, thus the property is trivially

maintained. [

This concludes the correctness proof of the CP program. The set of program—specific properties was larger

than for the Swarm version mainly because of the more complex computation of the tree of values.

6. Input/Qutput Automata

6.1. The Model

In the Input/Output Automata (IOA) model [14], a computation is defined by a static (but possibly infinite)
set of interacting components. Each component is modelled as an automaton, a mathematical object with a
(possibly infinite) set of input, output, and internal operations over a local state typically defined by a set of
variables. IOA operations correspond to actions in DS. Output and internal actions are under the control of the
automaton and arc enabled and disabled by changes in the local state. Output actions are transmitted to the
environment (the other components) of the automaton. In contrast, the automaton’s input actions griginate in the
environment and can not be “refused”. Several automata can be connected so that the output of one is seen as input
by the others. If an output action is executed, the corresponding input actions occur simultaneously. Syntactically,
infinite sets of actions are represented by the use of parameterized names such as o{v), where the parameter v ranges

over a possibly infinite set and « is a constant.
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The automata are described in terms of their variables and their actions. Each action is composed of a
precondition (pre) restricting the enabling of the action (implicitly true for an input action) and an effect (eff)
on the state of the automaton.

Automata:

The only purpose of a leaf automaton is to transmit its value (one of the array element) to its parent in the
tree. Once the value is set to L, all further output actions are disabled. The action name carries the identity
of the originator, its generation and position.

Ay var integer psum = Afp]
output pass;p(v): pre: psum=vaAv#JL
eff: psum:=_1

A non-leaf automaton adds the values of its children. It receives the values of the children through two
separate parameterized inputs and, after having received both (count = 2), transmits the sum to its parent (or
the environment if the node is the root)

Sumg,:  var integer psum := L, count :=0
input pass %,, p,%(v): eff: psum, count := psum+v, count+1
pass & p(v): eff: psum, count := psum+v, count+1
output passg(v): pre: psum=vacount=2
eff: psum, count:= 1,0

Structure:

The entire program consists of the automata representing the leaf and internal nodes of the tree. The
interconnections are implicit. Input and ouput actions with the same name are executed synchronously.

(Vp:1spsNuA )
(Vg:1<g<NA{(Tk:k>0:g=2%:(Vp:1sp<Napmodg=0=: Sumg ) )

Fig. 5. Array summation in IOA

Fig. 5 shows an IOA solution to the array aummation problem? . Each node in the computation tree is

represented by an automaton storing the value of the node in its internal state. The leaves initially hold the values of

the array. Each transmits its value to its parent by means of an output action which becomes permanently disabled

after its execution. The internal nodes receive the values held by their children through two (parameterized) inpuis.

Each input adds the received value to a local variable (psum) and increments a local counter {count). The initial

psum at the internal node is | and we define the result of adding some value v to 1 to be equal to v. Once the

2 The notation used here is not exactly that used by Lynch and Turtle in their presentation of I/O Automata. We

tried to minimize notational changes from one example to the next.
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values of both children have been received, the output action of the automaton is enabled and the partial sum stored
at this node can be transmitted to its parent. The CP and IOA programs are quite similar in overall behavior with
the only difference being that the single-step summing of sibling nodes” values in CP has been replaced by two
separale steps. In addition, it must be noted that the antomata are persistent while the CP processes are not. Fig. 6
presents the complete set of automata and the input/output interactions for an array of size N = 8. The output of the

root automaton can be connected to some other automaton for further processing of the resulting sum.

position

generation

Fig. 6. Example of automata structure for N = 8

6.2. Correciness Proof

In this solution to the Array Summation problem, each node in the computation tree is represented by an
automaton which exists throughout the computation. The value of a node is stored in the corresponding

automaton’s variable named value, i.e.;

A1,pos(n)-psum = v if leaf(n)
{Imn valln)=v =

Sumgen(n),pos(n)-psum = v if —leaf(n)
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where f.v represents variable v of automaton B. In addition, we define a function coun#(n) on an internal node »
which returns the value of the count variable of the corresponding Swm automaton. Moreover, for generality and

simplicity in the proof, we extend the definition of count(n) to the leaf nodes.
Sumgen(n),Pos(n).COllnt if —-deaf(n)

m32) countfn) =y 0 if leaf(n) A val(n) = L
2 if leaf(n) A val(n) # L
To reason about the behavior of the IOA, we need to view any output action with all its related input
actions as a synchronic group. In this example, the output action of a node and the corresponding input action in the
parent must form a synchronic group. We use "Yi(n) and Yy(n) to represent, respectively, the synchronic group

associated with the values transfer from the left and right children of node » to node n itself, i.e.:

{ Ay p1.pass; p1(v), Sumy . pass 1.p-1(¥) } ifg=2
{(ID3) =
T { Sum%p_g.passg,p(v), Sum, ,.pass %P_g(v) } ifg>2
{ A1p-C15(V), Sumy .0y (V) ) ifg=2
D9 Yr(n) = i
{ Sum%'l,.cg‘p(v), Samg.c %,p(v) } ifg>2

where g = gen(n) and p = pos(n). Only groups of the form Yi(n) OF Yr(n) are feasible, i.e.c

aps) inv. {(Vy:ycA:®y)=(In:ne TEY=Vn) VY= Ye(m) ))
While the input actions are always enabled, the output actions are enabled only when values from all children have
been received, i.e., when the count function returns 2:

(ID6) inv. E(Yym)) < count(left(n)) = 2

{ID7) inv. E(v(n)) & count(right(n)) = 2
The combined effect of the output and input actions in a group is expressed by properties (ID8) and (ID9). In each
case the output action resets the automaton’s psum value to L and (for an internal node) the counter count to 0 while

the input action adds the value transmitted by the output action to psum in the receiving automaton and increments

its counter by one. More formally:
(ID8) { val(n) = v, A count(n) = ¢, A val(left(n)) = vj A count(left(n)) = 2 1

Yi(n)
{ val@m)=vp+v) A count(n) = cp+1 A val(lefin)) =L A count(lefi(n)) = 0 }
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(ID9) { val(n) = vy A count(n) = ¢, A val{right(n)) = vy A count(right(n)) = 2 }

Yr(n)
{ val(n)=vptvy A count(n) = cp+1 A val(right(n))=L A count(right(n)) = 0 }

Based on (ID3), (ID8), and (ID9), the following invariant can be shown to hold:
1) inv. val(n) = L ¢ count(n} = 0

Properties (CI3) and (CI4) for the CP solution have related counterparts (I12) and (I3) for the IOA program. (II2)
states that if the sum has not reached the root of T, then some automaton is ready to output its value (i.e., some
synchronic group is enabled), while (II3) states that once a node » has received two values, all other nodes in the tree

rooted at n have undefined values:
2y inv. ¥>0e (3dn:ne T:: comt(left(n)) = 2 v count(right(n)) = 2 )
{13) inv, count(n) =2 = (Vm: me tree(n) Am#n:: val(m) = L)
The proofs of these two properties are very similar to their (CI3) and (CI4) counterparts and are omitied for the sake

of brevity.
{1 Proof of (P1): inv, Sum(T) = SumA
Initially, only the leaf nodes have defined values and hold the entire array A. Whenever Yi(n) O Ye(m) is

executed, the value stored at the child is transfered to the parent node and is added to the parent’s value. At the same

time, the child resets its value to L. This execution does not change the value of Sum(T). [
{ Proof of P21} M =ka k>0 M <k
This is proved by applying the disjunction rule for - to property (IP2.1):
(IP2.1} (Vn:ne Ta-leaf(n) : M=k Ak>0 A (count(leftin) =2 v count(right(n)) = 2} > M < k )
and reducing the left-hand side of the resulting s expression to M=k A k > 0 based on (I12). (I
il Proof of (IP2.1): M=k A k> 0 A (countlefi(n)) = 2 v count(right(n)) = 2) s M < k
(IP2.1) is the disjunction of the following two properties:
(IP2.1a) M=kAak>0A{(In:ne T: countlefin)) =2 }rs M<k
(IP2.1b) M=kAak>0A(3n:ne T: count(rightn)) =2) > M<k L3
{ Proof of (IP2.1a): M =kAk>0A(3In:ne T: coumtleft(n)) = 2 )s M <k

(IP2.1a) is directly derived from:
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(IP2.18y M=kAk>0A{(3n:ne T:: countlleft(n)) = 2 ) ensures M <k

As mentioned before, executing a synchronic group results in the child node resettting its value to 1 while the
parent’s value is equal to or is augmented by the value received from the child. In any case, this decreases the value

of 3£ Only synchronic groups which reduce # can be executed, Thus, we have:
M=kark>0Aa{3In:ne T: count{left(n)) = 2 Yunless M <k
To prove (IP2.1a’), we use (IR4) with o replaced by the “child” node of synchronic group Yi(n)- From (ID1), ID2),
and (ID3), we trivially have
M=kank>0A{3n:ne T: count(leftn)) =2 } A (M <k) = E(ym)) A0 € Yi(n)
Moreover, since the only enabled synchronic group containing o satisfies the property
{(M=kAk>0A(In:ne T: comt(left(n)) =2 ) A =(M < k) } Yim) { M <k )
we have proven (IFP2.1a"). (1
{ Proof of (IP2.1b): M=kAk>0A{(dn:ne T: count(righttn)) =2 V> M< k
This proof is identical to the one for (IP2.1a) with right(n) and Yr(n) Substituted for left(n) and vyn),
respectively, in the proof. O
§ Proof of (P3.1): stable 4 =0
As in the Swarm program, # = 0 implies that no group is executable, thus the property is trivially
mainiained. tJ
This completes the third proof of a program solving the Array Summation problem. Parts of earlier proois
were reused due to the similarity in the structure and the behavior of the CP and IOQA programs. As before, once we

formalized the use of synchrony in this model, the DS logic was easily applied to show that the IOA program

satisfies the requirements of the problem.

7. Conclusions

This research was motivated by our earlier work on Swarm. The ability to alter dynamically the structure
of synchronous computations provides an interesting modeling capability of potential import in specifying and
reasoning about systems that combine synchronous and asynchronous features—particutarly when the system may
be subjected to dynamic reconfiguration. However the Swarm mechanism for specifying synchronic groups, the
synchrony relation, proved to be less general that we expected. For instance, the requirement that an action belong

to a single synchronic group at a time made it difficult to simulate synchronous communication between matching
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ports when one port may have several possible matches. Nevertheless, the successful development of the Swarm

proof logic showed us how to deal with dynamic forms of synchrony and laid the foundation for seeking a more

general and abstract treatment.

We believe that the Dynamic Synchrony model is both general and abstract: the choice of actions to be

executed synchronously is determined by the current state of the computation; the synchronization requirements are

expressed as predicates; and an enabled action may belong to zero or more synchronic groups. We attempted to

demonstrate the generality of the model by showing how Dynamic Synchrony can be used to verify three versions of

a parallel array summation problem expressed in three different models of concurrency that offer very distinct

treatments of synchrony. Swarm is a shared dataspace model in which synchronic groups are specified explicitly and

form a partition over the set of enabled actions. Concurrent Processes, the predecessor of CCS[18], allows for

synchronous data exchanges between actions associated with pairs of matching ports. Input/Output Automata

requires the output action of one automaton to be synchronized with all the input actions bearing the same name in

all the other antomata. The fact that the verification did not require any sort of translation of the three programs into

a new single notation is testimony to the abstract nature of our model.
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