3,739 research outputs found

    A formally verified compiler back-end

    Get PDF
    This article describes the development and formal verification (proof of semantic preservation) of a compiler back-end from Cminor (a simple imperative intermediate language) to PowerPC assembly code, using the Coq proof assistant both for programming the compiler and for proving its correctness. Such a verified compiler is useful in the context of formal methods applied to the certification of critical software: the verification of the compiler guarantees that the safety properties proved on the source code hold for the executable compiled code as well

    Hybrid Information Flow Analysis for Programs with Arrays

    Full text link
    Information flow analysis checks whether certain pieces of (confidential) data may affect the results of computations in unwanted ways and thus leak information. Dynamic information flow analysis adds instrumentation code to the target software to track flows at run time and raise alarms if a flow policy is violated; hybrid analyses combine this with preliminary static analysis. Using a subset of C as the target language, we extend previous work on hybrid information flow analysis that handled pointers to scalars. Our extended formulation handles arrays, pointers to array elements, and pointer arithmetic. Information flow through arrays of pointers is tracked precisely while arrays of non-pointer types are summarized efficiently. A prototype of our approach is implemented using the Frama-C program analysis and transformation framework. Work on a full machine-checked proof of the correctness of our approach using Isabelle/HOL is well underway; we present the existing parts and sketch the rest of the correctness argument.Comment: In Proceedings VPT 2016, arXiv:1607.0183

    Deductive Verification of Unmodified Linux Kernel Library Functions

    Full text link
    This paper presents results from the development and evaluation of a deductive verification benchmark consisting of 26 unmodified Linux kernel library functions implementing conventional memory and string operations. The formal contract of the functions was extracted from their source code and was represented in the form of preconditions and postconditions. The correctness of 23 functions was completely proved using AstraVer toolset, although success for 11 functions was achieved using 2 new specification language constructs. Another 2 functions were proved after a minor modification of their source code, while the final one cannot be completely proved using the existing memory model. The benchmark can be used for the testing and evaluation of deductive verification tools and as a starting point for verifying other parts of the Linux kernel.Comment: 18 pages, 2 tables, 6 listings. Accepted to ISoLA 2018 conference. Evaluating Tools for Software Verification trac

    Heap Abstractions for Static Analysis

    Full text link
    Heap data is potentially unbounded and seemingly arbitrary. As a consequence, unlike stack and static memory, heap memory cannot be abstracted directly in terms of a fixed set of source variable names appearing in the program being analysed. This makes it an interesting topic of study and there is an abundance of literature employing heap abstractions. Although most studies have addressed similar concerns, their formulations and formalisms often seem dissimilar and some times even unrelated. Thus, the insights gained in one description of heap abstraction may not directly carry over to some other description. This survey is a result of our quest for a unifying theme in the existing descriptions of heap abstractions. In particular, our interest lies in the abstractions and not in the algorithms that construct them. In our search of a unified theme, we view a heap abstraction as consisting of two features: a heap model to represent the heap memory and a summarization technique for bounding the heap representation. We classify the models as storeless, store based, and hybrid. We describe various summarization techniques based on k-limiting, allocation sites, patterns, variables, other generic instrumentation predicates, and higher-order logics. This approach allows us to compare the insights of a large number of seemingly dissimilar heap abstractions and also paves way for creating new abstractions by mix-and-match of models and summarization techniques.Comment: 49 pages, 20 figure

    The Meaning of Memory Safety

    Full text link
    We give a rigorous characterization of what it means for a programming language to be memory safe, capturing the intuition that memory safety supports local reasoning about state. We formalize this principle in two ways. First, we show how a small memory-safe language validates a noninterference property: a program can neither affect nor be affected by unreachable parts of the state. Second, we extend separation logic, a proof system for heap-manipulating programs, with a memory-safe variant of its frame rule. The new rule is stronger because it applies even when parts of the program are buggy or malicious, but also weaker because it demands a stricter form of separation between parts of the program state. We also consider a number of pragmatically motivated variations on memory safety and the reasoning principles they support. As an application of our characterization, we evaluate the security of a previously proposed dynamic monitor for memory safety of heap-allocated data.Comment: POST'18 final versio

    Static Analysis of Run-Time Errors in Embedded Real-Time Parallel C Programs

    Get PDF
    We present a static analysis by Abstract Interpretation to check for run-time errors in parallel and multi-threaded C programs. Following our work on Astr\'ee, we focus on embedded critical programs without recursion nor dynamic memory allocation, but extend the analysis to a static set of threads communicating implicitly through a shared memory and explicitly using a finite set of mutual exclusion locks, and scheduled according to a real-time scheduling policy and fixed priorities. Our method is thread-modular. It is based on a slightly modified non-parallel analysis that, when analyzing a thread, applies and enriches an abstract set of thread interferences. An iterator then re-analyzes each thread in turn until interferences stabilize. We prove the soundness of our method with respect to the sequential consistency semantics, but also with respect to a reasonable weakly consistent memory semantics. We also show how to take into account mutual exclusion and thread priorities through a partitioning over an abstraction of the scheduler state. We present preliminary experimental results analyzing an industrial program with our prototype, Th\'es\'ee, and demonstrate the scalability of our approach

    Fifty years of Hoare's Logic

    Get PDF
    We present a history of Hoare's logic.Comment: 79 pages. To appear in Formal Aspects of Computin
    corecore