

© Andrew Bedford, 2019

Enforcing Information-Flow Policies by Combining
Static and Dynamic Analyses

Thèse

Andrew Bedford

Doctorat en informatique

Philosophiæ doctor (Ph. D.)

Québec, Canada

Enforcing Information-Flow Policies by
Combining Static and Dynamic Analyses

Thèse

Andrew Bedford

Sous la direction de:

Josée Desharnais, directrice de recherche
Nadia Tawbi, codirectrice de recherche

Résumé

Le contrôle de flot d’information est une approche prometteuse permettant aux utilisateurs de
contrôler comment une application utilise leurs informations confidentielles. Il reste toutefois
plusieurs défis à relever avant que cette approche ne puisse être utilisée par le grand pub-
lic. Plus spécifiquement, il faut que ce soit efficace, facile à utiliser, que ça introduise peu
de surcharge à l’exécution, et que ça fonctionne sur des applications et langages réels. Les
contributions présentées dans cette thèse nous rapprochent de ces buts.

Nous montrons qu’une combinaison d’analyse statique et dynamique permet d’augmenter
l’efficacité d’un mécanisme de contrôle de flot d’information tout en minimisant la surcharge
introduite. Notre méthode consiste en trois étapes : (1) à l’aide d’analyse statique, véri-
fier que le programme ne contient pas de fuites d’information évidentes; (2) instrumenter
l’application (c.-à-d., insérer des commandes) pour prévenir les fuites d’information confiden-
tielles à l’exécution; (3) évaluer partiellement le programme pour diminuer l’impact de l’instru-
mentation sur le temps d’exécution.

Pour aider les utilisateurs à identifier les applications qui sont les plus susceptibles de faire fuir
de l’information confidentielle (c.à.d., les applications malicieuses), nous avons développé un
outil de détection de maliciel pour Android. Il a une précision de 94% et prend moins d’une
seconde pour effectuer son analyse.

Pour permettre aux utilisateurs de prioriser l’utilisation de ressources pour protéger l’information
provenant de certaines sources, nous introduisons le concept de fading labels.

Pour permettre aux chercheurs de développer plus facilement et rapidement des mécanismes
de contrôle de flot d’informations fiables, nous avons développé un outil permettant de générer
automatiquement la spécification d’un mécanisme à partir de la spécification d’un langage de
programmation.

Pour permettre aux chercheurs de plus facilement communiquer leurs preuves écrites en Coq,
nous avons développé un outil permettant de générer des versions en langue naturelle de
preuves Coq.

iii

Abstract

Information-flow control is a promising approach that enables users to track and control how
applications use their sensitive information. However, there are still many challenges to be
addressed before it can be used by mainstream users. Namely, it needs to be effective, easy
to use, lightweight, and support real applications and languages. The contributions presented
in this thesis aim to bring us closer to these goals.

We show that a combination of static and dynamic analysis can increase the overall effective-
ness of information-flow control without introducing too much overhead. Our method consists
of three steps: (1) using static analysis, we verify that the program does not contain any
obvious information leaks; (2) we instrument the program to prevent less obvious leaks from
occurring at runtime; (3) we partially evaluate the program to minimize the instrumentation’s
impact on execution time.

We present a static-based malware detection tool for Android that allows users to easily
identify the applications that are most likely to leak sensitive information (i.e., malicious
applications). It boasts an accuracy of 94% and takes less than a second to perform its
analysis.

We introduce the concept of fading-labels, which allows information-flow control mechanisms
to prioritize the usage of resources to track information from certain sources.

We present a tool that can, given a programming language’s specification, generate information-
flow control mechanism specifications. This should allow researchers to more easily develop
information-flow control mechanisms.

Finally, we present a tool that can generate natural-language versions of Coq proofs so that
researchers may more easily communicate their Coq proofs.

iv

Contents

Résumé iii

Abstract iv

Contents v

List of Figures viii

List of Listings ix

Remerciements xi

Foreword xii

Introduction 1

1 Basics of Information-Flow Control 6
1.1 Noninterference . 6
1.2 Enforcement mechanisms . 11
1.3 Precision . 16
1.4 Conclusion . 18
1.5 Bibliography . 18

2 Enforcing Information Flow by Combining Static and Dynamic Analysis 21
2.1 Résumé . 21
2.2 Abstract . 22
2.3 Introduction . 22
2.4 Programming Language . 24
2.5 Security Type System . 26
2.6 Inference Algorithm . 31
2.7 Instrumentation . 33
2.8 Related Work . 36
2.9 Conclusion . 38
2.10 Bibliography . 38

3 A Progress-Sensitive Flow-Sensitive Inlined Information-Flow Control
Monitor 41
3.1 Résumé . 41
3.2 Abstract . 42

v

3.3 Introduction . 42
3.4 Source Language . 47
3.5 Security . 49
3.6 Type-Based Instrumentation . 50
3.7 Soundness . 62
3.8 Increasing Precision and Permissiveness . 64
3.9 Related Work . 66
3.10 Conclusion . 67
3.11 Bibliography . 68
3.12 Appendix: Examples . 71
3.13 Appendix: Proofs . 73

4 Andrana: Quick and Accurate Malware Detection for Android 84
4.1 Résumé . 84
4.2 Abstract . 84
4.3 Introduction . 85
4.4 Background on Android . 86
4.5 Overview of Andrana . 88
4.6 Feature Extraction . 89
4.7 Classification and Evaluation . 92
4.8 Additional Experiments . 96
4.9 Related Work . 97
4.10 Conclusion . 99
4.11 Bibliography . 99

5 Information-Flow Control with Fading Labels 103
5.1 Résumé . 103
5.2 Abstract . 104
5.3 Introduction . 104
5.4 Fading Labels . 105
5.5 Depth-Limited Noninterference . 106
5.6 Example of a Mechanism . 107
5.7 Discussion . 109
5.8 Bibliography . 111

6 Towards Automatically Generating Information-Flow Mechanisms 113
6.1 Résumé . 113
6.2 Abstract . 114
6.3 Introduction . 114
6.4 Overview of Ott-IFC . 115
6.5 Discussion . 124
6.6 Conclusion and Future Work . 125
6.7 Bibliography . 127

7 Coqatoo: Generating Natural Language Versions of Coq Proofs 129
7.1 Résumé . 129
7.2 Abstract . 129
7.3 Introduction . 130

vi

7.4 Overview of Coqatoo . 130
7.5 Comparison . 133
7.6 Future Work . 134
7.7 Bibliography . 135

Conclusion 136

vii

List of Figures

1.1 A Java password checker and its PDG [12] . 13
1.2 Example of operational semantics rules . 14

2.1 Analysis of a program where an implicit flow may lead to a leak of information 23
2.2 A few rules of the structural operational semantics 25
2.3 Typing rules . 28
2.4 Inference Algorithm . 32
2.5 Instrumentation algorithm. 33
2.6 Implicit flow . 35
2.7 The send of a high value on an unknown channel calls for instrumentation . . . 36
2.8 The send of a high value on an unknown channel calls for instrumentation . . 37
2.9 A more realistic example . 37

3.1 Semantics of the source language . 49
3.2 Instrumentation and typing rules for the source language 55

4.1 General flow of Andrana . 88
4.2 Analysis time and memory usage distributions. 89
4.3 The progression of true positives ratio and accuracy on the test set for different

ratios of training set and for each learning algorithm. It is calculated using the
best configuration of hyperparameters outputted by a 5-fold cross-validation. . 95

4.4 Andrana’s interface on Android. 97

5.1 PDG-like representation of Listing 5.1 . 106
5.2 Semantics of the read, assign and write commands when using fading labels 109

6.1 Evaluation-order graphs of the assign, sequence and conditional commands. . . 120

7.1 Proof tree of Listing 7.1 . 132
7.2 Example of a proof generated by the approach of Coscoy et al. 134

viii

List of Listings

1 Insecure explicit flow . 2
2 Insecure implicit flow . 2
1.1 Attempts to explicitly leak information . 7
1.2 Attempt to implicitly leak information . 7
1.3 Attempt to implicitly leak a larger amount of information 8
1.4 Attempt to implicitly leak information is detected 8
1.5 Leaking information through an exception 8
1.6 Leaking a large amount of information through an exception 9
1.7 A program’s progress can also leak information 9
1.8 Progress channels can leak a significant amount of information 10
1.9 Loop that always terminates . 10
1.10 Leaking information through timing-channels 11
1.11 Preventing leaks through the timing channel 11
1.12 Possible instrumentation of a send command 14
1.13 Producing the public outputs . 15
1.14 Producing the private outputs . 15
1.15 A program with multi-faceted variables . 15
1.16 Flow sensitive vs. flow insensitive . 16
1.17 Example for context-sensitivity . 17
1.18 Example for object-sensitivity . 17
1.19 Example for path-sensitivity . 17
3.1 Statically uncertain channel level . 44
3.2 Statically uncertain variable level . 45
3.3 Progress leak . 45
3.4 Loop that always terminates . 46
3.5 Leaking through monitor decision . 46
3.6 Variable level sensitivity . 46
3.7 We cannot be pessimistic about channel variables 52
3.8 Dangerous runtime halting . 57
3.9 A guarded send can generate a progress leak 59
3.10 Modified variables . 60
3.11 The security type of c’s content is sensible 63
3.12 The security type of x’s content is sensible 63
3.13 Constraint on the security type of a channel variable 64
3.14 Constraint on the security type of an integer variable 65
3.15 Example where _hc does not need to be updated with xctx 65
4.1 Instantiating an object and calling a function using reflection 91
4.2 Instanciating an object of a statically unknown class using reflection 91

ix

4.3 Dynamically built class name . 96
5.1 Derived values . 105
6.1 Insecure explicit flow . 114
6.2 Insecure implicit flow . 115
6.3 Syntax of a simple imperative language . 116
6.4 Small-step semantics of boolean expressions 116
6.5 Small-step semantics of arithmetic expressions 117
6.6 Small-step semantics of commands . 118
6.7 Ott-IFC’s output for the "read" command 121
6.8 Ott-IFC’s output for the "write" command 122
6.9 Ott-IFC’s output for the "assign" command 122
6.10 Ott-IFC’s output the big-step version of the "assign" command 122
6.11 Ott-IFC’s output for the "sequence" command 123
6.12 Ott-IFC’s output for the "if" command . 123
6.13 Ott-IFC’s output for the "while" command 124
6.14 Program accepted by flow-sensitive analyses 125
7.1 Proof script given as input . 131
7.2 State before executing the first intros tactic 131
7.3 State after executing the first intros tactic 131
7.4 Coqatoo’s output in annotation mode . 133
7.5 Improved precision using abstract interpretation 137

x

Remerciements

J’aimerais tout d’abord remercier mes directrices de recherche, Josée Desharnais et Nadia
Tawbi, pour m’avoir donné la chance de travailler à leurs côtés. Je n’aurais pas pu demander
de meilleures directrices! Vous êtes brillantes, passionnées et vous n’hésitez pas à aider les gens
autour de vous! Je tiens particulièrement à vous remercier pour m’avoir toujours encouragé à
explorer mes idées, même lorsque celles-ci n’étaient pas directement liées au sujet de recherche.
C’est sans hésitation et de tout mon coeur que je vous recommanderais à un autre étudiant.

J’aimerais aussi remercier Jean-Philippe Lachance, David Landry, Sébastien Garvin, Souad
El-Hatib et Loïc Ricaud pour nous avoir aidés à implémenter les divers outils et pour avoir
rendu le laboratoire plus vivant.

J’aimerais aussi remercier mes amis, sans qui, je n’aurais peut-être jamais commencé à pro-
grammer et ma carrière aurait été très différente.

Finalement, j’aimerais remercier toute ma famille pour leur appui, particulièrement mes par-
ents. C’est grâce à vous si je suis où je suis et qui je suis aujourd’hui.

xi

Foreword

We present in this thesis six different papers which have all been peer-reviewed and presented
in various conferences. Here are some information regarding the authors and their roles for
each paper.

Enforcing Information Flow by Combining Static and Dynamic Analysis

This paper was written by Andrew Bedford, Josée Desharnais, Théophane G. Godonou and
Nadia Tawbi. It was published in the proceedings of the International Symposium on Founda-
tions & Practice of Security in 2013. Théophane G. Godonou, a graduate student supervised
by Nadia Tawbi and Josée Desharnais, designed the type-based instrumentation algorithm.
Andrew Bedford, an intern at the time, implemented the algorithm and helped improve its
final form. All of the authors contributed ideas and participated in the paper’s writing process.

A Progress-Sensitive Flow-Sensitive Inlined Information-Flow Control Monitor

This paper was written by Andrew Bedford, Stephen Chong, Josée Desharnais, Elisavet Kozyri
and Nadia Tawbi. It was published in the proceedings of the IFIP International Information
Security and Privacy Conference in 2016. Andrew Bedford, Josée Desharnais and Nadia Tawbi
are the main authors of this paper. Together, they designed the type systems, instrumentation
algorithms and proved their correctness. Stephen Chong, a professor and collaborator from
Harvard, provided feedback throughout the project.

After winning the conference’s Best Student Paper Award, the paper was published in a spe-
cial issue of the journal Computers & Security. The journal version of the paper, which is
the version presented Chapter 3, includes new results and contributions. Elisavet Kozyri, a
graduate student and collaborator from Cornell, helped write the final journal version.

Andrana: Quick and Accurate Malware Detection for Android

This paper was written by Andrew Bedford, Sébastien Garvin, Josée Desharnais, Nadia Tawbi,
Hana Ajakan, Frédéric Audet and Bernard Lebel. It was published in the proceedings of the
International Symposium on Foundations & Practice of Security in 2016. Andrew Bedford

xii

is the main author of this paper. Sébastien Garvin, an intern under the supervision of An-
drew Bedford, Josée Desharnais and Nadia Tawbi, helped implement Andrana’s feature ex-
traction functionality. Hana Ajakan, a graduate student under the supervision of professor
François Laviolette, trained and tested Andrana’s classifiers using different machine-learning
algorithms. Frédéric Audet and Bernard Lebel, industrial collaborators from Thales Research
& Technology Canada, provided the datasets of Android applications and helped determine
the appropriate set of features to extract.

Information-Flow Control with Fading Labels

This paper was written by Andrew Bedford. It was published in the proceedings of the
International Conference on Privacy, Security and Trust in 2017 as an extended abstract.
Professors Josée Desharnais and Nadia Tawbi provided feedback on the ideas presented in the
paper. The version presented in Chapter 5 is an extended version which includes an example
of a mechanism using fading labels.

Towards Automatically Generating Information-Flow Control Mechanisms

This paper was written by Andrew Bedford. Though it was not published, it was peer-reviewed
and presented at the ACM SIGPLAN Symposium on Principles of Programming Languages
Student Research Competition in 2018 under the title Generating Information-Flow Control
Mechanisms from Programming Language Specifications. The version presented in Chapter 6
is an improved version that takes into account some of the feedback received during the
competition.

Coqatoo: Generating Natural Language Versions of Coq Proofs

This paper was written by Andrew Bedford. It was presented at the International Workshop
on Coq for Programming Languages, a POPL co-hosted workshop, in 2018. To foster open
discussion of cutting edge research, the papers from this conference are not published; they are
instead made readily available on the workshop’s website. The version presented in Chapter 7
is an improved version that takes into account some of the feedback received during and after
the workshop.

xiii

Introduction

Modern operating systems rely mostly on role-based access-control mechanisms to protect
users information. However, role-based access control mechanisms are insufficient as they
cannot regulate the propagation of information once it has been released for processing.
For example, according to the permission table below, program β should not have access
to private.txt. Yet nothing prevents program α from copying private.txt’s information into
public.txt, which program β has access to, thereby giving program β access to private.txt’s
information.

Program α Program β

private.txt read write - -
public.txt read write read write

The problem is that such a leak is hidden in the code of program α. To address this issue,
a research trend called language-based information-flow security has emerged. As the name
suggests, the idea is to use language-based techniques, such as program monitoring, rewriting
and type checking, to analyze a program’s code and to prevent information from flowing to
an undesired destination (e.g., information from a private file should not be saved in a public
file). Mechanisms that enforce such policies are called information-flow control mechanisms.
The policy that is usually enforced by these mechanisms, called noninterference, states that
private information may not interfere with the publicly observable behavior of a program.
In other words, someone observing the public outputs of a program should not be able to
deduce anything about its private inputs, even if the observer has access to the program’s
source code. To enforce noninterference, a mechanism must take into account two basic types
(among others) of information flows: explicit flows and implicit flows.

An insecure explicit information flow occurs when private information directly influences public
information. For example in Listing 1, the value that is written to publicFile depends on the
value of x, which in turn depends on the value of privateValue. Hence, any output of x would
reveal something about privateValue.

1

x := privateValue + 42;

write x to publicFile

Listing 1: Insecure explicit flow

An insecure implicit information flow occurs when private information influences public infor-
mation through the control-flow of the program. For example in Listing 2, the value that is
written to publicFile depends on the condition privateValue > 0. So someone observing the
content of publicFile could learn whether or not privateValue is greater than zero.

if (privateValue > 0) then
write 0 to publicFile

else
write 1 to publicFile

end

Listing 2: Insecure implicit flow

Insecure explicit and implicit flows can be identified and prevented using static, dynamic or
hybrid mechanisms. Static information-flow control mechanisms analyze a program before
its execution to determine if it satisfies the appropriate information flow requirements. They
introduce no runtime overhead, but accept or reject a program in its entirety. Dynamic
information-flow control mechanisms accept or reject individual executions at runtime, without
performing any preliminary static program analysis, but can introduce significant runtime
overheads. Hybrid information-flow control mechanisms combine static and dynamic program
analysis. They strive to achieve the benefits of both static and dynamic mechanisms: precise
(i.e., per-execution) enforcement of security, with low runtime overhead.

While promising, there are still many challenges to be addressed before information-flow con-
trol mechanisms become effective, easy to use and lightweight. Namely, we need flexible and
fully automatic mechanisms that introduce as little overhead as possible during execution,
while providing as much protection as possible. They must be capable of handling real-world
applications and real-world language features.

To that end, we present in this thesis six papers which introduce new ways of identifying
precisely when dynamic information-flow control should be necessary using static analysis
(Chapters 2, 3 and 4), new ways of parameterizing the precision of an analysis (Chapter 5)
and new tools to help researchers develop sound mechanisms (Chapters 6 and 7). More
specifically, the contributions of each paper as follows.

2

Contributions

Enforcing Information Flow by Combining Static and Dynamic Analysis
(Chapter 2)

In this chapter, we present a type system that statically checks noninterference for a simple
imperative programming language. To the usual two main security levels, public and private,
we add a new value, unknown. This new value captures the possibility that we may not
know, before execution, whether some information is public or private. Standard two-valued
analyses have no choice but to be pessimistic when faced with uncertainty and hence generate
false positives. If uncertainty arises during the analysis, we tag the instruction in cause.
In a second step, instrumentation at every such point together with dynamic analysis will
allow us to obtain a more precise result than purely static approaches. Using this approach,
we can reduce the number of false positives, while introducing a light runtime overhead by
instrumenting only when there is a need for it.

A Progress-Sensitive Flow-Sensitive Inlined Information-Flow Control Monitor
(Chapter 3)

Most programs today can interact with an external environment during their execution. This
means that a program’s outputs can be used to track its progress (i.e., where it is in its
execution), and so, can be used to leak information without being detected by traditional
information-flow mechanisms.

In this chapter, we adapt the approach presented in Chapter 2 to take into account leaks
through progress and extended our approach to support more than simply two levels of infor-
mation (private, public). One particularity of this extended version is that we use sets of levels
during static analysis to represent the possible levels that can be associated with a variable
during execution. When general lattices are enforced, we found sets of levels to be a more
accurate representation than our previously used unknown level. Thus, the distinction that
our static analysis makes between outputs that never leak information and outputs that may
leak information is more precise when using sets of levels. In this chapter, we also prove that
our monitor is sound and that the semantics of the original program is preserved, as long as
the program is secure.

Andrana: Quick and Accurate Malware Detection for Android (Chapter 4)

Wanting to apply our approach to real-world applications, we turned our attention to Android.
We quickly realized that enforcing information-flow policies on real-world applications can
result in significant overheads and false positives, even when using hybrid mechanisms. So,
in order to identify applications that are most likely to leak a user’s sensitive information
(i.e., malicious applications), and hence in most need of monitoring, we have developed a

3

malware detection tool for Android called Andrana. Instead of relying on the more frequently
used dynamic analysis, it uses static analysis to detect an application’s features, and machine
learning algorithms to determine if these features are sufficient to classify an application as a
malware.

While Andrana is not the first tool of this kind, it equals others in terms of accuracy (94%)
and surpasses most in terms of speed, taking less than a second to perform its analysis and
classification. Compared to antiviruses, which mostly use pattern matching algorithms to
identify known malware (i.e., they look for specific sequences of instructions), Andrana’s main
advantage is that it can not only detect known malware and their variations, but also unknown
malware.

Information-Flow Control with Fading Labels (Chapter 5)

While working with mobile devices for Andrana, we sought other ways to reduce the over-
head that is introduced by information-flow control mechanisms. We realized that existing
mechanisms generally invest the same amount of resources to protect information of varying
importance. However, in systems where resources are limited such as smartphones and tablets,
it may be more appropriate to spend more resources to protect information that is more im-
portant (e.g., passwords), and less resources to protect information that is less important (e.g.,
current location). To address this issue, we introduce in this chapter the concept of fading
labels.

Fading labels are labels whose taint stops propagating after a fixed amount of uses (i.e., they
fade away). By parameterizing mechanisms so that labels associated to important information
fade away more slowly than those associated to less important information, they allow mech-
anisms to use more resources to track important information than other information. Since
leaks of information may occur once a label fades away, mechanisms that use them may not
always enforce noninterference. What they do enforce is a relaxed version of noninterference,
called depth-limited noninterference, which we also introduce in this chapter.

Towards Automatically Generating Information-Flow Control Mechanisms
(Chapter 6)

From our own experience, we know that implementing an information-flow control mechanism
for Android can be a difficult and time-consuming task due to the numerous and subtle ways
through which information may flow in a program. Part of the problem comes from the fact
that, while techniques to prevent insecure explicit and implicit flows are well known and widely
used, they still need to be applied manually when designing new mechanisms. This can lead
to errors, failed proof attempts and time wasted.

In order to make this task less laborious, we present in this chapter a tool called Ott-IFC that

4

can, given a programming language’s specification, automatically apply those techniques and
generate information-flow control mechanism specifications. More specifically, it analyzes the
syntax and semantics of an imperative programming language on which we want to enforce
noninterference, and uses rewriting rules to generate a hybrid runtime monitor’s semantics.
To the best of our knowledge, this is the first tool of this kind.

Coqatoo: Generating Natural Language Versions of Coq Proofs (Chapter 7)

While working on Ott-IFC, we sought other ways to facilitate the development of information-
flow control mechanisms. One important aspect of any such mechanism is proving that they
are sound. Since Ott-IFC uses Ott as its input and output language, specifications can be
exported to proof assistants, such as Coq and Isabelle, so that the user may complete their
implementation and proofs. However, a disadvantage of using proof assistants is that the re-
sulting proofs can be sometimes hard to read and understand, particularly for less-experienced
proof assistant users.

To address this issue, we have developed a tool called Coqatoo that can generate natural lan-
guage versions of Coq proofs using a combination of static and dynamic analysis. It generates
natural language proofs from high-level proof scripts instead of the low-level proof-terms used
by previous work. By adopting this approach, it can avoid the inherent verbosity that comes
from using low-level proof-terms and avoid losing valuable information such as the tactics that
are used, the user’s comments and the variable names. Furthermore, contrarily to previous
approaches, it gives the user direct control over the verbosity of the generated natural language
version: the more detailed a proof script is, the more detailed its natural language version will
be.

5

Chapter 1

Basics of Information-Flow Control

To help understand the content of this thesis, we present in this chapter the basics of information-
flow control. We first present the security policy that is enforced by most information-flow
control mechanisms and how information may flow in a program. We then present different
ways by which this policy can be enforced. An initiated reader can skip this chapter. For the
sake of completeness, this chapter includes notions that are not necessary to understand the
content of this thesis; they are denoted with a red star (*).

1.1 Noninterference

Noninterference [1] is the security policy that is enforced by most information-flow mechanisms.
Intuitively, it states that private information should not interfere with the publicly observable
behavior of a program. In other words, someone observing the public outputs of a program
should not be able to deduce anything about its private inputs, even if the observer has access
to the program’s source code.

More formally, it states that for any two executions of a program whose initial memories differ
only on the private inputs, if one execution can produce some publicly observable output, then
the other execution also produces the same publicly observable output. This means that an
observer of the public output could not distinguish the two executions, and thus would learn
nothing about the private inputs. A mechanism that correctly enforces this policy is said to
be sound. Sound mechanisms may have false positives (i.e., reporting that there is a leak of
information when there is not), but must not have any false negatives (i.e., reporting that
there is no leak of information when there is).

This policy follows Bell-Lapadula’s model of no read up (i.e., a public user may not read
private information), no write down (i.e., private information may not be written down to
public channels) [13]. Information-flow mechanisms strive to implement this model by tracking
out its violations, not only at the command level (i.e., by considering how information flows

6

from one command to another), but also at the covert channel level (i.e., considering how
information could be leaked through different covert channels such as a program’s progress, a
phone’s vibration or the execution time of an application).

1.1.1 Information flows

To present the different ways by which information may flow, let us consider the following
scenario: a program has access to private information (e.g., credit card numbers) and wants
to leak it to a public channel. For the sake of simplicity, let us assume that this information
is a natural number. Note that we use a send to command in our examples to express the
fact that an output is produced, but some works consider assignments as outputs.

Explicit flows An insecure explicit information flow occurs when private information influ-
ences public information through a data dependency. For example in Listing 1.1, the value
that is sent to publicChannel depends on the value of x, which in turn depends on the value
of privateInfo. Hence, any output of x would reveal something about privateInfo.

x := privateInfo + publicInfo;

send x to publicChannel

Listing 1.1: Attempts to explicitly leak information

To track these dependencies, the usual approach is to associate sensitive information with a
label, which is then propagated whenever the information is used, a process called tainting. In
other words, each program variable has a label which represents the level of information that it
contains. In this example, x’s value depends on both private and public information. To avoid
leaking information, the label associated to x must be at least as restrictive as the two. For this
reason, the variable x is labeled as "private", meaning that the information contained within
the variable is considered to be private. Before executing the send command, enforcement
mechanisms use these labels to verify that no leak is about to occur. Since in this case the
program is trying to send x, which is considered private, to publicChannel, which is considered
public, the program’s execution is stopped by the mechanism to prevent a leak from occurring.

Implicit flows An insecure implicit flow [2] occurs when a conditional (e.g., the guard
condition of an if orwhile command) depends on private information and alters the program’s
publicly observable behavior. For example, in Listing 1.2, the value received by the public
channel (0 or 1) reveals whether or not privateInfo is greater than 100.

if privateInfo > 100

then x := 0

else x := 1 end;
send x to publicChannel (*leak*)

Listing 1.2: Attempt to implicitly leak information

7

Although only one bit of information is leaked in this example, implicit flows can be used to
leak an arbitrary amount of information [3]. For instance, consider the program of Listing 1.3
which iterates through the possible values of privateInfo. When the exact value is found, it
is sent to the public channel.

leakedNumber := false;

i := 0;

while (leakedNumber = false)

if privateInfo = i then (*exact value found*)

send i to publicChannel; (*leak*)

leakedNumber := true

end;
i := i + 1

end

Listing 1.3: Attempt to implicitly leak a larger amount of information

One way to detect and prevent implicit flows is to keep track of the context in which commands
are executed using a program counter variable, usually named pc. Listing 1.4 illustrates how
the use of such a variable can prevent the leak that occurs in Listing 1.2, and its usage is
explained in comments.

(*pc is initially public*)

if privateInfo > 100 then (*pc is now private because of the condition*)

x := 0 (*because x is assigned in a private context, x will be considered private*)

else
x := 1 (*same thing here*)

end;
(*pc goes back to public*)

send x to publicChannel (*leak detected because x is private and publicChannel is public*)

Listing 1.4: Attempt to implicitly leak information is detected

Exception flows* Exceptions can be raised (and caught) by the programmer to handle
exceptional cases or by the runtime environment when an error occurs (e.g., a division by
zero, stack overflow, out of bounds). Like conditionals, they can alter the control flow of a
program and create implicit flows [4]. For example in Listing 1.5, whether or not the execution
of the division throws an exception reveals information on privateInfo’s value.

try {

x := 1/privateInfo;

send "privateInfo 6= 0" to publicChannel

} catch (Exception e) { (*Division by zero*)

send "privateInfo = 0" to publicChannel }

Listing 1.5: Leaking information through an exception

8

Like implicit flows, exceptions can be used to leak more than one bit at a time [3]. Listing 1.6
shows that it is possible to leak the exact value of privateInfo using exceptions.

try {

i := 0;

while (i < MAX_NAT) do
x := 1/(privateInfo-i) (*will divide by zero when i=privateInfo*)

end
}

catch (Exception e) {

(*Division by zero*)

send "privateInfo = " + i to publicChannel

}

Listing 1.6: Leaking a large amount of information through an exception

In this example, an exception is thrown when i equals privateInfo and, consequently, the
subsequent send leaks privateInfo’s exact value. A simple but restrictive way to prevent such
leaks is to forbid operations that can throw exceptions on variables that are not public [4].
This means that the denominator of a division operation must be public, the index of an array
must be public, etc.

Progress flows Most programs are interactive, meaning that they can interact with an
external environment during their execution. This means that a program’s outputs can be
used to track its progress (i.e., where it is in its execution), and so, can be used to leak
information without being detected by traditional information-flow mechanisms.

For example, if a user executes the program of Listing 1.7 and observes the string "Starting

program..." on the public channel, then the user knows that the program has executed its
first command. If the same user then observes the string "Ending program...", then the user
learns that privateInfo is less than or equal to 42. On the other hand, if the user does not
receive that last output, then the user learns that privateInfo is greater than 42. In each
case, information about the value of privateInfo is leaked.

send "Starting program..." to publicChannel;

while privateInfo > 42 do
skip (*Infinite loop*)

end;
send "Ending program..." to publicChannel

Listing 1.7: A program’s progress can also leak information

9

Like implicit flows, progress flows can be used to leak large amounts of information [3]. The
program of Listing 1.8 is an example of such a leak.

i := 0;

while (i < MAX_NAT) do
send i to publicChannel;

if (i = privateInfo) then
while true do skip end (*leak*)

end;
i := i + 1

end

Listing 1.8: Progress channels can leak a significant amount of information

This program is similar to the one in Listing 1.3. It also iterates through the possible values
of privateInfo. The difference is that it sends all these possible values to the public channel
so that the program’s progress can be observed. When the condition i = privateInfo is true,
the program becomes stuck in an infinite loop. Knowing this, a user can conclude that the
last value received on the public channel is the value of privateInfo.

A mechanism that takes such leaks into account is said to be progress-sensitive. The most
common way to prevent leaks through progress channels is to forbid loops whose execution de-
pends on confidential information [5, 6], but it leads to the rejection of many secure programs,
such as the following program that always terminates.

while privateInfo > 0 do
privateInfo := privateInfo - 1

end; (*loop will always end, no matter the value of privateInfo*)

send 42 to publicChannel (*no leak*)

Listing 1.9: Loop that always terminates

Alternatively, to accept such programs, Moore et al. [7] use an oracle to determine the termi-
nation behavior of loops. If the oracle determines that a loop always terminates (like the one
in Listing 1.9), then no following output could leak information through progress channels.
On the other hand, if the oracle says that it may diverge, then an enforcer must take into
account the fact that an output following the loop’s execution could leak information.

Timing flows* If we consider that a user can, not only observe the progress of a program,
but also time its execution, then this execution time can be used to leak sensitive information.
Indeed, by timing how long the program of Listing 1.10 takes to complete, an observer could
deduce whether or not privateInfo is greater than 0.

10

send "Starting" to publicChannel;

if privateInfo > 0 then
(*this branch takes 5 minutes to execute*)

else
(*this branch takes 1 second to execute*)

end;
send "Finished!" to publicChannel

Listing 1.10: Leaking information through timing-channels

Mechanisms that take this kind of leak into account are said to be timing-sensitive [8]. The
most common way to prevent such leaks is to ensure that the execution time of both branches
is always the same. This is done by executing a "dummy" version of the other branch (see
Listing 1.11).

send "Starting" to publicChannel;

if privateInfo > 0 then
(*this branch takes 5 minutes to execute*)

(*add 1 second of dummy operations*)

else
(*this branch takes 1 second to execute*)

(*add 5 minutes of dummy operations*)

end;
send "Finished!" to publicChannel

Listing 1.11: Preventing leaks through the timing channel

1.2 Enforcement mechanisms

Noninterference can be enforced using different mechanisms. There are three classes of mech-
anisms: static, dynamic and hybrid.

1.2.1 Static mechanisms

Static information-flow control mechanisms analyze a program before its execution to deter-
mine whether the program’s execution will satisfy the appropriate information flow require-
ments. When facing uncertainty, static mechanisms are forced to approximate to be sound.
While these approximations may lead to false positives (i.e., reporting that there is a leak of
information when there is not), they do not lead to false negatives (i.e., reporting that there
is no leak of information when there is).

Static enforcement mechanisms typically rely on one of two techniques for their analysis: type
systems or program dependence graphs.

11

Type systems A type system is a set of rules that assign types to the various constructs of
a program (e.g., variables, expressions, functions, statements) [11]. These types can then be
used to detect potential execution errors (e.g., a function that takes an integer as parameter is
instead given a string). For example, they can be used to detect that the command output(x)

is not valid in the following program.

function output(string s) { (*)*output is typed as a function that takes a string as

argument and returns nothing*)

print "Output:" + s

}

x := 5; (*5 is an int, so x is typed as an int*)

y := "Hello"; (*"Hello" is a string, so y is typed as a string*)

output(y); (*ok because y is a string*)

output(x) (*error because x is not a string*)

The same idea can be applied to enforce noninterference [9, 10]. The only difference is that
the types that are associated with the constructs now must contain information about their
security level. Using these types, it is then possible to verify that the programs do not contain
any illicit flow of information. For example in the listing below, variable x will be typed as a
public integer, and similarly for variable secret. Using these types, an analysis will then be
able to conclude that the send command is insecure and leaks information.

x := 5; (*5 is public, so x is typed as public*)

receive secret from secretFile; (*secretFile contains private information, so secret is

also private*)

send secret to publicFile (*insecure explicit flow detected because secret is private and

publicFile is public*)

Program dependence graphs A program dependence graph (PDG) [12] is a visual repre-
sentation of the information flows that can occur in a program. In a PDG, each node represents
a program statement or an expression and the edges represent dependence, of which there are
two kinds:

• Data dependence: A solid edge, written x −→ y, means that statement x assigns a
variable that is used in statement y.

• Control dependence: A dotted edge, written x 99K y, means that the execution of y
depends on the value of expression x (which is typically the condition of an if/while
command).

12

A path from node x to node y means that information can flow from x to y. Conversely, if
there are no paths from private inputs to public outputs, then the program is noninterferent.
For example, in Figure 1.1 there is a path from node pw (password) to node return match

which means that the value of password influences the value returned by the function check.

Figure 1.1: A Java password checker and its PDG [12]

1.2.2 Dynamic mechanisms

Dynamic information-flow control mechanisms accept or reject individual executions at run-
time, without performing any static program analysis. Dynamic mechanisms are more per-
missive than static mechanisms as they allow the execution of insecure programs as long as
the current execution is secure. For example, a static mechanism would reject the program of
Listing 1.2.2 because not all executions of the program are noninterferent.

if randomValue = 3.141592654 then
send secretInfo to publicChannel (*leak, but happens rarely*)

else
send 1 to publicChannel (*no leak*)

end

Dynamic mechanisms on the other hand would reject only executions where randomValue

equals 3.141592654.

Some of the earliest information-flow control mechanisms, such as the one proposed by Bell-
Lapadula [13], were purely dynamic. However, as seen in Section 1.1.1, enforcing noninterfer-
ence involves considering not only the outputs that occurred, but also those that could have
occurred in another execution. Since dynamic mechanisms do not perform any static analysis,

13

they are only aware of what happens in the current execution. For this reason, like static
mechanisms, they are forced to make approximations.

In this section, we present four dynamic mechanisms: monitoring, instrumentation, secure
multi-execution and multi-faceted variables.

Monitoring Monitors (e.g., [14]) observe the commands that are executed and can halt the
execution of a program in order to prevent a leak from happening. A simple way to implement
a monitor is by integrating it into the operational semantics of a programming language (more
information on operational semantics is available in [15]). For example the rule (Assign) of
Figure 1.2 states that when an assignment is executed, the value and security level of variable
x (levelx) are updated in the memory m by the value and security level of expression e.

(Assign)
m(e) = r

〈x := e,m〉−→〈stop,m[x 7→ r, levelx 7→ levele]〉

(Send)
¬(isPrivate(levelx) ∧ isPublic(levelc))

〈send x to c,m〉−→〈stop,m〉

Figure 1.2: Example of operational semantics rules

Using this information, noninterference can then be enforced: in Figure 1.2, the rule (Send)

uses the levels to make sure that no leak occurs when sending information on a channel.

Instrumentation Instrumentation is similar to monitoring but, instead of monitoring the
execution of the program, commands are inserted into the programs to make the additional
verifications that a monitor would have done at runtime. In other words, the monitor is inlined
in the program’s code.

For example, Listing 1.12 presents an instrumented version of a program in which a condition
has been inserted to make sure that the output is only executed when there is no leak of
information.

if levelx = private && levely = public then
fail

else
send x to y

end

Listing 1.12: Possible instrumentation of a send command

The main advantage of instrumentation is that the runtime environment of the program does
not need to be modified.

14

Secure multi-execution* Secure multi-execution [16] is a fairly new enforcement tech-
nique. The idea is to execute the program multiple times, once for each security level. For
example, the program of the listings below would be executed twice: once to produce the
public outputs (Listing 1.13) and once to produce the private outputs (Listing 1.14). To
avoid leaking information when producing the public outputs, private information is replaced
with default values. When producing the private outputs, the actual values will be used (as
indicated in the comments).

(*privateInfo = 42*)

x := privateInfo; (*x’s value is replaced with a default value*)

send 1 to publicChannel; (*outputs 1 to public observers*)

send x to publicChannel; (*outputs the default value*)

send x to privateChannel (*not executed, it is not a public output*)

Listing 1.13: Producing the public outputs

(*privateInfo = 42*)

x := privateInfo; (*x’s value is 42*)

send 1 to publicChannel; (*not executed, it is not a private output*)

send x to publicChannel; (*not executed, it is not a private output*)

send x to privateChannel (*outputs 42 to private observers*)

Listing 1.14: Producing the private outputs

The main disadvantage of secure multi-execution is that it does not preserve the original
semantics of the program (i.e., what the programmer wanted it to do) when a leak is present
and can result in unexpected behaviors.

Multi-faceted variables* A similar idea to secure multi-execution is to allow the use of
multi-faceted variables in programs [17]. A multi-faceted variable is a variable that is assigned
a tuple of values, interpreted as the target of a map from security levels to actual values. For
example, the variable address of Listing 1.15 is a multi-faceted variable which has different
values for observers of level public and private.

address := ("London", "221b Baker Street, London"); (*public value, private value*)

address := address + ", England"; (*concatenation is performed on all facets*)

send address to publicChannel; (*sends "London, England"*)

send address to privateChannel (*sends "221b Baker Street, London, England"*)

Listing 1.15: A program with multi-faceted variables

Each time an operation is made on a multi-faceted value (e.g., the string concatenation in
Listing 1.15), it must be performed on all facets. When an input/output operation is done, the
appropriate facet is used (e.g., the public value is used when outputting to a public channel).
Though its performance is better than secure multi-execution (since not all commands are

15

executed multiple times), it requires existing programs to be rewritten and may become a
burden to the programmer if there is a large number of security levels.

1.2.3 Hybrid mechanisms

Hybrid information-flow control mechanisms are mechanisms that use a combination of static
and dynamic analysis (e.g., [18, 19, 20, 21, 22]). They are attractive as they offer the ad-
vantages of both static and dynamic analyses: the low runtime overhead of static approaches
combined with the flexibility of dynamic mechanisms.

For example, a static analysis could be used to instrument only specific parts of the program
(those that need it) instead of the whole program, or a dynamic analysis could be used to
gather statically unknown runtime information.

1.3 Precision

A mechanism is said to be more precise than another if it rejects less programs while remaining
sound. Usually, the more precise a mechanism is, the slower is its analysis. For this reason,
enforcement mechanisms vary greatly in terms of precision. This difference in precision comes
not only from the types of information flows that are taken into account (see Section 1.1.1),
but also from the sensitivity of their analysis. In this section, we present the four types of
sensitivities mentioned by Hammer et al. [23]: flow sensitive, context sensitive, object sensitive
and path sensitive. We reuse a few of their examples.

Flow sensitive An analysis is said to be flow sensitive if it takes into consideration the
order of statements. For example, a flow-sensitive approach would accept the program in
Listing 1.16 as the value contained in variable x during the send command is public.

x := secret; (*x is private*)

x := 0; (*x is public*)

send x to publicChannel (*Flow insensitive:Leak, Flow sensitive:OK*)

Listing 1.16: Flow sensitive vs. flow insensitive

A flow-insensitive approach would reject this program because x contains, at one point, sensi-
tive information. Though flow sensitivity increases precision, it complicates the enforcement
of noninterference [24].

Context sensitive* An analysis is said to be context sensitive if "procedure calling context
is taken into account, and separate information is computed for different calls of the same
procedure; a context-insensitive analysis merges all call sites of a procedure" [23]. For example,
Listing 1.17 presents a program where the function f is called twice: once with a private
argument and once with a public argument.

16

int f(int x) { return x+42 }

secret := 1;

public := 2;

s := f(secret);

x := f(public);

send x to publicChannel

Listing 1.17: Example for context-sensitivity

A context-insensitive analysis would reject this program because one of the calls to function
f returns a private value, even though variable x contains only public information.

Object sensitive* An analysis is said to be object sensitive if "different host objects for the
same field (attribute) of an object are taken into account; object-insensitive analysis merges
the information for a field over all objects of the same class." [23]. In other words, an analysis
that is object sensitive is able to differentiate the different instances of a class. For example,
Listing 1.18 presents a program with two objects of the class File: x and y. The field path

contains private information in x, but public information in y.

class File {

string path;

File(path) { this.path = path }

}

(*x and y are both instances of class File*)

x := new File(secretPath); (*but x.path is private*)

y := new File(publicPath); (*and y.path is public*)

send y.path to publicChannel

Listing 1.18: Example for object-sensitivity

An object-insensitive analysis would not differentiate between the different instances of class
File, and so, would mistakenly report that a leak occurs at the send of Listing 1.18 even
though the contents of y.path is public.

Path sensitive* An analysis is said to be path sensitive if it takes into account the conditions
necessary for an information flow to occur. For example in Listing 1.19, the value of variable
secret will never be sent on publicChannel. Indeed, for a leak to occur, the following condition
would have to be true : (∃i ∈ Z | (i%2 = 0) ∧ (i = 3)) (which is impossible).

a[3] := secret;

if (i % 2 = 0) then
send a[i] to publicChannel

end

Listing 1.19: Example for path-sensitivity

17

Constraint solvers can be used to verify if this flow is possible.

1.4 Conclusion

We have presented in this chapter the basics of information-flow control: the notion of non-
interference, the different types of information flows, mechanisms and sensitivities. The
information-flow control mechanisms presented in the following chapters all enforce variants
of noninterference, take into account explicit and implicit flows and are hybrid.

1.5 Bibliography

[1] J. A. Goguen and J. Meseguer, “Security policies and security models,” in 1982 IEEE
Symposium on Security and Privacy, Oakland, CA, USA, April 26-28, 1982, 1982, pp.
11–20. Available: https://doi.org/10.1109/SP.1982.10014

[2] D. E. Denning, “A lattice model of secure information flow,” Commun. ACM, vol. 19,
no. 5, pp. 236–243, 1976. Available: http://doi.acm.org/10.1145/360051.360056

[3] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands, “Termination-insensitive
noninterference leaks more than just a bit,” in Computer Security - ESORICS
2008, 13th European Symposium on Research in Computer Security, Málaga,
Spain, October 6-8, 2008. Proceedings, 2008, pp. 333–348. Available: https:
//doi.org/10.1007/978-3-540-88313-5_22

[4] D. M. Volpano and G. Smith, “Eliminating covert flows with minimum typings,”
in 10th Computer Security Foundations Workshop (CSFW ’97), June 10-12,
1997, Rockport, Massachusetts, USA, 1997, pp. 156–169. Available: https:
//doi.org/10.1109/CSFW.1997.596807

[5] K. R. O’Neill, M. R. Clarkson, and S. Chong, “Information-flow security for
interactive programs,” in 19th IEEE Computer Security Foundations Workshop,
(CSFW-19 2006), 5-7 July 2006, Venice, Italy, 2006, pp. 190–201. Available:
https://doi.org/10.1109/CSFW.2006.16

[6] G. Smith and D. M. Volpano, “Secure information flow in a multi-threaded imperative
language,” in POPL ’98, Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, San Diego, CA, USA, January 19-21, 1998,
1998, pp. 355–364. Available: http://doi.acm.org/10.1145/268946.268975

[7] S. Moore, A. Askarov, and S. Chong, “Precise enforcement of progress-sensitive
security,” in the ACM Conference on Computer and Communications Security,

18

CCS’12, Raleigh, NC, USA, October 16-18, 2012, 2012, pp. 881–893. Available:
http://doi.acm.org/10.1145/2382196.2382289

[8] D. Zhang, A. Askarov, and A. C. Myers, “Language-based control and mitigation of
timing channels,” in ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’12, Beijing, China - June 11 - 16, 2012, 2012, pp. 99–110.
Available: http://doi.acm.org/10.1145/2254064.2254078

[9] A. Sabelfeld and A. C. Myers, “Language-based information-flow security,” IEEE
Journal on Selected Areas in Communications, vol. 21, no. 1, pp. 5–19, 2003. Available:
https://doi.org/10.1109/JSAC.2002.806121

[10] D. M. Volpano, C. E. Irvine, and G. Smith, “A sound type system for secure flow
analysis,” Journal of Computer Security, vol. 4, no. 2/3, pp. 167–188, 1996. Available:
https://doi.org/10.3233/JCS-1996-42-304

[11] L. Cardelli, “Type systems,” ACM Comput. Surv., vol. 28, no. 1, pp. 263–264, 1996.
Available: http://doi.acm.org/10.1145/234313.234418

[12] C. Hammer, “Information flow control for java: a comprehensive approach based on path
conditions in dependence graphs,” Ph.D. dissertation, Karlsruhe Institute of Technology,
2009. Available: http://d-nb.info/996983112

[13] D. E. Bell and L. J. LaPadula, “Secure computer systems: Mathematical foundations,”
MITRE CORP BEDFORD MA, Tech. Rep., 1973.

[14] T. H. Austin and C. Flanagan, “Efficient purely-dynamic information flow analysis,”
in Proceedings of the 2009 Workshop on Programming Languages and Analysis for
Security, PLAS 2009, Dublin, Ireland, 15-21 June, 2009, 2009, pp. 113–124. Available:
http://doi.acm.org/10.1145/1554339.1554353

[15] G. D. Plotkin, “A structural approach to operational semantics,” J. Log. Algebr. Program.,
vol. 60-61, pp. 17–139, 2004.

[16] D. Devriese and F. Piessens, “Noninterference through secure multi-execution,” in 31st
IEEE Symposium on Security and Privacy, S&P 2010, 16-19 May 2010, Berleley/Oakland,
California, USA, 2010, pp. 109–124. Available: https://doi.org/10.1109/SP.2010.15

[17] T. H. Austin, J. Yang, C. Flanagan, and A. Solar-Lezama, “Faceted execution of
policy-agnostic programs,” in Proceedings of the 2013 ACM SIGPLAN Workshop on
Programming Languages and Analysis for Security, PLAS 2013, Seattle, WA, USA, June
20, 2013, 2013, pp. 15–26. Available: http://doi.acm.org/10.1145/2465106.2465121

[18] A. Askarov and A. Sabelfeld, “Tight enforcement of information-release policies for
dynamic languages,” in Proceedings of the 22nd IEEE Computer Security Foundations

19

Symposium, CSF 2009, Port Jefferson, New York, USA, July 8-10, 2009, 2009, pp.
43–59. Available: https://doi.org/10.1109/CSF.2009.22

[19] F. Besson, N. Bielova, and T. P. Jensen, “Hybrid information flow monitoring
against web tracking,” in 2013 IEEE 26th Computer Security Foundations Symposium,
New Orleans, LA, USA, June 26-28, 2013, 2013, pp. 240–254. Available:
https://doi.org/10.1109/CSF.2013.23

[20] C. Hritcu, M. Greenberg, B. Karel, B. C. Pierce, and G. Morrisett, “All your
ifcexception are belong to us,” in 2013 IEEE Symposium on Security and Privacy,
SP 2013, Berkeley, CA, USA, May 19-22, 2013, 2013, pp. 3–17. Available:
https://doi.org/10.1109/SP.2013.10

[21] G. L. Guernic, A. Banerjee, T. P. Jensen, and D. A. Schmidt, “Automata-based
confidentiality monitoring,” in Advances in Computer Science - ASIAN 2006. Secure
Software and Related Issues, 11th Asian Computing Science Conference, Tokyo,
Japan, December 6-8, 2006, Revised Selected Papers, 2006, pp. 75–89. Available:
https://doi.org/10.1007/978-3-540-77505-8_7

[22] J. Magazinius, A. Russo, and A. Sabelfeld, “On-the-fly inlining of dynamic security
monitors,” Computers & Security, vol. 31, no. 7, pp. 827–843, 2012. Available:
https://doi.org/10.1016/j.cose.2011.10.002

[23] C. Hammer and G. Snelting, “Flow-sensitive, context-sensitive, and object-sensitive
information flow control based on program dependence graphs,” Int. J. Inf. Sec., vol. 8,
no. 6, pp. 399–422, 2009. Available: https://doi.org/10.1007/s10207-009-0086-1

[24] A. Russo and A. Sabelfeld, “Dynamic vs. static flow-sensitive security analysis,”
in Proceedings of the 23rd IEEE Computer Security Foundations Symposium, CSF
2010, Edinburgh, United Kingdom, July 17-19, 2010, 2010, pp. 186–199. Available:
https://doi.org/10.1109/CSF.2010.20

20

Chapter 2

Enforcing Information Flow by
Combining Static and Dynamic
Analysis

Authors: Andrew Bedford, Josée Desharnais, Théophane G. Godonou and Nadia Tawbi

Conference: International Symposium on Foundations & Practice of Security (FPS)

Status: peer reviewed; published1; presented

Year: 2013

2.1 Résumé

Ce chapitre présente une approche pour appliquer des politiques de flots d’information en
utilisant une analyse basée sur les types suivie d’une instrumentation lorsque nécéssaire. Notre
approche vise à réduire les faux positifs générés par l’analyse statique et à réduire la surcharge
d’exécution introduite en instrumentant seulement lorsque nécéssaire. L’idée clé de notre
approche est d’identifier ce qui est inconnu statiquement. Au lieu de rejeter des programmes
qui pourraient possiblement faire fuir de l’information, nous les instrumentons pour vérifier
lors de l’exécution si une fuite se produit réellement. Deux des particularités de notre approche
sont que nous utilisons quatre types de sécurité, et aussi que nous faisons la distinction entre les
variables et canaux de communications. Cette distinction nous permet d’associer les niveaux
de sécurité aux canaux plutôt qu’aux variables, dont le niveau de sécurité change en fonction
de l’information qu’elles contiennent.

1The published version is available at Springer via https://doi.org/10.1007/978-3-319-05302-8_6

21

2.2 Abstract

This chapter presents an approach to enforce information flow policies using a multi-valued
type-based analysis followed by an instrumentation when needed. Our approach aims at re-
ducing false positives generated by static analysis, and at reducing execution overhead by
instrumenting only when needed. False positives arise in the analysis of real computing sys-
tems when some information is missing at compile time, for example the name of a file,
and consequently, its security level. The key idea of our approach is to distinguish between
“negative” and “may” responses. Instead of rejecting the possibly faulty commands, they are
identified and annotated for the second step of the analysis; the positive and negative re-
sponses are treated as is usually done. This work is a hybrid security enforcement mechanism:
the maybe-secure points of the program detected by our type based analysis are instrumented
with dynamic tests. The novelty of our approach is the handling of four security types, but
we also treat variables and channels in a special way. Programs interact via communication
channels. Secrecy levels are associated to channels rather than to variables whose security
levels change according to the information they store, thus the analysis is flow-sensitive.

2.3 Introduction

In today’s world, we depend on information systems in many aspects of our lives. Those
systems are interconnected, rely on mobile components and are more and more complex.
Security issues in this context are a major concern, especially when it comes to securing
information flow. How can we be sure that a program using a credit card number will not
leak this information to an unauthorized person? Or that one that verifies a secret password
to authenticate a user will not write it in a file with public access? Those are examples of
information flow breaches in a program that should be controlled. Secure information flow
analysis is a technique used to prevent misuse of data. This is done by restricting how data
are transmitted among variables or other entities in a program, according to their security
classes.

Our objective is to take advantage of the combination of static and dynamic analysis. We
design a multi-valued type system to statically check noninterference for a simple imperative
programming language. To the usual two main security levels, public (or Low) and private
(or High), we add two values, Unknown and Blocked. The former was introduced in [1] and
captures the possibility that we may not know, before execution, whether some information
is public or private. Standard two-valued analysis has no choice but to be pessimistic with
uncertainty and hence generate false positive alarms. If uncertainty arises during the anal-
ysis, we tag the instruction in cause: in a second step, instrumentation at every such point
together with dynamic analysis will allow us to head to a more precise result than purely
static approaches. We get reduced false alarms, while introducing a light runtime overhead by

22

instrumenting only when there is a need for it. In this chapter, we add a fourth security type,
Blocked, which is used to tag a public channel variable that must not receive any information,
even public, because its value (the name of the channel) depends on private information. As
long as no information is sent over such a channel, the program is considered secure.

The program on the left of Figure 2.1 shows how the blocking type results in fewer false
positive alarms. The figure also exhibit our analysis of the program (which we will explain
later) as well as the output given by our implementation. The identifiers privateChannel,
publicChannel, highValue and lowValue in all the examples are predefined constants. The
security types L,H,U,B represent Low, High, Unknown and Blocked, respectively, pc is the
security type of the context, and _instr = L to tell that there is no need for instrumentation.
The first four lines of the program would be rejected by other analyses, including [1], because
channel c is assigned a Low channel in the then branch, which depends on a private condition,
highValue. In our work, c is just marked as blocked (“c 7→ Bchan") when it is assigned a
public channel in a private context. However, in the last line, an information of low content is
sent to c, which cannot be allowed, as it would reveal information on our confidential condition
highValue. It is because of this last line that the program is rejected by our analysis: without
it, c is just typed as B.

Input to analyzer Inference analysis

if highValue
then c := publicChannel
else c := privateChannel

end;
send lowValue to c

Environment pc i
pcif = H 2

G(2) = [_instr 7→ L, c 7→ B chan] H 3
G(3) = [_instr 7→ L, c 7→ H chan] H 4
G(1) = [_instr 7→ L, c 7→ B chan] H 4
fail since c 7→ B chan

Output : Error (Send) : Cannot send lowValue to channel c because it is blocked.

Figure 2.1: Analysis of a program where an implicit flow may lead to a leak of information

The goal of our security analysis is to ensure noninterference, that is, to prevent inadvertent
information leaks from private channels to public channels. More precisely, in our case, the goal
is to ensure that 1) a well-typed program satisfies noninterference, 2) a program not satisfying
noninterference is rejected 3) a program that may satisfy noninterference is detected and
sent to the instrumentation step. Furthermore, we consider that programs interact with an
external environment through communication channels, i.e., objects through which a program
can exchange information with users (printing screen, file, network, etc.). In contrast with
the work of Volpano et al. [2], variables are not necessarily channels, they are local and hence
their security type is allowed to change throughout the program. This is similar to flow-
sensitive typing approaches like the one of Hunt and Sands, or Russo and Sabelfeld [3, 4]. Our
approach distinguishes clearly communication channels, through which the program interacts
and which have a priori security levels, from variables, used locally. Therefore, our definition of
noninterference applies to communication channels: someone observing the final information
contained in communication channels cannot deduce anything about the initial content of the

23

channels of higher security level.

We aim at protecting against two types of flows, as explained in [5]: explicit flow occurs when
the content of a variable is directly transferred to another variable, whereas implicit flow hap-
pens when the content assigned to a variable depends on another variable, i.e., the guard of a
conditional structure. Thus, the security requirements are:

• explicit flows from a variable to a channel of lower security are forbidden;

• implicit flows where the guard contains a variable of higher security than the variables
assigned are forbidden.

Our static analysis is based on the typing system of [1]; our contributions are an improvement
of the type system to allow fewer false positives, by the introduction of the blocked type, and
the instrumentation algorithm that we have developed and implemented [6].

The rest of this chapter is organized as follows. After describing in Section 2.4 the program-
ming language used, we present the type system ensuring that information will not be leaked
improperly in Section 2.5. The inference algorithm is presented in Section 2.6. The instru-
mentation algorithm is presented in Section 2.7. Section 2.8 is dedicated to related work. We
conclude in Section 2.9.

2.4 Programming Language
We illustrate our approach on a simple imperative programming language, introduced in [1],
a variant of the one in [7], which was adapted to deal with the communication via channels.

2.4.1 Syntax
Let Var be a set of identifiers for variables, and C a set of communication channel names.
Throughout the chapter, we use generically the following notation: variables are x ∈ Var, and
there are two types of constants: n ∈ N and nch ∈ C. The syntax is as follows:

(phrases) p ::= e | c
(expressions) e ::= x | n | nch | e1 op e2

(commands) c ::= skip | x := e | c1; c2

if e then c1 else c2 end | while e do c end |
receivec x1 from x2 |
receiven x1 from x2 |
send x1 to x2

Values are integers (we use zero for false and nonzero for true), or channel names. The symbol
op stands for arithmetic or logic binary operators on integers and comparison operators on
channel names. Commands are mostly the standard instructions of imperative programs.

24

We suppose that two programs can only communicate through channels (which can be, for
example, files, network channels, keyboards, computer screens, etc.). We assume that the
program has access to a pointer indicating the next element to be read in a channel and that
the send to a channel would append an information in order for it to be read in a first-in-
first-out order. When an information is read in a channel it does not disappear, only the
read pointer is updated, the observable content of a channel remains as it was before. Our
programming language is sequential; we do not claim to treat concurrency and communicating
processes as it is treated in [8, 9]. We consider that external processes can only read and write
to public channels. The instructions related to accessing channels deserve further explanations.

The instruction receivec x1 from x2 stands for “receive content”. It represents an instruction
that reads a value from a channel with name x2 and assigns its content to x1. The instruction
receiven x1 from x2 stands for “receive name”. Instead of getting data from the channel, we
receive another channel name, which might be used further in the program. This variable has
to be treated like a channel. The instruction send x1 to x2 is used to output on a channel
with name x2 the content of the variable x1. The need for two different receive commands is a
direct consequence of our choice to distinguish variables from channels. It will be clearer when
we explain the typing of commands, but observe that this allows, for example, to receive a
private name of channel through a public channel2: the information can have a security level
different from its origin’s. This is not possible when variables are observable.

2.4.2 Semantics

(ASSIGN) 〈e, µ〉 →e v

〈x := e, µ〉 → µ[x 7→ v]

(RECEIVE-CONTENT) x2 ∈ dom(µ) read(µ(x2)) = n

〈receivec x1 from x2, µ〉 → µ[x1 7→ n]

(RECEIVE-NAME) x2 ∈ dom(µ) read(µ(x2)) = nch

〈receiven x1 from x2, µ〉 → µ[x1 7→ nch]

(SEND) x1 ∈ dom(µ)

〈send x1 to x2, µ〉 → µ, update(µ(x2), µ(x1))

(CONDITIONAL) 〈e, µ〉 →e n n 6= 0

〈if e then c1 else c2 end, µ〉 → 〈c1, µ〉

〈e, µ〉 →e n n = 0

〈if e then c1 else c2 end, µ〉 → 〈c2, µ〉

Figure 2.2: A few rules of the structural operational semantics

The behavior of programs follows a commonly used operational semantics [1]; we present a
2but not the converse, to avoid implicit flow leaks

25

few rules in Figure 2.2. An instruction p is executed under a memory map µ : Var → N ∪ C.
Hence the semantics specifies how configurations 〈p, µ〉 evolve, either to a value, another
configuration, or a memory. Evaluation of expressions under a memory involves no “side
effects” that would change the state of memory. In contrast, the role of commands is to be
executed and change the state. Thus we have two evaluation rules: 〈e, µ〉 leads to a value
resulting from the evaluation of expression e on memory µ; this transition is designated by
→e. Finally, 〈c, µ〉 leads to a memory produced by the execution of command c on memory
µ; this transition is designated by →.

We explain the rules that manipulate channels. The instructions receivec x1 from x2 and
receiven x1 from x2 are semantically evaluated similarly. Information from the channel x2 is
read and assigned to the variable x1. The distinctive feature of the rule RECEIVE-CONTENT
is that the result of evaluation is an integer variable, while for the rule RECEIVE-NAME, the
result is a channel name. Here, we introduce a generic function read(channel) that represents
the action of getting information from a channel (eg. get a line from a file, input from the
keyboard, etc.). The content of a channel remains the same after both kinds of receive.

The instruction send x1 to x2 updates the channel x2 with the value of the variable x1. This
is done by the generic function update(channel, information), which represents the action of
updating the channel with some information. Note that the content of the variable x2, that
is, the name of the channel, does not change; hence µ stays the same. The content of the
channel is updated after a send.

2.5 Security Type System
We now present the security type system that we use to check whether a program of the
language described above, either satisfies noninterference, may satisfy it or does not satisfy it.
It is an improvement of the one introduced in [1]: we add a security level, B, to tag a channel
that should be blocked.

The security types are defined as follows:

(data types) τ ::= L | U | H | B
(phrase types) ρ ::= τ val | τ chan | τ cmd

We consider a set of four security levels SL = {L,U,H,B}. This set is extended to a lattice
(SL,v) using the following order: L v U v H v B (we use freely the usual symbols w and
A). It is with respect to this order that the supremum t and infimum u over security types
are defined. We lift this order to phrase types in the trivial way, and assume this returns ⊥
when applied to phrases of different types, e.g., H chantH val = ⊥. When typing a program,
security types are assigned to variables, channels and commands, hence phrase types – and to
the context of execution. The meaning of types is as follows. A variable of type τ val has a
content of security type τ ; a channel of type τ chan can store information of type τ or lower

26

(indeed, a private channel must have the possibility to contain or receive both private and
public information). The security typing of commands is standard, but has a slightly different
meaning: a command of type τ cmd is guaranteed to only allow flows into channels whose
security types are τ or higher. Hence, if a command is of type L cmd then it may contain a
flow to a channel of type L chan. Type B will only be assigned to channels, to indicate that
they were of type L chan but must be blocked, to avoid an implicit flow.

Our type system satisfies two natural properties: simple security, applying to expressions and
confinement, applying to commands [7]. Simple security says that an expression e of type τ val
or τ chan contains only variables of level τ or lower. Simple security ensures that the type
of a variable is consistent with the principle stated in the precedent paragraph. Confinement
says that a command c of type τ cmd executed under a context of type pc allows flows only to
channels of level τ t pc or higher, in order to avoid a flow from a channel to another of lower
security (H to L for example). Those two properties can be used to prove noninterference (see
[10]).

Our typing rules are shown in Figure 2.3. They are the same as in [1] except for the three rules
that deal with channels. A typing judgment has the form Γ, pc ` p : ρ,Γ′, where Γ and Γ′ are
typing environments, mapping variables to a type of the form τ val or τ chan that represents
their security level; pc is the security type of the context. The program is typed with a context
of type L; according to the security types of conditions, some blocks of instructions are typed
with a higher context, as will be explained later. The typing judgment can be read as: within
an initial typing environment Γ and a security type context pc, the command p has type ρ,
yielding a final environment Γ′. When the typing environment stays unchanged, Γ′ is omitted.
Since the type of channels is constant, there is a particular typing environment for channel
constants, named TypeOf_Channel that is given before the analysis. In the rules, α stands
for either the label val or chan, depending on the context.

We use, as in [1], a special variable _instr, whose type (maintained in the typing environment
map) tells whether or not the program needs instrumentation. The initial value of _instr is
L; if the inference algorithm detects a need for instrumentation, its value is changed to U , H
or B, depending on the rule applied, most of the time depending on the type of a channel.
When it is updated, the supremum operator is always involved to make sure that the need for
instrumentation is recorded until the end.

We need to define three operators, two of which on typing environments: Γ † [x 7→ρ] and
Γ t Γ′. The former is a standard update, where the image of x is set to ρ, no matter if x is
in the original domain of Γ or not. For the conditional rule in particular, we need a union of
environments where common value variables must be given, as security type, the supremum
of the two types, and where channel variables are given type U if they differ and none of them
is blocked.

27

(CHAN_S) TypeOf_Channel(nch) = τ

Γ, pc ` nch : τ chan
(INT_S) Γ, pc ` n : L val

(OP_S) Γ, pc ` e1 : τ1 α, Γ, pc ` e2 : τ2 α

Γ, pc ` e1 op e2 : (τ1 t τ2)val
(VAR_S) Γ(x) = τ α

Γ, pc ` x : τ α
(SKIP_S) Γ, pc ` skip : H cmd

(ASSIGN
-VAL_S)

Γ, pc ` e : τ val
Γ, pc ` x := e : (τ t pc) cmd,Γ † [x 7→ (τ t pc)val]

(ASSIGN
-CHAN_S)

Γ, pc ` e : τ chan
Γ, pc ` x := e :τ cmd,Γ t [_instr 7→ HLLL(pc, τ)] † [x 7→ HLBτ (pc, τ)chan]

(RECEIVE-
CONTENT_S)

Γ(x2) = τ chan
Γ, pc ` receivec x1 from x2 : (τ t pc) cmd,Γ † [x1 7→ (τ t pc)val]

(RECEIVE-
NAME_S)

Γ(x2) = τ chan
Γ, pc ` receiven x1 from x2 : τ cmd,

Γ t [_instr 7→ HLLτ (pc, τ)] † [x1 7→ HLBUtτ (pc, τ)chan]

(SEND_S)
Γ(x1) = τ1 α

Γ(x2) = τ chan ¬((τ1 t pc) = H ∧ τ = L) τ 6= B

Γ, pc ` send x1 to x2 : τ cmd,Γ t [_instr 7→ HLUL (τ1 t pc, τ)]

(CONDITIONAL_S)
Γ, pc ` e : τ0val

Γ, (pc t τ0) ` c1 : τ1 cmd,Γ′

Γ, (pc t τ0) ` c2 : τ2 cmd,Γ′′ Γ′ t Γ′′ A ⊥
Γ, pc ` if e then c1 else c2 end : (τ1 u τ2) cmd,Γ′ t Γ′′

(LOOP1_S) Γ, pc ` e : τ0val Γ, (pc t τ0) ` c : τ cmd,Γ′ Γ = Γ t Γ′ A ⊥
Γ, pc ` while e do c end : τ cmd,Γ t Γ′

(LOOP2_S) Γ, pc ` e : τ0val
Γ, (pc t τ0) ` c : τ cmd,Γ′ Γ 6= Γ t Γ′ A ⊥

Γ t Γ′, (pc t τ0) ` while e do c end : τ ′ cmd,Γ′′

Γ, pc ` while e do c end : τ ′ cmd, Γ′′

(SEQUENCE_S) Γ, pc ` c1 : τ1 cmd,Γ′ Γ′, pc ` c2 : τ2 cmd,Γ′′

Γ, pc ` c1; c2 : (τ1 u τ2) cmd,Γ′′

Figure 2.3: Typing rules

Definition 2.1. The supremum of two environments is given as dom(Γ t Γ′) = dom(Γ) ∪
dom(Γ′), and

Γ t Γ′(x)=


Γ(x) if x ∈ dom(Γ) \ dom(Γ′)

Γ′(x) if x ∈ dom(Γ′) \ dom(Γ)

U chan if Bchan 6=Γ(x) = τ chan 6= τ ′chan=Γ′(x) 6= Bchan
Γ(x) t Γ′(x) otherwise.

Note that Γ t Γ′(x) can return ⊥ if Γ and Γ′ are incompatible on variable x, for example if
Γ(x) is a value, and Γ′(x) is a channel (this can only happen if Γ and Γ′ come from different
branches of an if command).

28

In the three rules that modify a channel, ASSIGN-CHAN_S, RECEIVE-NAME_S et SEND_S,
the following operator is also used.

Definition 2.2. The function HL computes the security level of _instr and channel variables
in the three typing rules where a channel is modified.

HLψν (pc, τ) =


ψ if (pc, τ) = (H,L)

U if (pc, τ) ∈ {(U,L), (U,U), (H,U)}
ν otherwise.

where ψ, ν, pc, τ ∈ SL.

The notation HL refers to a downward flow “H to L" because this (handy and maybe tricky)
function encodes (with ψ and ν), in particular, how such a flow from pc to τ should be handled.
When it is clear that there is a downward flow, from H to L, then HL returns type ψ. When
we are considering the security type of a channel variable, ψ is either U or B. Such a flow may
not lead to a rejection of the program, nor to an instrumentation: when a variable is blocked,
there is no need to instrument. For other flows, the analysis distinguishes between safe flows
and uncertain ones. For example, flows from U to H are secure, no matter what the types
of uncertain variables actually are at runtime (L or H). In these cases, HLψν (pc, τ) returns ν.
However, depending on the actual type of the U variable at runtime, a flow U to L, from U

to U or from H to U may be secure or not. A conservative analysis would reject a program
with such flows but ours will tag the program as needing instrumentation and will carry on
the type analysis. Hence, in these cases, HL will return U .

In related work, there are subtyping judgements of the form ρ1 ⊆ ρ2 or ρ1 ≤ ρ2 [7, 2]. For
instance, given two security types τ and τ ′, if τ ⊆ τ ′ then any data of type τ can be treated as
data of type τ ′. Similarly, if a command assigns contents only to variables of level H or higher
then, a fortiori, it assigns only to variables L or higher; thus we would have H cmd ⊆ L cmd.
In our work, we integrated those requirements directly in the typing rules. Instead of using
type coercions, we assign a fixed type to the instruction according to the more general type.
For two expressions e1 and e2 of type τ1 and τ2 respectively, e1 op e2 is typed with τ1tτ2. For
two commands c and c′ typed τ and τ ′, the composition through sequencing or conditionals
is typed with τ u τ ′.

We now comment the typing rules that are modified with respect to [1]. ASSIGN-CHAN_S
and RECEIVE-NAME_S both modify a channel variable and they make use of the function
HLψν . The usual condition for the modification of a channel would be to avoid downward
flow by imposing pc v τ or, as in [1], pc � τ ; the latter is a weakening of the former, that
returns false only if pc = H and τ = L. In this chapter, we chose to only reject a program
if an unauthorized send is performed. If we detect an implicit flow in ASSIGN-CHAN_S or
RECEIVE-NAME_S, that is, pc = H and τ = L, we rather block the assigned channel (by
ψ = B in HLB−), as in the program of Figure 2.1; if the channel is never used, a false positive
has been avoided. If the channel is blocked, there is no need for instrumentation, hence ψ = L

in HLL− for both rules. In RECEIVE-NAME_S, we must call instrumentation when τ is U

29

or H to prevent a downward flow from x2 to x1. In that case, the channel variable obtains
security type Utτ because its type is unknown: we could receive the name of a private channel
on a public one (but could not read on in). In ASSIGN-CHAN_S, this type is τ , the type of
the assigned expression.

The rule for SEND_S states that the typing fails in two situations where the leak of informa-
tion is clear: either the channel to which x1 is sent is blocked (τ = B), or it is of type L and
either the context or the variable sent has type H ((τ1 t pc) = H). An example where τ = B

was just discussed above. If the typing does not fail, the instrumentation will be called in each
case where there is a possibility, at runtime, that τ1 t pc be H while the channel has type L;
those are the cases (τ1 t pc, τ) ∈ {((U,L), (U,U), (H,U)}. The “ψ branch" in the definition of
HLψ− is useless, as it is a case where the typing rejects the program.

The rule CONDITIONAL_S requires to type the branches c1 and c2 under the type context
pc t τ0, to prevent downward flows from the guard to the branches.

We now explain why t is defined differently on channel variables and value variables. If Γ

and Γ′, the environments associated to the two branches of the if command, differ on a value
variable, we choose to be pessimistic, and assign the supremum of the two security types. A
user who prefers to obtain fewer false positive could assign type U to this variable, and leave
the final decision to dynamic analysis. In the case of channel variables, we do not have the
choice: different unblocked channels must obtain the type Uchan. The program on the left
of Figure 2.7 illustrates why. The last line of the program would require that c be typed as
Lchan so that the program be rejected. However, since the else branch makes c a private
information, a command like send c to publicChannel should also be rejected, and hence
in this case we would like that c had been typed Hchan. Hence we must type c as Uchan,
justifying the definition of t. Interestingly, this also shows that in our setting, the uncertain
typing is necessary.

We conclude this section by discussing occurrences of false positive alarms. A rejection can
only happen from the application of the rule SEND_S: either the channel to which x1 is sent
is blocked, or it is of type L and the context, or the variable sent, is of type H. According
to our rules, type L can only be assigned if it is the true type of the variable, but H can be
the result of a supremum taken in rule CONDITIONAL_S or LOOP_S. False positive can
consequently occur from typing an if or while command whose guard always prevent a “bad"
branch to be taken. This is unavoidable in static analysis, unless we want to instrument any
uncertainty arising from the values of guards. Nevertheless, our inference typing rules prevent
more false positives than previous work through the blocking of channels and the unknown
types U .

30

2.6 Inference Algorithm
The inference algorithm implements the specification given by the type system together with
some refinements we adopted in order to prepare for the instrumentation step. The refinements
consist in keeping track of the command line number and of the generated environment for
this command. Although it may seem overloading, this strategy lightens the dynamic step
since it avoids type inference computation whenever it is already done. The algorithm is
implemented as the function Infer which is applied to the current typing environment, ge :

Var→ {L,H,U,B}, a number identifying the current command to be analyzed, the command
line i, the security level of the current context, pc, and the actual command to be analyzed, c
. Along the way, Infer returns a typing environment representing the environment valid after
the execution of the command c and an integer representing the number identifying the next
command to be analyzed. Infer updates G : int → (Var → {L,H,U,B}) as a side effect; G
associates to each command number a typing environment valid after its execution. Recall that
the environment associates to a specific variable_instr a security level. After the application of
the inference algorithm, if the program is not rejected and the resulting environment associates
U , H or B to _instr then the program needs instrumentation, otherwise it is safe w.r.t.
noninterference.

To analyze a program P , Infer is invoked with ge = [_instr 7→ L] , i = 0, pc = L and
c = P . The inference algorithm uses a set of utility functions that implement some operators,
functions and definitions appearing in the typing system. Their meaning and their imple-
mentation are straightforward. Here is the list of these functions. The set SecType stands
for {τ v : τ ∈ {L,U,H,B}, v ∈ {val, chan}}, t and ti ranges over SecType, and gi ranges
over Env, lessOrEqual implements v, inf and sup implement respectively the infimum and
the supremum of two security levels. supEnv implements the supremum of two environments,
as in Definition 2.1. infV : SecType × SecType → SecType ∪ {⊥T } returns ⊥T if the two
security types do not have the same nature. If the nature is the same, then it returns a
security type where the security level is the infimum of the two security types given as ar-
gument, supV : SecType × SecType → SecType ∪ {⊥T } behaves the same way as infV except
that it returns a security type where the security level is the supremum of the two security
types given as argument, incBottomEnv : Env → bool returns true if at least one variable
is associated to ⊥T in its parameter, updateEnv : Env × Var × SecType → Env implements
Γ † [x 7→ ρ], eqEnv : Env × Env → bool checks if two environments are equal. It returns true
if the two environments have the same domain and all their variables have the same security
type. It returns false otherwise, evalN : SecType → {val, chan}, extracts the nature of a secu-
rity type (val or chan), evalT : SecType → {L,U,H,B}, extracts the level of a security type,
inferE : Env × Exp → SecType returns the highest security type of the variables present in
the expression to which it is applied, and HL : {L,U,H,B}4 → {L,U,H,B} implements the
function HL as in Definition 2.2.

31

Infer: Env× int× Sec× cmd→ Env× int

Infer(ge, i, pc, c) =
case c of

skip : G(i) = ge
return (G(i), i+ 1)

x := e :
τ = evalT(inferE(ge, e))
case evalN(inferE(ge, e)) of

val : G(i) = updateEnv(ge, x, sup(pc, τ) val)
return (G(i), i+ 1)

chan: _instrt = HL(L,L, pc, τ)
xt = HL(B, τ, pc, τ)
_instrt2 = ge(_instr)
G(i) = updateEnv(updateEnv(ge,_instr, sup(_instrt,_instrt2)), x, xt chan)
return (G(i), i+ 1)

receivec x1 from x2 :
τ = evalT(ge(x2))
G(i) = updateEnv(ge, x1, sup(pc, τ) val)

return (G(i), i+ 1)
receiven x1 from x2 :

τ = evalT(ge(x2))
_instrt = HL(L, τ, pc, τ)
_instrt2 = ge(_instr)
x1t = HL(B, sup(U, τ), pc, τ)
G(i) = updateEnv(updateEnv(ge,_instr, sup(_instrt,_instrt2)), x1, x1t chan)
return (G(i), i+ 1)

send x1 to x2 :
τ1 = evalT(ge(x1))
τ = evalT(ge(x2))
_instrt = HL(U,L, sup(τ1, pc), τ)
_instrt2 = ge(_instr)
if((τ 6= B) and ¬(sup(τ1, pc) = H and τ = L)))

then G(i) = updateEnv(ge,_instr, sup(_instrt,_instrt2))
else fail

return (G(i), i+ 1)
c1; c2 :

(g1, j) = Infer(ge, i, pc, c1)
(g2, k) = Infer(g1, j, pc, c2)
return (g2, k)

if e then c1 else c2 end:
t = evalT(inferE(ge, e))
pcif = sup(pc, t)
(g1, j) = Infer(ge, i+ 1, pcif , c1)
(g2, k) = Infer(ge, j, pcif , c2)
if(¬incBottomEnv(supEnv(g1, g2))) then G(i) = supEnv(g1, g2)

else fail
return (G(i), k)

while e do c end:
t = evalT(inferE(ge, e))
pcwhile = sup(pc, t)
(ge′ , j) = Infer(ge, i+ 1, pcwhile, c)
if (eqEnv(ge, supEnv(ge, ge′)) and (¬incBottomEnv(supEnv(ge, ge′))))

then gres = supEnv(ge, ge′)
else if (¬eqEnv(ge, supEnv(ge, ge′)) and (¬incBottomEnv(supEnv(ge, ge′))))

then (gres, j) = Infer(supEnv(ge, ge′), i, pcwhile,while e do c end)
else fail

G(i) = supEnv(G(i), gres)
return (gres, j)

Figure 2.4: Inference Algorithm

The inference algorithm Infer is presented in Figure 2.4. Some examples of its output are
presented in the following section.

32

2.7 Instrumentation
Instrument: cmd * int → int

Instrument(c, i) = case c of

skip : IC ∧ “ skip; "
return (i+ 1)
x := e :

τ = evalT(inferE(G(i), e))
case evalN(inferE(G(i), e)) of

val: IC = IC∧ “x := e ; "
if (τ = U) then

IC = IC∧“updateEnv(G(i), x, sup(evalT(TypeOf_Expression(e)), top(pc))val); "
end ;
IC = IC∧ “ updateEnv(g_M,x,G(i)(x)) ; "

return (i+ 1)
chan: IC = IC∧ “x := e ; "

if (τ = U) then

IC = IC∧“ updateEnv(G(i), x,TypeOf_Channel(e)); "
end

IC = IC∧ “ updateEnv(g_M,x,G(i)(x)); "
return (i+ 1)

receivec x1 from x2 :
IC = IC ∧ “receivec x1 from x2; "
if (G(i)(x1) = Uval) then

IC = IC∧ “ updateEnv(G(i), x1, sup(evalT(TypeOf_Expression(x2)), top(pc))val) ; "
end

IC = IC∧ “updateEnv(g_M,x1, G(i)(x1)) ; "
return (i+ 1)

receiven x1 from x2 :
IC = IC∧ “receiven x1 from x2 ";
if (G(i)(x2) != L chan)

then IC = IC∧ “ if TypeOf_Channel(x1) = L chan and TypeOf_Channel(x2) = H chan
then updateEnv(G(i), x1, B chan)
else updateEnv(G(i), x1,TypeOf_Channel(x1))
end "

else IC = IC∧ “updateEnv(G(i), x1,TypeOf_Channel(x1))”
end

IC = IC∧ “ updateEnv(g_M,x1, G(i)(x1)); "
return (i+ 1)
c1; c2 :

j = Instrument(c1, i); k = Instrument(c2, j)
return k

send x1 to x2 :
IC = IC∧ “ tau = TypeOf_Expression(x2) ; tau1 = TypeOf_Expression(x1);
if(((tau = L chan) and (sup(evalT(tau1), top(pc)) = H)) or (tau = B chan))
then fail else send x1 to x2 end; "

return (i+ 1)
if e then c1 else c2 end :

IC = IC∧ “push(sup(top(pc), evalT(TypeOf_Expression(e))), pc) ;
if e then "
j = Instrument(c1, i+ 1)
IC = IC∧ “else "
k = Instrument(c2, j)
IC = IC∧ “end;
pop (pc); "

return k
while e to c end:
IC = IC∧

“push(sup(top(pc), evalT(TypeOf_Expression(e))), pc);
while e do "

j = Instrument(c, i+ 1)
IC = IC∧ “end ;

pop (pc) ; "
return j

Figure 2.5: Instrumentation algorithm.

33

Our instrumentation is based on the inference algorithm. It is a new contribution w.r.t. [1].
It inserts commands in the program so that, during execution, the program will update the
security level of variables which were unknown (U) statically. Each instruction is treated with
its corresponding line number and its context security level. Instructions may be inserted
to prevent unsecure executions. The instrumentation algorithm is shown in Figure 2.5; it
is given a command cmd to instrument and the number of this command. The algorithm
updates IC : String as a side effect, which is the instrumented program; it uses the matrix of
typing environments G produced by the inference algorithm, which is a global variable. G(i)
refers to the typing environment of instruction i, and hence G(i)(x) is the security type of
variable x at instruction i.

Commands are inserted so that the instrumented program will keep a table g_M of the
security levels of variables, picking the already known types in G. This table is also a global
variable. g_M offers two advantages, it keeps track of the most recent values of the variables.
No further analysis is necessary to find which instruction was the last to modify the variables.
It is also easier to read the value from a table than from the matrix G. The usefulness of g_M
can be shown with the following example.

receiven c from publicChannel ;

receivec a from publicChannel ;

if (a mod 2 6= 0) then

receivec a from c

end;

send a to publicChannel

The inference algorithm determines after the first instruction that the type of c is U chan.
Variable a, before the if command, has the type L val. The static analysis will conclude that
the type of a after executing the if command is U val. If the instrumented program updates
the variables immediately in G, the type of a would be H val. The following send would
be considered unsecure no matter what the dynamic value of a is. Our instrumentation will
insert instructions that put in g_M the last type of a when it was read. So depending on
whether the execution of the instrumented program enters the then branch or not, a will take
either the security level of c, or it will keep the security level of publicChannel . This will allow
the instrumented program to be rejected during execution only if it is actually unsecure.

A set of utility functions are predefined in the target language and used by the instrumented
programs. Function TypeOf_Channel serves as a register for the constant channels defined
prior to the execution. Function TypeOf_Expression returns the actual type of an expression:
it uses the information of g_M for variables, TypeOf_Channel for actual channels and takes the
supV of these values when the expression is e1op e2. TypeOf_Expression and TypeOf_Channel

34

are commands executed by the instrumented program. To prevent implicit flows, commands
are inserted so that the instrumented program will keep a stack of contexts pc. Each time the
execution branches on an expression, whether it is in an if or a while command, the context
is pushed onto the stack. The context is the supremum of the type of expression e and the
context in which the actual command is executed. The last context is popped from the stack
everytime the execution of a branching command finishes. The stack pc is initially empty
and the result of reading an empty stack is always L. The functions push and pop are used
to manipulate the stack of contexts during the execution of the instrumented program. The
remaining functions are an implementation of their counter part in the algorithm Infer.

The analysis and instrumentation algorithms have been implemented. The implementation is
divided into two parts : an analyzer and an interface. The analyzer is written in OCaml. It
uses OCamllex and OCamlyacc to generate the lexer and parser. In order to maximize the
portability of our application, we use OCaml-Java to compile our OCaml code into bytecode
so that it may run on a Java Virtual Machine. As for the interface, it is written in Java
and uses the standard Swing library. If an error is detected while analyzing, whether it is a
lexical, syntactic, semantic or flow error, the analyzer stops and displays a message explaining
the cause of the error. If the analyzer infers that the code needs to be instrumented, it
automatically generates and displays the instrumented code. If no error occurs and there is
no need for instrumentation, then a message of correctness is displayed.

Examples A few examples of the whole approach are presented in the following figures.
The figures show the returned environment G, the returned command number i as well as
the input pc, the security level of the context. Recall that the identifiers privateChannel,
publicChannel, highValue and lowValue are predefined constants. The result of the analysis,
including instrumentation when necessary, is shown in the lower part of the figures.

The program of Figure 2.6 is rejected. The security level of the value variable x is H because
its value is assigned inside the context of highValue, which is of type H. There is an attempt
to send x on a public channel, which make the program be rejected.

Input to analyzer Inference analysis

if highValue
then x := lowValue
else skip

end;
send x to publicChannel

Environment pc i
pcif = H 2

G(2) = [_instr 7→ L, x 7→ H val] H 3
G(3) = [_instr 7→ L] H 4
G(1) = [_instr 7→ L, x 7→ H val] H 4
fail since H 6v L

Output : Error (Send) : Cannot send x (H) to publicChannel (L).

Figure 2.6: Implicit flow

The program in Figure 2.7 is similar to the one in Figure 2.1 except that the context in which
c is defined is now L instead of H. For this reason, it is not necessary to block channel c.

35

Since c can either be a public or private channel (depending on the value of lowValue), it is
marked as unknown. A call for instrumentation results from the first send, to ensure that
highValue is only sent to a private channel.

Input to analyzer Inference analysis

if lowValue
then c := publicChannel
else c := privateChannel

end;
send highValue to c

Environment pc i
G(1) = [_instr 7→ L] pcif = L 2

G(2) = [_instr 7→ L, c 7→ L chan] L 3
G(3) = [_instr 7→ L, c 7→ H chan] L 4
G(1) = [_instr 7→ L, c 7→ U chan] L 4
G(4) = [_instr 7→ U, c 7→ U chan] L 5

Output : push(sup(top(pc), evalT(TypeOf_Expression(lowValue))), pc);
if lowValue then
c := publicChannel ;
updateEnv(g_M, c, G(2)(c));

else
c := privateChannel ;
updateEnv(g_M, c, G(3)(c));

end;
pop(pc);
tau = TypeOf_Expression(c);
tau1 = TypeOf_Expression(highValue);
if(((tau = Lchan) and (sup(evalT(tau1), top(pc)) = H)) or (tau = B chan))
then fail;
else send highValue to c;

Figure 2.7: The send of a high value on an unknown channel calls for instrumentation

The example presented in Figure 2.8 shows how the instrumentation algorithm works. The
inference algorithm determines that the program needs instrumentation. The program is
shown on the upper left corner of the figure. The instrumentation result is shown in the
lower part of the figure. The third instruction receives a channel name on another one. The
instrumentation is necessary to obtain the real type of this channel. In the sixth instruction of
the instrumented program, the update of G(3) is due to the fact that the inference algorithm
marks the channel c as unknown on that line. The fourth instruction is a send command. A
check is inserted in the instrumented code to ensure that a secret information is neither sent
on a public channel (the type of c being unknown statically) nor on a blocked one (B).

A more “realistic” example is described in [11]: one may want to “prohibit a personal finance
program from transmitting credit card information over the Internet even though the program
needs Internet access to download stock market reports. To prevent the finance program from
illicitly transmitting the private information (perhaps cleverly encoded), the compiler checks
that the information flows in the program are admissible.” This could be translated into the
code of Figure 2.9 where all the channels, except internet, are private.

2.8 Related Work

Securing flow information has been the focus of active research since the seventies. Dynamic
techniques were the first methods as in [12]. Denning and Denning [13] introduce for the

36

Input to analyzer Inference analysis

receivec v from privateChannel ;
if lowV alue then

receiven c from publicChannel ;
send v to c

else skip
end

Environment pc i
G(1) = [_instr 7→ L, v 7→ H val] L 2

pcif = L 3
G(3) = [_instr 7→ L, v 7→ H val, c 7→ U chan] L 4
G(4) = [_instr 7→ U, v 7→ H val, c 7→ U chan] L 5
G(5) = [_instr 7→ L, v 7→ H val] L 6
G(2) = [_instr 7→ U, v 7→ H val, c 7→ U chan] L 6

Output : receivec v from privateChannel ;
updateEnv(g_M, v, G(1)(v));
push(sup(top(pc), evalT(TypeOf_Expression(lowValue))), pc);
if lowValue then

receiven c from publicChannel ;
updateEnv(G(3), c,TypeOf_Channel(c));
updateEnv(g_M, c,G(3)(c));
tau = TypeOf_Expression(c);
tau1 = TypeOf_Expression(v);
if(((tau = L chan) and (sup(evalT(tau1), top(pc)) = H))
or (tau = B chan))
then fail;
else send v to c;

else skip;
end;
pop(pc);

Figure 2.8: The send of a high value on an unknown channel calls for instrumentation

Input receivec stockMarketReports from internet;
send stockMarketReports to screen;

receivec creditCardNumber from settings;
send creditCardNumber to secureLinkToBank;
receivec latestTransactions from secureLinkToBank;
send latestTransactions to screen;
cleverlyEncodedCreditCardNumber := creditCardNumber ∗ 3 + 2121311611218191;
send cleverlyEncodedCreditCardNumber to internet

Output Error (Send) : Cannot send cleverlyEncodedCreditCardNumber (H) to internet
(L).

Figure 2.9: A more realistic example

first time, secure information-flow by static analysis, based on control and data flow analy-
sis. Subsequently, many approaches have been devised using type systems. They vary in the
type of language, its expressivness and the property being enforced. Volpano and Smith in
[2] introduce a type based analysis for an imperative language. Pottier and Simonet in [14]
analyse the functional language ML, with references, exceptions and polymorphism. Banerjee
and Naumann devise a type based analysis for a Java-like language. Their analysis however
has some trade-offs like low security guards for conditionals that involve recursive calls. In
[15], Myers statically enforces information policies in JFlow, an extension of Java that adds
security levels annotations to variables. Barthe et al. [16] investigate logical-formulation of
noninterference, enabling the use of theorem proving or model-checking techniques. Never-
theless, purely static approaches are too conservative and suffer from a large number of false
positive. In fact some information need to take an accurate decision are often only avail-
able during execution. This has cause a revival of interest for dynamic analysis. Russo and

37

Sabelfeld in [17], prove that dynamic analyses could enforce the same security policy enforced
by most static analyses, termination-insensitive noninterference and even be more permissive
(with less false-positive). This is true for flow insensitive analyses but not for flow sensitive
ones. In [4], Russo and Sabelfeld show the impossibility for a sound purely dynamic moni-
tor to accept the same set of programs accepted by the classic flow sensitive analysis [18] of
Hunt and Sands. Russo and Sabelfeld in [4] present a monitor that uses static analysis during
execution. In [19], the authors present an interesting approach to noninterference based on
abstract interpretation.

Our approach is flow sensitive, similarly to [18]. However, it distinguishes between variables
in live memory and channels. We argue that our approach lead to less false positive and to
lighter executions than existing approaches.

2.9 Conclusion

Ensuring secure information flow within sensitive systems has been studied extensively. In
general, the key idea in type-based approaches is that if a program is well typed, then it is
secure according to the given security properties.

We define a type system that captures lack of information in a program at compile-time.
Our type system is flow sensitive, variables are assigned the security levels of their stored
values. We clearly distinguish between variables and channels through which the program
communicates, which is more realistic.

Our main contribution is the handling of a multi-valued security typing. The program is
considered well typed, ill typed or uncertain. In the first case, the program can safely be
executed, in the second case the program is rejected and need modifications, while in the third
case instrumentation is to be used in order to guarantee the satisfaction of noninterference.
This approach allows to eliminate false positives due to conservative static analysis approxi-
mations and to introduce run-time overhead only when it is necessary. We obtain fewer false
positives than purely static approaches because we send some usually rejected programs to
instrumentation.

2.10 Bibliography

[1] J. Desharnais, E. P. Kanyabwero, and N. Tawbi, “Enforcing information flow policies by a
three-valued analysis,” in Proceedings of the 6th international conference on Mathematical
Methods, Models and Architectures for Computer Network Security: computer network
security, ser. MMM-ACNS’12. Berlin, Heidelberg: Springer-Verlag, 2012, pp. 114–129.
Available: http://dx.doi.org/10.1007/978-3-642-33704-8_11

38

[2] D. Volpano, C. Irvine, and G. Smith, “A sound type system for secure flow analysis,”
Journal of Computer Security, vol. 4, no. 2-3, pp. 167–187, Jan. 1996. Available:
http://dl.acm.org/citation.cfm?id=353629.353648

[3] S. Hunt and D. Sands, “On flow-sensitive security types,” in Conference record
of the 33rd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, ser. POPL ’06. New York, NY, USA: ACM, 2006, pp. 79–90. Available:
http://doi.acm.org/10.1145/1111037.1111045

[4] A. Russo and A. Sabelfeld, “Dynamic vs. static flow-sensitive security analysis,” in Pro-
ceedings of the IEEE Computer Security Foundations Symposium, 2010.

[5] D. E. Denning, “A lattice model of secure information flow,” Communications of the ACM,
vol. 19, pp. 236–243, May 1976. Available: http://doi.acm.org/10.1145/360051.360056

[6] A. Bedford, J. Desharnais, T. G. Godonou, and N. Tawbi, “Hybrid flow analysis imple-
mentation,” https://github.com/andrew-bedford/ulsifa, 2013, last Accessed on October
2018.

[7] G. Smith, “Principles of secure information flow analysis,” in Malware Detection.
Springer, 2007, vol. 27, pp. 291–307.

[8] K. R. O’Neill, M. R. Clarkson, and S. Chong, “Information-flow security for interactive
programs,” in Proceedings of the IEEE Computer Security Foundations Workshop, Jul.
2006.

[9] N. Kobayashi, “Type-based information flow analysis for the pi-calculus,” Acta Informat-
ica, vol. 42, no. 4-5, pp. 291–347, 2005.

[10] J. Desharnais, E. P. Kanyabwero, and N. Tawbi, “Enforcing information flow policies
by a three-valued analysis, long version,” http://www.ift.ulaval.ca/fileadmin/ift/Nadia_
Tawbi/PDF/MMMACNS2012articleLong.pdf, 2012, last Accessed on October 2018.

[11] S. Zdancewic and A. C. Myers, “Secure information flow via linear continuations,” Higher
Order and Symbolic Computation, vol. 15, p. 2002, 2002.

[12] J. S. Fenton, “Memoryless subsystems,” Comput. J., vol. 17, no. 2, pp. 143–147, 1974.

[13] D. E. Denning and P. J. Denning, “Certification of programs for secure information
flow,” Communications of the ACM, vol. 20, pp. 504–513, July 1977. Available:
http://doi.acm.org/10.1145/359636.359712

[14] F. Pottier and V. Simonet, “Information flow inference for ML,” in Proceedings of the The
ACM Symposium on Principles of Programming Languages, 2002.

39

[15] A. C. Myers, “Jflow: Practical mostly-static information flow control,” in Proceedings of
the ACM Symposium on Principles of Programming Languages, 1999.

[16] G. Barthe, P. R. D’Argenio, and T. Rezk, “Secure information flow by self-composition,”
in Proceedings of the IEEE workshop on Computer Security Foundations, 2004. Available:
http://portal.acm.org/citation.cfm?id=1009380.1009669

[17] A. Sabelfeld and A. Russo, “From dynamic to static and back: Riding the
roller coaster of information-flow control research,” in Perspectives of Systems
Informatics, 7th International Andrei Ershov Memorial Conference, PSI 2009,
Novosibirsk, Russia, June 15-19, 2009. Revised Papers, 2009, pp. 352–365. Available:
https://doi.org/10.1007/978-3-642-11486-1_30

[18] S. Hunt and D. Sands, “On flow-sensitive security types,” SIGPLAN Not., vol. 41, no. 1,
pp. 79–90, Jan. 2006. Available: http://doi.acm.org/10.1145/1111320.1111045

[19] R. Giacobazzi and I. Mastroeni, “Abstract non-interference: parameterizing non-
interference by abstract interpretation,” SIGPLAN Not., vol. 39, no. 1, pp. 186–197,
Jan. 2004. Available: http://doi.acm.org/10.1145/982962.964017

40

Chapter 3

A Progress-Sensitive Flow-Sensitive
Inlined Information-Flow Control
Monitor

Authors: Andrew Bedford, Stephen Chong, Josée Desharnais, Elisavet Kozyri and Nadia
Tawbi

Journal: Computers & Security

Status: peer reviewed; published1; presented

Year: 2017

3.1 Résumé

Nous présentons dans ce chapitre un moniteur hybride de flots d’information qui est sensible
au progrès (c’est-à-dire, les fuites par progrès sont détectées) et au flot (c’est-à-dire, l’ordre des
commandes est pris en compte). La méthode utilisée par notre moniteur hybride consiste en
trois étapes : (1) à l’aide d’analyse statique, vérifier que le programme ne contient pas de fuites
d’information évidentes; (2) instrumenter l’application (c’est-à-dire, insérer des commandes)
pour prévenir les fuites d’information confidentielles à l’exécution; (3) évaluer partiellement
le programme pour diminuer l’impact de l’instrumentation sur le temps d’exécution. Une
particularité de notre moniteur est qu’il utilise des ensembles de niveaux comme étiquettes
afin de traquer les niveaux d’information qui peuvent avoir influencés la valeur d’une variable.
Nous illustrons notre approche sur un langage impératif simple.

1The published version is available at ScienceDirect via https://doi.org/10.1016/j.cose.2017.04.001

41

3.2 Abstract

We present a novel progress-sensitive, flow-sensitive hybrid information-flow control monitor
for an imperative interactive language. Progress-sensitive information-flow control is a strong
information security guarantee which ensures that a program’s progress (or lack thereof) does
not leak information. Flow-sensitivity means that this strong security guarantee is enforced
fairly precisely: our monitor tracks information flow per variable and per program point. We
illustrate our approach on an imperative interactive language.

Our hybrid monitor is inlined: source programs are translated, by a type-based analysis, into
a target language that supports dynamic security levels. A key benefit of this is that the
resulting monitored program is amenable to standard optimization techniques such as partial
evaluation. One of the distinguishing features of our hybrid monitor is that it uses sets of levels
to track the different possible security types of variables. This feature allows us to distinguish
outputs that never leak information from those that may leak information.

3.3 Introduction

We increasingly rely on computer systems to safeguard confidential information, and maintain
the integrity of critical data and operations. But in our highly interconnected world, these
trusted systems often need to communicate with untrusted parties. Trusted systems risk
leaking confidential information to untrusted parties, or allowing input from untrusted parties
to corrupt data or the operation of the trusted system.

Information-flow control is a promising approach to enable trusted systems to interact with
untrusted parties, providing fine-grained application-specific control of confidential and un-
trusted information. Static mechanisms for information-flow control (such as security type
systems [1, 2]) analyze a program before execution to determine whether the program’s ex-
ecution will satisfy the appropriate information flow requirements. This has low runtime
overhead, but can generate many false positives. Hybrid mechanisms ([3]) have been pro-
posed to eliminate some of these false positives. They combine static analysis with runtime
monitoring in order to increase the precision of the analysis at the expense of higher runtime
overhead. Compared to hybrid mechanisms, purely dynamic mechanisms ([4]), which enforce
information flow policies only by monitoring execution and without using any static analysis,
are either unsound or less permissive [5].

In this work, we enforce confidentiality policies using a novel hybrid information-flow control
monitor for an imperative interactive language. It is an extension of the work presented at
IFIP SEC 2016 [6]. The key features of our monitor are as follows.

Our monitor is progress-sensitive [7]: it prevents confidential information from being leaked via
progress channels. Information leaks through a progress channel when a program’s progress

42

(or lack thereof) depends on confidential information and is observable by an adversary. It
is a generalization of termination-sensitive information security to interactive systems (i.e.,
systems that interact with an external environment at runtime).

Our monitor is flow-sensitive: the security level associated with program variables may change
during the execution. Flow sensitivity increases the precision of the monitor, meaning that it
is able to accept more programs.

Our language has channel-valued variables: communication channels are constants that can be
assigned to program variables. This language feature allows realistic communication scenarios
to be modelled in our language (e.g., where the same code may communicate with users of
arbitrary security levels). Most previous work on language-based information-flow control
require that the channel used for an input or output operation be statically known, and allow
only a single communication channel per security level.

Our monitor is inlined : source programs are translated into a target language that supports
dynamic security levels [8]. The type-based translation inserts commands to track the security
levels of program variables and contexts, and to control information flow. A key benefit of
inlining the monitor is that the resulting monitored program in the target language is amenable
to standard optimization techniques such as partial evaluation [9].

Our monitor is hybrid : it uses both dynamic and static enforcement techniques. The transla-
tion to the target language performs a static analysis. If the program is statically determined
to be insecure, then the program is statically rejected. Otherwise, the translation of the pro-
gram dynamically tracks the statically unknown security levels of variables, and ensures that
no leak occurs at runtime.

Our main contributions are as follows.

• We present an extended version of the hybrid monitor first presented in our previous
article [6]. The extension consists in generalizing the flow- and progress-sensitive en-
forcement to general lattices.

• We use sets of levels during static analysis to represent the possible levels that can be
associated with a variable during execution. When general lattices are enforced, sets of
levels are a more accurate representation than the unknown level U introduced in our
previous article [6]. Thus, the distinction that our static analysis makes between outputs
that never leak information and outputs that may leak information is more precise when
using sets of levels. This more precise distinction leads to fewer inlined commands, and
thus to less runtime overhead and increased permissiveness of the monitor.

• Previous work treats channels and regular variables differently, by associating distinct
type structures during analysis. Our approach demonstrates that modeling the sensi-
tivity of the information conveyed by these two entities leads to a striking similar type

43

structure.

• We present two additional ideas to increase the precision of the static analysis and the
permissiveness of the dynamic analysis: propagating constraints on the set of possible
security levels and using conditional updates. We plan on integrating these ideas into
our future mechanisms.

• We prove that our inlined monitor is sound and that the semantics of the original program
is preserved, as long as the program is secure.

3.3.1 Examples

We present several examples of programs in our source language, to both provide background
on information-flow control, and highlight some of the features of our hybrid monitor. For sim-
plicity, we assume that the variables lowValue, medValue, highValue, lowChannel, medChannel
and highChannel exist, have arbitrary values and have the suggested security levels (L for low,
M for medium and H for high).

Explicit and implicit flows An insecure explicit information flow occurs when a confi-
dential value is output to a public channel. An insecure implicit information flow [10] occurs
when the decision to perform output on a public channel depends on confidential information.
This violates security because an observer of the public channel will see whether the output
occurred, and might thus learn confidential information. Techniques for tracking and con-
trolling implicit and explicit information flow at the language level are well known [1, 2, 5],
and are used in this work. The following program exhibits both insecure explicit and insecure
implicit information flow. Our approach will reject this program statically.

(* insecure explicit flow *)

send highValue to lowChannel;

if highValue > 0 then
(* insecure implicit flow *)

send 42 to lowChannel

end

Unknown security levels Our source language supports variables whose security level
could be statically unknown. Consider the following program, where the output may or may
not be secure, depending on the value of lowValue.

if lowValue > 0

then c := highChannel

else c := lowChannel

end;
send highValue to c

Listing 3.1: Statically uncertain channel level

44

Purely static mechanisms would reject this program entirely, and indeed, to the best of our
knowledge, all previous work either cannot express this program or statically reject it. This is
because it would be unsound to statically treat c as being a private channel, since that might
incorrectly allow private values to be sent to public channel lowChannel. Similarly, it would
be unsound to statically treat c as a public channel, since that might incorrectly allow values
read from private channel highChannel to be treated as public values. By contrast, our hybrid
approach recognizes that the security of this program depends on the runtime value of c, and
instruments it to track whether c refers to a high-security channel or a low-security channel,
in order to intervene only in the latter case. We use sets of levels in our security types in
order to track the different possibilities during our static analysis (e.g., c is {L,H} after the
conditional).

To push the permissiveness a little more, we treat value variables similarly as channel variables.
Take Listing 3.2 for example.

if lowValue > 0

then x := lowValue (*x is L*)

else x := highValue (*x is H*)

end; (*x is {L,H}*)

send x to lowChannel

Listing 3.2: Statically uncertain variable level

Traditionally, the level of variable x after the if command would be statically approximated
as being high. Such an approximation would cause the program to be statically rejected at
the send command. By tracking the possible levels of variables, we can detect that a safe
executions can happen and choose to instrument the program instead.

Progress channels The progress of a program, which is observable through its outputs, can
also reveal information. For example, in the following program, whether or not the output on
the low-security channel occurs depends on whether the preceding loop terminates, which in
turn depends on confidential information.

while highValue > 0 do
skip

end; (*loop may diverge*)

send 42 to lowChannel

Listing 3.3: Progress leak

Although this example leaks only 1 bit of information, progress channels can be used to leak a
significant amount of information [7]. The most common way to prevent leaks through progress
channels is to forbid loops whose execution depends on confidential information [11, 12], but
it leads to the rejection of many secure programs, such as the following.

45

while highValue > 0 do
highValue := highValue - 1

end; (*loop always terminates*)

send 42 to lowChannel

Listing 3.4: Loop that always terminates

To accept such programs, we follow Moore et al. [13] and use an oracle (conservative and
assumed correct) to statically determine the termination behavior of loops. If the oracle
determines that a loop always terminates (like the one in Listing 3.4), then we know that no
following output could leak information through progress channels. On the other hand, if the
oracle says that it may diverge (like the one in Listing 3.3), then we must take into account
the fact that an output following the loop’s execution could leak information.

In our approach, the oracle is a parameter and is based on termination analysis methods
brought from the literature such as the one described in Cook et al. [14]

The inlined monitor itself may introduce leaks of confidential values through progress channels.
The decision that a monitor makes to allow or not an execution, may depend on confidential
values. Thus, outputs following this decision could leak these confidential values. Consider
the following example:

if highValue > 0

then skip
else send highValue to c

end;
send 42 to lowChannel

Listing 3.5: Leaking through monitor decision

If during execution c is lowChannel, then the decision to allow this send leaks the value of the
condition, highValue > 0, to lowChannel.

The danger of a monitor to leak confidential values through progress channels becomes greater
when the monitor enforces confidentiality policies on a multilevel lattice. Consider the follow-
ing example, taken from Kozyri et al. [15].

if medValue > 0

then x := highValue (*x is H *)

else x := lowValue (*x is L *)

end;
send x to c

send 1 to lowChannel

Listing 3.6: Variable level sensitivity

46

Suppose that the unknown channel c of the first send command happens to be of medium
security level at runtime. If the monitor does not halt the execution of the first send command,
then the second send command would be reached. Then, if the output to lowChannel occurred,
it would leak information about medValue.

To prevent such a leak, we combine our previous work [6] with the dynamic mechanism of
Kozyri et al. [15] and keep track of the level of information that could be leaked through
progress channels. More specifically, for Listing 3.5, we detect that one of the branch of
the if contains a send command that may be blocked during runtime and update the level
of information that could be leaked through progress channels to H (i.e., the level of the
condition), hence preventing future outputs to channels that are lower than H. Similarly, for
Listing 3.6, we detect that the first send command may be blocked during execution and that
the value of its parameters (x and c) depends of information of level M . For this reason, the
level of information that could be leaked through progress channels is updated toM after that
first output, hence preventing future outputs to channels that are lower than M .

3.3.2 Structure

In Section 3.4, we present the imperative language used to illustrate our approach. Section 3.5
defines the noninterference property. Section 3.6 describes our typed-based instrumentation
mechanism, explains the type system, and presents the target language in which the instru-
mented programs are written; it is an extension of the source language with dynamic security
levels. Section 3.7 proves that the instrumented programs are noninterferent. Section 3.8
presents two ways to increase the precision and permissiveness of our monitor. Section 3.9 is
a summary of related work. Finally, we conclude in Section 3.10.

3.4 Source Language

Source programs are written in a simple imperative language with commands for receiving
and sending information.

3.4.1 Syntax

Let V be a set of identifiers for variables, and C a set of predefined communication channels.
The syntax is as follows.

(variables) x ∈ V ∪C
(integer constants) n ∈ Z
(expressions) e ::= x | n | e1 op e2 | read x

(commands) cmd ::=

skip | x := e | if e then cmd1 else cmd2 end |
while e do cmd end | cmd1; cmd2 | send x1 to x2

47

Values are integers (we use zero for false and nonzero for true), or channel names. The symbol
op stands for arithmetic or logic binary operators on integers.

We suppose that the interaction of a program with its environment (which can be a user or
another program) is done through channels. Channels can be, for example, files, users, network
channels, keyboards, computer screens, etc. Without loss of generality, we consider that each
channel consists of one value. The expression read x returns the current value in channel
x (without modifying the channel’s content). Command send x1 to x2 sends the value of
variable x1 to channel x2 and overwrites the current value in the channel. In other words, it
outputs the value of x1 to channel x2. The security levels of these channels are designated in
advance by some security administrator.

Note that in order to keep the syntax simple, we chose to enforce certain constraints in the
semantics and type system rather than in the syntax. For example, it is the semantics and
type system that verify that x1 is an integer variable and x2 is a channel during the execution
of a send command.

3.4.2 Semantics

A memory m : V] C → Z] C is a partial map from variables and channels to values, where
the value of a channel is the last value sent to this channel. More precisely a memory is the
disjoint union of two (partial) maps of the following form:

mv : V → Z] C, mc : C → Z,

where] stands for the disjoint union operator. We omit the subscript whenever the context
is clear. We write m(e) = r to indicate that the evaluation of expression e under memory m
returns r.

The semantics of the source language is mostly standard and is illustrated in Figure 3.1.
Program configurations are tuples 〈cmd ,m, o〉 where cmd is the command to be evaluated,m is
the current memory and o is the current output trace. A transition between two configurations
is denoted by the −→ symbol. We write −→∗ for the reflexive transitive closure of the −→
relation.

We write v :: vs for sequences where v is the first element of the sequence, and vs is the rest
of the sequence. We write ε for the empty sequence. An output trace is a sequence of output
events: it is of the form o = (v0, ch0) :: (v1, ch1) :: . . . where vk ∈ Z is an integer value, and
chk ∈ C is a channel, k ∈ N. The rule for sending a value appends a new output event to the
end of the trace. We abuse notation and write o :: (v, ch) to indicate event (v, ch) appended
to trace o.

We write 〈cmd ,m, ε〉 ↓ o if execution of configuration 〈cmd ,m, ε〉 can produce trace o, where
o may be finite or infinite. For finite o, 〈cmd ,m, ε〉 ↓ o holds if there is a configuration

48

(Skip) 〈skip,m, o〉−→〈stop,m, o〉

(Assign-Ch)
e ∈ C

〈x := e,m, o〉−→〈stop,m[x 7→ e], o〉

(Assign)
e 6∈ C m(e) = r

〈x := e,m, o〉−→〈stop,m[x 7→ r], o〉

(Send)
m(x1) = v ∈ Z (ch = x2 ∈ C ∨ ch = m(x2) ∈ C)
〈send x1 to x2,m, o〉−→〈stop,m[ch 7→v], o :: (v, ch))〉

(Seq1)
〈cmd1,m, o〉−→〈stop,m′, o′〉

〈cmd1; cmd2,m, o〉−→〈cmd2,m
′, o′〉

(Seq2)
〈cmd1,m, o〉−→〈cmd ′

1,m
′, o′〉 cmd ′

1 6= stop

〈cmd1; cmd2,m, o〉−→〈cmd ′
1; cmd2,m

′, o′〉

(If)
m(e) 6= 0 =⇒ i = 1 m(e) = 0 =⇒ i = 2

〈if e then cmd1 else cmd2 end,m, o〉−→〈cmd i,m, o〉

(Loop1)
m(e) 6= 0

〈while edo cmd end,m, o〉−→〈cmd ;while edo cmd end,m, o〉

(Loop2)
m(e) = 0

〈while e do cmd end,m, o〉−→〈stop,m, o〉

Figure 3.1: Semantics of the source language

〈cmd ′,m′, o〉 such that 〈cmd ,m, ε〉 −→∗ 〈cmd ′,m′, o〉. For infinite o, 〈cmd ,m, ε〉 ↓ o holds if
for all traces o′ such that o′ is a finite prefix of o, we have 〈cmd ,m, ε〉 ↓ o′.

3.5 Security

For our purposes, we assume a finite lattice of security levels (L,v) which contains at least
two elements: L for the bottom of the lattice and H for the top of the lattice, i.e. ∀` ∈ L, L v
`∧ ` v H. We define an execution as `-secure if the outputs to channels of level ` or lower do
not reveal any information about the inputs of channels that are not lower than or equal to
`. This is a standard form of noninterference (e.g., [1, 2]) adapted for our particular language
model.

49

Before formally defining noninterference, we first introduce some helpful technical concepts.
The projection of trace o to security level `, written o�`, is its restriction to output events
whose channels’ security levels are less than or equal to `. Formally,

ε�` = ε

((v, ch) ::o)�` =

{
(v, ch) :: (o�`) if levelOfChan(ch) v `
o�` otherwise

where levelOfChan(ch) denotes the security level of channel ch (typically specified by the
administrator).

We say that two memories m and m′ are `-equivalent if they agree on the content of variables
(including channel variables) whose security levels are ` or lower.

Definition 3.1 (Progress-sensitive noninterference). We say that a program p satisfies progress-
sensitive noninterference if for any ` ∈ L, and for any two memories m and m′ that are `-
equivalent, and for any trace o such that 〈p,m, ε〉 ↓ o, then there is some trace o′, such that
〈p,m′, ε〉 ↓ o′ and o�` = o′ �`.

This definition of noninterference is progress-sensitive in that it assumes that an observer
can distinguish an execution that will not produce any additional observable output (due to
termination or divergence) from an execution that will make progress and produce additional
observable output. Progress-insensitive definitions of noninterference typically weaken the
requirement that o�` = o′ �` to instead require that o�` is a prefix of o′ �`, or vice versa.

Among the previously presented examples, only Listing 3.4 satisfies progress-sensitive nonin-
terference. Nevertheless, we statically accept the programs of Listings 3.1, 3.2, 3.5 and 3.6,
since we transform them into programs that satisfy progress-sensitive noninterference.

3.6 Type-Based Instrumentation

We enforce noninterference by translating a source program to a target program that tracks
the security levels of its variables and checks the security of output commands. The translation
performs a type-based static analysis of the source program, and rejects programs that contain
outputs whose executions will always be blocked by our monitor (i.e., the translation fails).

In this section, we first present the security types for the source language followed by the
description of the target language, which extends the source language with runtime represen-
tation of security levels. We then present the translation from the source language to the
target language.

50

3.6.1 Source Language Types

Source language types are defined according to the following grammar.

(security labels, Lab) ` ::= P(L) \ {∅}
(value types, ValT) σ ::= int` | int` chan
(variable types, VarT) τ ::= σ`

Security labels are non-empty sets of security levels. They represent the possible security
levels of a variable at runtime. If a security label contains more than one element, it means
that its security level is statically unknown (see Listings 3.1 and 3.2 on pages 44 and 45 for
examples).

Value types are the types of integers and channels. Type int` is the type of integers whose
values are of security level `, and type int` chan is the type of a channel whose values are of
security level `.

Variable types associate a security level with a value type. Intuitively, σ`′ represents the type
of a variable whose value type is σ, and whose variable type is `′. The latter is an upper
bound of the information level influencing the value of the variable. When a variable type `′

is associated with a value type ` for a channel, it means that the sensitivity of the content of
the channel is `, and the sensitivity of the channel itself is `′. This is the same approach that
was used by Bedford et al. [6].

For example, consider the program in Listing 3.1, page 44. Immediately following the con-
ditional command, the type system gives variable c the type (int{L,H} chan){L}. This type
reflects that only low information determines which channel is assigned to c (i.e., variable
lowValue determines c’s value), and whether c is a low channel or a high channel is statically
unknown.

Similarly, when a variable type `′ is associated with a value type ` for an integer, it means
that the sensitivity of the integer is `, and the sensitivity of ` is `′. This is the same approach
that was used by Kozyri et al. [15] to prevent leakage through guarded sends.

For example, consider the program in Listing 3.6, page 46. Immediately following the condi-
tional command, the type system gives variable x the type (int{L,H}){M}. This type reflects
that an information of medium level determines which value is assigned to x (i.e., variable
medValue determines x’s value), and that the information contained within x is either of low
security level or of high security level. It is necessary to keep track of the context level in
which x has been assigned its value. This information is used to halt the execution of the
second send and prevent observers from deducing that medValue is less or equal to 0.

51

3.6.2 Sets of Levels

Note that we use sets of levels not only to increase the precision of the analysis, but also because
we have to due to our use of channel variables. Indeed, one of the issues that we encountered
is the fact that we cannot conservatively approximate the level of a channel variable, due to
the fact that we both read and write on channels. Listing 3.7 illustrates why.

if lowValue > 0 then
c := lowChannel

else
c := highChannel

end
send highValue to c (*Pessimist: c is L*)

x := read c (*Pessimist: c is H*)

send x to lowChannel

Listing 3.7: We cannot be pessimistic about channel variables

After the conditionals, c has type (int{L,H}chan){L} because it contains either a low or high
channel and its value is assigned in a context of level L. Our typing system accepts this
program, but makes sure that a runtime checks are inserted. If the condition lowValue >

0 happens to be true at runtime, then the execution of the program will be stopped at
the first send command thanks to the inserted runtime checks. Similarly, if the condition is
false, then the execution of the program will be stopped at the second send. The uncertainty
is unavoidable in the presence of flow sensitivity and channel variables. Indeed, we point
out that we cannot be pessimistic about the level of c in this program. The output command
suggests that a safe approximation for c would be a low security level. Yet, the input command
suggests that a safe approximation for c would be a high security level, which contradicts the
previous observation.

Consequently, in order to accept the program in Listing 3.7, we chose to use sets of security
levels. As a consequence, we will obtain fewer false positives as we do not consider the worst
possible case in our analysis, we leave it to the execution to check whether the information
flow turns out to be secure or not.

We derive two relations that allow us to compare the sets of possible levels.

Definition 3.2. The relations vs, surely less than, and vm, maybe less than, are defined as
follows

`1 vs `2 = (∀e1 ∈ `1, e2 ∈ `2. e1 v e2).

`1 vm `2 = (∃e1 ∈ `1, e2 ∈ `2. e1 v e2).

Intuitively, we have ` vs `′ when we can be sure statically that ` v `′ will be true at runtime,
and we have ` vm `′ when it is possible that ` v `′ at runtime.

52

Definition 3.3. The supremum on sets of levels is defined as follows

`1 t `2 = {e1 t e2 | e1 ∈ `1, e2 ∈ `2}.

Recall that sets of levels represent the possible security levels that can occur. Hence a supre-
mum between specific levels must be mimicked, between sets of levels, by the set of all possible
results of such suprema. Consequently, we call it a supremum even if the corresponding pre-
order relation is not used here.

We instrument source programs to track at runtime the security levels that are statically
unknown. In order to track these security levels, our target language allows their runtime
representation.

3.6.3 Syntax and Semantics of the Target Language

Our target language is inspired by the work of Zheng and Myers [8], which introduced a lan-
guage with first-class security levels, and a type system that soundly enforces noninterference
in this language. The syntax of our target language is defined as follows:

(variables) x ∈ V ∪ C
(level variables) x̃ ∈ Vlevel
(integer constants) n ∈ Z
(basic levels) k ∈ L
(level expressions) l ::= k | x̃ | l1 t l2
(integer expressions) exp ::= x | n | exp1 op exp2 | readx
(expressions) e ::= exp | l
(commands) cmd ::=

skip | (x1, . . . , xn) := (e1, . . . , en) |
if e then cmd1 else cmd2 end | cmd1; cmd2 |
while e do cmd end | send x1 to x2 |
if l1 v l2 then (sendx1 tox2) else fail end

The main difference between our source language and target language is that it adds support
for level variables, a runtime representation of security levels. These level variables will allow
target programs to verify that certain conditions are met before sending the contents of a
variable to a channel. This is the goal of the new send command, nested in a conditional –
we call it a guarded send.

For simplicity, we assume that security levels can be stored only in a restricted set of variables
Vlevel ⊆ V. Thus, the variable part mv of a memory m now has the following type

mv : (Vlevel → L)] (V \ Vlevel → Z] C)

Furthermore we assume that Vlevel contains variables _pc and _hc, and two level variables
xval and xctx associated with each variable x ∈ V \ Vlevel . Variables _pc and _hc hold the

53

security levels of the context and halting context respectively, they represent the security
level in which a command is executed. We will discuss in more details what they represent
in Section 3.6.4. Variables xval and xctx are used to track the security levels of variables at
runtime. For example, if x is a channel variable of security type (int` chan)`′ , then the values of
these variables should be xval = ` and xctx = `′ (this will be ensured by our instrumentation).

The simultaneous assignment (x1, . . . , xn) := (e1, . . . , en) is introduced for the sake of clarity.
Any assignment implies an immediate update of the concerned level variables. For all common
commands, the semantics of the target language is the same as in the source language.

3.6.4 Instrumentation as a Type System

Our instrumentation algorithm is specified as a type system in Figure 3.2. Its goal is to
inline monitor actions in the program under analysis, thereby generating a safe version of the
program, or to reject the program when it contains obvious leaks of information. The inlined
actions are essentially updates of level variables and checks on these variables in order to
control the execution of potentially leaking send commands. After a check, a send command
is either executed if it is safe or its execution is prevented and the program is aborted.

The typing rules of expressions have judgements of the form Γ ` e : σ`, stating that σ` is the
type of e under the typing environment Γ : V] C → VarT . The instrumentation judgements
are of the form

Γ, pc, hc ` cmd : t, h,Γ′, [[cmd]]

where Γ,Γ′ are typing environments (initially empty) and cmd is the command under analysis.
The program context, pc ∈ Lab, is used to keep track of the security level in which a command
is executed, in order to detect implicit flows. The halting context, hc ∈ Lab, is used to detect
progress channels leaks. It represents the level of information that could have caused the
program to halt (due to a failed guarded send command) or diverge (due to an infinite loop).
In other words, it is the level of information that could be leaked through progress channels by
an output. Variable h ∈ Lab corresponds to the halting context after executing command cmd .
The termination type t ∈ T = {T,D,M`} of a command is used to keep the halting context up
to date. We distinguish three termination types: T means that a command terminates for all
memories, D means that a command diverges for all memories, M` means that a command’s
termination is unknown statically; the subscript is used to indicate on which level(s) the
termination depends. For example, the termination of the loop in Listing 3.3 is M{H} because
it can either terminate or diverge at runtime, and this depends on information of level H. The
loop in Listing 3.4 on the other hand is of termination type T because, no matter what the
value of variable h is, it will always eventually terminate. Similarly, a loop whose condition
is always true will have termination type D since it always diverges. Recall that, of course,
the precision of this analysis depends on the precision of the oracle. Variable [[cmd]] is the

54

(S-Chan)
levelOfChan(ch) = `

Γ ` ch : (int{`} chan){L} (S-Int) Γ ` n : (int{L}){L}

(S-Var)
Γ(x) = τ

Γ ` x : τ

(S-read)
Γ ` c : int` chan`c

Γ ` read c : (int`)`c

(S-Op)
Γ ` e1 : (int`1)`′1 Γ ` e2 : (int`2)`′2

Γ ` e1 op e2 : (int`1t`2)`′1t`′2

(S-Skip)
Γ, pc, hc ` skip : T, hc,Γ, skip

(S-Assign)
Γ ` e : σ`′e

Γ, pc, hc ` x := e : T, hc,Γ[x 7→ σpct`′e], genassign

(S-Send)
Γ(x) = (int`x)`′x Γ(c) = (int`c chan)`′c (pc t hc t `x t `′x t `′c) vs `c

Γ, pc, hc ` send x to c : T, hc,Γ, send x to c

(S-GSend)

Γ(x) = (int`x)`′x Γ(c) = (int`c chan)`′c
(pc t hc t `x t `′x t `′c) 6vs `c (pc t hc t `x t `′x t `′c) vm `c

Γ, pc, hc ` send x to c : T, pc t hc t `′x t `′c,Γ, gengsend

(S-If)

Γ ` e : (int`e)`′e pc′ = pc t `e t `′e
hd = hasGSend({cmd1, cmd2}, pc′) h =

⋃
j∈{1,2}

(hj t hd t level(t1 ⊕pc′ t2))

Γ, pc′, hc ` cmd j : tj , hj ,Γj , [[cmd j]] j ∈ {1, 2}
Γ, pc, hc ` if e then cmd1 else cmd2 end : t1 ⊕pc′ t2, h,Γ1 tpc′ Γ2, genif

(S-Loop1)

Γ = Γ tpc′ Γ′ Γ ` e : (int`e)`′e
O(e, cmd ,Γ) = to pc′ = pc ∪ (pc t `e t `′e) hc′ = hc ∪ (hc t level(t′) t h′)

hd = hasGSend({cmd}, pc′) Γ, pc′, hc′ ` cmd : t′, h′,Γ′, [[cmd]]

Γ, pc, hc ` while e do cmd end : to, hd t h′ t level(to),Γ, genwhile

(S-Loop2)

Γ 6= Γ tpc′ Γ′ Γ ` e : (int`e)`′e Γ, pc t `e t `′e, hc ` cmd : t′, h′,Γ′, [[cmd]]
pc′ = pc ∪ (pc t `e t `′e) hc′ = hc ∪ (hc t level(t′) t h′)

Γ tpc′ Γ′, pc′, hc′ ` while e do cmd end : t′′, h′′,Γ′′, instCode

Γ, pc, hc ` while e do cmd end : t′′, h′′,Γ′′, instCode

(S-Seq1)
Γ, pc, hc ` cmd1 : D,h,Γ1, [[cmd1]]

Γ, pc, hc ` cmd1; cmd2 : D,h,Γ1, [[cmd1]]

(S-Seq2)

t1 6= D Γ, pc, hc ` cmd1 : t1, h1,Γ1, [[cmd1]]
Γ1, pc, h1 ` cmd2 : t2, h2,Γ2, [[cmd2]]

Γ, pc, hc ` cmd1; cmd2 : t1 o
9 t2, h2,Γ2, [[cmd1]]; [[cmd2]]

Figure 3.2: Instrumentation and typing rules for the source language

55

generated instrumented version of command cmd and is often presented using a macro whose
name starts with gen.

The instrumentation of a program p begins by inserting commands to initialize a few level
variables: _pc, _hc are initialized to L, as well as the level variables xctx and xval for each
variable x ∈ V appearing in p. Similarly, level variables cctx and cval associated with each
channel c used in p are also initialized, but the latter rather gets initialized to levelOfChan(c),
which is an input parameter for the analysis. After the initialization, the instrumentation is
given by the rules of Figure 3.2. We now explain these rules.

Rules (S-Chan) and (S-Int) specify the type of channel and integer constants respectively.

Rule (S-Var) infers the type of a variable from the environment Γ.

Rule (S-Op) infers the type of an expression from the types of its operands and it reflects
the fact that operations on channels are not allowed.

Rule (S-Read) returns the security type of the current value in channel c. This rule highlights
the striking similarity between type int` chan`c of a channel and type (int`)`c of a variable
that may subsequently store expression read c. Here, the security label ` of channel’s value
type becomes the security label of variable’s value type. Similarly for the security label `c of
channel’s variable type. To the best of our knowledge, this is the first work that tries to use
similar type structures for channels and ordinary variables in an enforcement mechanism.

Rule (S-Assign) updates the type of x in the environment with the type of expression e.
The supremum with pc is used to prevent implicit flows. Its instrumentation is given by
the following macro, which represents a simultaneous assignment x := e, xval := eval, and
xctx := ectx t_pc.

genassign =

(x, xval, xctx) := (e, eval, ectx t_pc)

We write ectx to represent the expression made of the supremum of variables appearing in
expression e. For example if e = x + read c, then ectx = xctx t cctx. If e = x + y then
ectx = xctx t yctx. The idea is the same for eval.

Rule (S-Send) checks whether a send command is statically safe by requiring (pc t hc t `x t
`′x t `′c) vs `c (i.e., all possible values of the left-hand side are always lower or equal to the
right-hand side). The variables on the left-hand side correspond to the level of information
that can be revealed by the output to c. If so, the instrumentation inserts the send command
as it is.

56

Rule (S-GSend) checks whether a send command may be safe, by requiring (pc t hc t `x t
`′x t `′c) vm `c. The instrumentation then transforms it into a guarded send, as follows

gengsend =

if _pc t _hc t xval t xctx t cctx v cval then
(send x to c)

else
fail

end;
_hc := _pc t _hc t xctx t cctx;

The halting context must record the possible failure of a guarded send at runtime, and hence,
it is updated with the level of information that influences its success/failure. Particularly, the
halting context is updated with the sensitivity of the context and of the two variables involved,
the channel variable [6] and the regular variable [15]. For example, Listing 3.8 shows why cctx
must be included in this update.

if x > 0 (*H at runtime *)

then c := lowChannel

else c := highChannel

end;
send highValue to c (*guarded send*)

send lowValue to lowChannel

Listing 3.8: Dangerous runtime halting

Assume that x is high and false at runtime. Then the first guarded send is accepted, but
allowing an output on a low security channel subsequently would leak information about x.
This is because, had x been true, then the first send would have failed. However, c has level
int{L,H}chan{H} after the conditional. Updating _hc with cctx will affect the check of all
subsequent guarded send and prevent such leaks.

If none of the send rules can be applied, then the program is statically rejected.

Before explaining the rules for composed commands, we first need to define a few functions
and operators. For the conditional rules, we need a supremum of environments.

57

Definition 3.4. The supremum of two environments is given as dom(Γ1 tpc Γ2) = dom(Γ1)∪
dom(Γ2), and

(Γ1 tpc Γ2)(x) =

Γi(x) if x ∈ dom(Γi)\dom(Γj),

{i, j} = {1, 2} ∨ Γ1(x) = Γ2(x)

(int`1∪`2chan)(`′1∪`′2)tpc if Γ1(x) = (int`1 chan)`′1∧
Γ2(x) = (int`2 chan)`′2∧
Γ1(x) 6= Γ2(x)

(int`1∪`2)(`′1∪`′2)tpc if Γ1(x) = (int`1)`′1∧
Γ2(x) = (int`2)`′2∧
Γ1(x) 6= Γ2(x)

Error otherwise.

When a typing inconsistency occurs, e.g., when a variable is used as an integer in one branch
and as a channel in another, the analysis stops and an error is returned, causing the program
to be statically rejected.

The function level : T → P(L) \ {∅} returns the termination level (i.e., the level that the
termination depends on) and is defined as:

level(t) =

{
{L} if t ∈ {T,D}
` if t = M`

Two operators are used to compose terminations types, ⊕, used in the typing of conditionals,
and o

9, used in the typing of sequences. They are defined as follows.

t1 ⊕pc t2 =


t1 if t1 = t2 ∈ {T,D}
Mpct(`1∪`2) otherwise,

`1 = level(t1), `2 = level(t2)

t1 o
9 t2 =


M`1t`2 if t1 = M`1 and t2 = M`2

ti if tj = T, {i, j} = {1, 2}

D otherwise

The following example illustrates the use of these operators:

if highValue then
while 1 do skip end (* D *)

else
skip (* T *)

end

58

The termination type of an if command is computed using the ⊕ operator, from three param-
eters: the termination types of each of the two branches and the security level of the guard
condition. Hence, in this example, we obtain D ⊕H T = M{H}.

One more function needs to be defined. Its motivation is given by the following example.
Assume that in Listing 3.9 c turns out to be a low channel at runtime. If the last send
command is reached and executed it would leak information about highValue. The same leak
would happen if instead of the guarded send we had a diverging loop.

if highValue > 0 then
if ` v `′

then send highValue to c

else fail end;
end;
send lowValue to lowChannel

Listing 3.9: A guarded send can generate a progress leak

To prevent this kind of leak, we verify if the branches of a conditional contains guarded send
commands using the function

hasGSend : P(Cmd)× Lab→ Lab,

where Cmd is the set of commands and Lab the set of security labels. If one of the commands
given in parameter contains a guarded send, then it returns the security label given in param-
eter, otherwise L is returned. This function is used to update the halting context to pc when
there is a risk that one of the branch halts the execution. Without this update, hc could leak
information about the condition in a subsequent send.

Rule (S-If) specifies the typing of an if command. When typing an if command, we type
the two branches under pc′, which is the supremum of the conditional’s guard expression and
current context. The resulting typing environments, Γ1 and Γ2, then contain the security levels
that variables may have after executing the first or second branch. The typing environment
returned by the if is the join of those two, defined in Definition 3.4, so that it contains the
possibilities of both branches. Similarly, variable h is used to calculate the possible values
that the halting context may have after the conditional, hence the union.

59

Its instrumentation is given by the following macro:
genif =

_oldpcν := _pc;

if e then
_pc:=_pc t eval t ectx;
[[cmd1]];

update(mv2)

else
_pc:=_pc t eval t ectx;
[[cmd2]];

update(mv1)

end;

_pc := _oldpc

where update is defined as follows

update(mv) =

if mv = ∅ skip;

else
for each x ∈ mv xctx := xctx t_pc;

if _hc ∈ mv _hc := _hc t_pc;

and where tj is the termination type of cmd j , mvj is the set of modified variables in cmd j

(we include _hc in this set if the termination of the two branches can differ i.e. if ¬(t1 = t2 ∈
{T,D}) or if at least one guarded send occurs in the other branch), and evalt ectx is the guard
condition’s level expression.

The instrumented code starts by saving the current context to _oldpcν (the symbol ν indicates
that it is a fresh variable). The program context is updated with the security level of the guard
condition. The if itself is then generated.

The function update generates the command skip; if the parameter set mv is empty otherwise
it generates updates of the context level of each modified variable in the other branch as well
as the update of _hc if necessary. The underlying reason is to ensure that the value of these
level variables is at least pc.

In a situation like the following listing, this function allows to update y’s level, to protect x.

y := 0;

if x > 0 then (*H at runtime*)

y := 1

else skip end;
send x to lowChannel

Listing 3.10: Modified variables

60

Here, even if the else branch is taken at runtime, the level of variable y must be updated.
Otherwise, information about x would be revealed by the send command (even with a guarded
send).

Rules (S-Loop1), (S-Loop2) specify the while command typing. They involve computing a
least fixed point to derive the right typing environment. This is necessary because of the flow
sensitivity feature. Typing rule (S-Loop2) is applied recursively until a least fixpoint is found,
at which point (S-Loop1) is applied and its result is returned. Note that, since the calculation
of the fixpoint is defined in a constructive way, the rule will not accept any other fixpoints
than a least fixpoint and it will always compute the same least fixpoint. The union operator
is used to update the pc′ and hc′ variables so that we keep track of all their possible values.
Due to our use of finite lattices, and the monotonicity of the union and supremum on levels,
it is easy to show that this computation converges, the proof is given in 3.13, Lemma 3.4.
The typing relies on an oracle O that returns the termination type of the loop (to). It is
worth noting that the call to the oracle is performed statically. Calling it dynamically would
enhance precision, but increase significantly the overhead. If the loop contains guarded send
commands, which could fail and reveal information about the condition of the loop, then we
update the halting context to prevent this leak. The presence of at least one guarded send
command is detected using the function hasGSend().

genwhile =
_oldpcν := _pc;

while e do
_pc := _pc t eval t ectx;
[[cmd]];

end;

_pc := _pc t eval t ectx;
update(mv);

_pc := _oldpc

The inserted commands are similar to those of the if command. The level variables and
halting context are updated after the loop in case an execution does not enter the loop. The
context needs to be updated at the begining of each iteration as the value, and hence level, of
expression e may change.

Rule (S-Seq1) is applied if cmd1 always diverges; we then ignore cmd2, as it will never be
executed. Otherwise, rule (S-Seq2) is applied. The halting context returned is h2 instead of
h1 t h2 because h2 already takes into account h1.

Examples of instrumented programs are available in 3.12.

61

3.7 Soundness

In order to prove that the instrumented program generated by Figure 3.2 correctly enforces
noninterference, we need to adapt the definitions of noninterference and `-equivalent memories
to our target language, because of level variables. Recall that a memory for the target language
is the union of two maps of the following form:

mv : (Vlevel → L)] (V \ Vlevel → Z] C),

mc : C → Z.

We write doml (m) := dom(mv) ∩ Vlevel = m−1
v (L). A memory m is called complete for a

program p if

• {xval, xctx} ⊆ doml (m) for any x ∈ C ∪ dom(m) \ Vlevel that appears in p.

• _pc and _hc are in doml (m)

• if c ∈ C appears in p, then mv(cval) = levelOfChan(c) and mv(cctx) = L

• if m(x) ∈ C then mv(xval) = levelOfChan(m(x)).

The first two conditions ensure that level variables exist in the domain of the memory, whereas
the last ones makes sure that it is compliant with the security policy for channels.

The definition of `-equivalent memories, which is based on [15], must handle level variables.
Whenever the level variable xctx corresponding to a variable x is such that m(xctx) v ` in one
memory, then it must have the same value in both memories, otherwise a leak can happen.

Definition 3.5. `-equivalent memories. We say that two complete memories of the target lan-
guage m1 and m2 are `-equivalent, written m1 ≡` m2, iff they satisfy the following properties

1. if mi(_pc) v ` for some i ∈ {1, 2}, then m1(_pc) = m2(_pc). The same property holds
for _hc.

2. x ∈ m−1
i,v (Z ∪ C),∧mi(xctx)v`, for some i = 1, 2, then

• m1(xctx) = m2(xctx)

• m1(xval) = m2(xval)

• if m1(xval) v` then m1(x)=m2(x)

3. c ∈ C ∧ levelOfChan(c) v `⇒ m1c(c) = m2c(c)

62

It may seem surprinsing that the memories may differ on a level variable such as xval; this
is because they may differ on the value of high variables. Too see this, here is a variation of
Listing 3.1.

if highValue > 0

then c := highChannel

else c := lowChannel

end;

Listing 3.11: The security type of c’s content is sensible

In this example, the content of c depends on a private condition, and hence its level variable
cctx should be H; moreover, variable cval, containing the level of the content of c, may have
different values in two `-equivalent memories. Another example, for non-channel variables, is
Listing 3.6, reproduced below, where medValue has security level M , with L vM v H.

if medValue > 0

then x := highValue (*x is H *)

else x := lowValue (*x is L *)

end;
send x to c

send 1 to lowChannel

In this example, variable xval contains information of levelM . If c turns out to be of levelM at
execution then reaching or not the last send command will depend on xval. The program will
be blocked or not, and this will reveal which branch was taken in the preceding conditional.
Interestingly, this problem does not arise when the lattice is restricted to only two levels,
{L,H}, as argued in Kozyri et al. [15].

Here is the definition of noninterference for the target language. The difference from Defini-
tion 3.1 is the requirement of the memories to be complete and the use of Definition 3.5.

Definition 3.6. Progress-sensitive noninterference. We say that a program p satisfies progress-
sensitive noninterference if for any ` ∈ L, and for any two complete memories m and m′ that
are `-equivalent, and for any trace o such that 〈p,m, ε〉 ↓ o, then there is some trace o′, such
that 〈p,m′, ε〉 ↓ o′ and o�` = o′ �`.

Using these updated definitions, we prove that the instrumented programs are noninterferent.

Theorem 3.1 (Soundness of enforcement). If a program p is well typed according to the type
system of Figure 3.2, then the generated program [[p]] satisfies progress sensitive noninterfer-
ence.

We also show that the instrumentation preserves the semantics of the original program. That
is, the instrumentation of a program p, written [[p]], produces exactly the same output as p as

63

long as it is allowed to continue; it may be stopped at some point to prevent a leak. If m is a
memory for the target language, we write m̂ for the restriction of m to V \ Vlevel .

Theorem 3.2 (Semantics preservation). Let p be a program, m a memory, and o, o′ output
traces. Then

〈[[p]],m, ε〉 ↓ o⇒ 〈p, m̂, ε〉 ↓ o

(〈p, m̂, ε〉 ↓ o ∧ 〈[[p]],m, ε〉 ↓ o′)⇒ o � o′ ∨ o′ � o

where o′ � o means that o′ is a prefix of o.

The proofs are available in Section 3.13.

3.8 Increasing Precision and Permissiveness

During the course of this work, we thought of two ways to improve the precision of our static
analysis and permissiveness of our dynamic analysis. While we chose not to use them into
this work (to keep things as simple as possible), we think they are worth pointing out.

3.8.1 Security Type Constraints

In Listing 3.13, only executions where c is a high channel will get past the first guarded send.
For this reason, we can consider, for the rest of the analysis, that its type is int{H}chan{L}

instead of int{L,H}chan{L}.

if lowValue > 0 then
c:= lowChannel

else
c:= highChannel

end;
send highValue to c; (*will be transformed into a guarded send*)

(*to reach here, c must be {H}*)

x := read c; (*so x is {H}*)

send x to lowChannel (*always leaks, so statically rejected*)

Listing 3.13: Constraint on the security type of a channel variable

The same idea applies to integer variables. For example, we know that the instructions after
the first send of Listing 3.14 will only be reached if variable x is low. For this reason, we can
consider that x’s type after the send will be (intL){L} instead of (int{L,H}){L}.

64

if lowValue > 0 then
c := lowChannel

else
c := highChannel

end;
x := read c; (*x is {L,H}*)

send x to lowChannel; (*will be transformed into a guarded send*)

(*to reach here, x must be {L}*)

send x to lowChannel (*no need to transform into a guarded send*)

Listing 3.14: Constraint on the security type of an integer variable

Using these constraints in our static analysis would lead to the insertion of fewer guarded
sends, and thus, less runtime overhead.

3.8.2 Conditional Updates of the Halting Context

While we chose to always update the halting context _hc after a guarded send with

_hc := _pc t_hc t xctx t cctx,

there are cases where we can be more precise. One such case is illustrated in Listing 3.15.

if medValue then
x := read highChannel

else
x := read highChannel2

end;
send x to c; (*guarded send*)

send lowValue to lowChannel

Listing 3.15: Example where _hc does not need to be updated with xctx

In this example, while x’s value may differ, its type is constant and equal to (int{H}){M}.
Since the value of medValue does not affect its type, it means that it has no influence on the
guarded send’s decision to block or allow the output. Hence, in this case, the update to _hc

variable after the guarded send does not need to include variable xctx.

Similarly, when a channel c whose type is constant is used in a guarded send command, the
update to _hc does not need to include variable cctx.

Hence, using conditional updates would allow the dynamic analysis to be more permissive as
the updates to _hc are less conservative.

65

3.9 Related Work

There has been much research into language-based techniques for controlling information flow
over the last two decades. In this section, we focus on hybrid techniques for information-flow
control. Hybrid techniques are attractive as the combination of static and dynamic analyses
offers potentially multiple advantages such as low runtime overhead, increased precision and
flexibility.

Le Guernic et al. [3] present the first hybrid information-flow control monitor. The enforce-
ment is based on a monitor that is able to perform static checks during the execution. The
enforcement is not flow-sensitive. Le Guernic, in [16], extends this work to concurrent pro-
grams. Russo and Sabelfeld [5] generalize their work, presenting a series of hybrid monitors
that differ on the action to perform in the event of a security violation. They also state
that purely dynamic enforcements are more permissive than purely static enforcements but
they cannot be used in case of flow-sensitivity. They propose a hybrid flow-sensitive enforce-
ment based on calling static analysis during the execution. This enforcement is not progress
sensitive.

Kozyri et al. [15] show that it is not trivial to design dynamic enforcement mechanisms that
support general lattices, are flow-sensitive, and do not leak information through termination
enforced by the monitor. Their mechanism supports all these three features by using metal-
abels, which are labels on labels. A metalabel represents the sensitivity of the corresponding
label, in the same way that ` represents the sensitivity of σ in a variable type σ`.

Bedford et al. [17] generate instrumented code, enforcing information flow based on static
analysis (i.e., an information-flow monitor is inlined). The approach supports channel variables
and is flow sensitive, but does not take into account leaks due to progress. Also, the inlined
monitor does not use dynamic security levels, but employs a heavy-handed approach which is
not as amenable to standard optimization techniques as the present one. The target language
is not formally defined and no soundness proof of the instrumented code is provided.

Moore et al. [13] consider precise enforcement of flow-insensitive progress-sensitive security.
Progress sensitivity is also based on an oracle’s analysis, but they call upon it dynamically
while we do it statically. We have also introduced additional termination types to increase the
permissiveness of the monitor.

Chudnov and Naumann [18] inline a flow-sensitive hybrid monitor (based on a monitor of
Russo et al. [5]) and extend it to Javascript [19]. They prove its soundness by showing that
the execution of the inlined monitor is bisimilar to the execution of a non-inlined monitor. We
inline a flow-sensitive progress-sensitive hybrid monitor and, as we did not have already have
a non-inlined monitor, we proved its soundness by showing that the output traces produced
by two `-equivalent executions will always be the same.

66

Magazinius et al. [20] present on-the-fly inlining of a dynamic information security monitor.
We speculate that we could extend their ideas to allow on–the fly instrumentation.

Assaf et al. [21] enforce termination-insensitive noninterference on a simple imperative lan-
guage that support pointers using hybrid monitor. To deal with pointer-aliasing, they use a
set of memory locations, which is similar to our sets of levels. One difference is that we use
sets to distinguish outputs that never leak information from those that may leak information.
Since we only insert runtime checks for the outputs that may leak information, our monitor
introduces less overhead at runtime.

Askarov and Sabelfeld [22] use hybrid monitors to enforce information security in dynamic lan-
guages. In this setting, dynamic evaluation of programs (e.g., eval statements in JavaScript)
requires on-the-fly static analysis of programs. They provide a model to define noninter-
ference that is suitable to progress-sensitivity and they quantify information leaks due to
termination [7].

Hritcu et al. [23] introduces an error-handling mechanism that allows all errors (even those
caused by an information-flow control violation) to be safely recoverable. They support dy-
namic levels. To help prevent leaks through covert channels, they provide a discretionary
access control mechanism called clearance that allows them to put an upper bound on the pc.
Contrarily to our approach, the detection (and prevention) of leaks through progress channels
is not done automatically.

Askarov et al. [24] introduce a hybrid monitoring framework capable of handling concurrent
programs. They illustrate their approach on a simple imperative language similar to ours,
but it does not support channel variables. In their framework, each thread is guarded by its
own local monitor (progress- and flow-sensitive). There is also a single global monitor that
synchronizes the threads. Like us, they make use of an oracle to approximate the termination
behaviour of branches. This oracle is called upon at runtime (making it a kind of on-the-
fly static analysis), whereas ours is called only statically. The main difference between their
approach and ours, exluding the concurrency of course, is the fact that our monitor is inlined
whereas theirs is not.

3.10 Conclusion

We have presented a hybrid information flow enforcement mechanism, which detects and
prevents leaks that may occur through the data-flow or the progress of a program. It uses
information inferred during a phase of static analysis to instrument the program; this helps
to reduce the number of false positives during the execution. The instrumented program uses
level variables, a simple yet powerful way, to perform its dynamic analysis. This instrumented
code can then be partially evaluated in order to reduce the amount of added commands.

67

Our main contributions are the following.

(a) We present an extended version of the hybrid monitor first presented in our previous
article [6]. It is capable of enforcing flow- and progress-sensitive information security on general
lattices. It is more precise and introduces less overhead than currently available solutions (e.g.,
[11, 13]) for two reasons: it makes use of a static termination oracle and does not approximate
the level of a variable at the join of a conditional. Since our monitor is inlined, it can be easily
optimized using classical partial evaluation techniques, [9].

(b) We prove the soundness of our inlined monitor and that the semantics of the original
program is preserved, as long as it is secure.

(c) We show that, thanks to the use of sets of levels, it is possible to distinguish outputs that
never leak information from outputs that may leak information.

(d) We present two ideas to increase the precision of the static analysis and the permissiveness
of the dynamic analysis: propagating constraints on the set of possible security levels and using
conditional updates. We chose not to use them in this work in order to increase readability.

Future Work Future work includes extensions to concurrency, declassification and infor-
mation leakage due to timing. We would like to scale up the approach to deal with real world
languages and to test it on elaborate programs. The use of abstract interpretation [25] to
enhance the static analysis is also to be considered in future work.

Acknowledgments We would like to thank Fred B. Schneider and the reviewers for their
valuable comments. Andrew Bedford, Josée Desharnais, and Nadia Tawbi are supported by
grants from Laval University and NSERC. Elisavet Kozyri is supported by AFOSR grants
F9550-16-0250 and grants from Microsoft.

3.11 Bibliography

[1] A. Sabelfeld and A. C. Myers, “Language-based information-flow security,” IEEE Journal
on Selected Areas in Communications, vol. 21, no. 1, 2003.

[2] D. Volpano, C. Irvine, and G. Smith, “A sound type system for secure flow analysis,”
Journal of computer security, vol. 4, no. 2, pp. 167–187, 1996.

[3] G. Le Guernic, A. Banerjee, T. Jensen, and D. A. Schmidt, “Automata-based confiden-
tiality monitoring,” Asian Computing Science Conference, 2006.

[4] T. H. Austin and C. Flanagan, “Efficient purely-dynamic information flow analysis,” in
Proceedings of the Workshop on Programming Languages and Analysis for Security, 2009.

68

[5] A. Russo and A. Sabelfeld, “Dynamic vs. static flow-sensitive security analysis,” in CSF,
2010, pp. 186–199.

[6] A. Bedford, S. Chong, J. Desharnais, and N. Tawbi, “A progress-sensitive flow-sensitive
inlined information-flow control monitor,” in ICT Systems Security and Privacy Protec-
tion - 31st IFIP TC 11 International Conference, SEC 2016, Ghent, Belgium, May 30 -
June 1, 2016, Proceedings, 2016, pp. 352–366.

[7] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands, “Termination-insensitive noninterfer-
ence leaks more than just a bit,” in Proceedings of the European Symp. on Research in
Computer Security: Computer Security, 2008.

[8] L. Zheng and A. C. Myers, “Dynamic security labels and noninterference,” in Formal
Aspects in Security and Trust. Springer, 2005, pp. 27–40.

[9] N. D. Jones, C. K. Gomard, and P. Sestoft, Partial evaluation and automatic program
generation. Prentice Hall, 1993.

[10] D. E. Denning, “A lattice model of secure information flow,” Communications of the ACM,
vol. 19, pp. 236–243, May 1976.

[11] K. R. O’Neill, M. R. Clarkson, and S. Chong, “Information-flow security for interactive
programs,” in CSFW. IEEE, 2006.

[12] G. Smith and D. Volpano, “Secure information flow in a multi-threaded imperative lan-
guage,” in POPL, 1998.

[13] S. Moore, A. Askarov, and S. Chong, “Precise enforcement of progress-sensitive security,”
in CCS 2012, 2012.

[14] B. Cook, A. Podelski, and A. Rybalchenko, “Proving program termination,” Commun.
ACM, vol. 54, no. 5, pp. 88–98, May 2011.

[15] E. Kozyri, J. Desharnais, and N. Tawbi, “Block-safe information flow control,” Depart-
ment of Computer Science, Cornell University, Tech. Rep., Aug. 2016.

[16] G. L. Guernic, “Automaton-based confidentiality monitoring of concurrent programs,” in
CSF, 2007.

[17] A. Bedford, J. Desharnais, T. G. Godonou, and N. Tawbi, “Enforcing information flow by
combining static and dynamic analysis,” in Proceedings of the International Symposium
on Foundations & Practice of Security, 2013.

[18] A. Chudnov and D. A. Naumann, “Information flow monitor inlining,” in Proceedings of
the 23rd IEEE Security Foundations Symposium, 2010.

69

[19] ——, “Inlined information flow monitoring for javascript,” in Proceedings of
the 22Nd ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’15. New York, NY, USA: ACM, 2015, pp. 629–643. Available:
http://doi.acm.org/10.1145/2810103.2813684

[20] J. Magazinius, A. Russo, and A. Sabelfeld, “On-the-fly inlining of dynamic security mon-
itors,” Computers & Security, vol. 31, no. 7, pp. 827–843, 2012.

[21] M. Assaf, J. Signoles, F. Tronel, and É. Totel, “Program transformation for non-
interference verification on programs with pointers,” in IFIP International Information
Security Conference. Springer, 2013, pp. 231–244.

[22] A. Askarov and A. Sabelfeld, “Tight enforcement of information-release policies for dy-
namic languages,” in CSF, 2009.

[23] C. Hritcu, M. Greenberg, B. Karel, B. C. Pierce, and G. Morrisett, “All your ifcexception
are belong to us,” in Security and Privacy (SP), 2013 IEEE Symposium on. IEEE, 2013,
pp. 3–17.

[24] A. Askarov, S. Chong, and H. Mantel, “Hybrid monitors for concurrent noninterference,”
in Computer Security Foundations Symposium, 2015.

[25] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints,” in POPL, 1977, pp.
238–252.

70

3.12 Appendix: Examples

In order to simplify the examples, we assume that the variables lVal, mVal, hVal and channels
lChan, mChan, hChan already exist, have arbitrary values and have the suggested security levels.
We also assume that all other level variables have been initialized to L. Boolean values are
represented as integer where 0 means false and any other integer means true.

Guarded send

The following example illustrates a situation where the guarded send is used to prevent a
possible leak of information.

if mVal > 0 then
c := mChan

else
c := hChan

end;
send hVal to c; (*may leak information*)

Here is its instrumentation :

(*if*)

_oldpc1 := _pc;

if lVal > 0 then
_pc := _pc t lValval t lValctx t L;

(c, cval, cctx) := (lChan, lChanval, lChanctx t _pc); (*assign*)

(c, cctx) := (c, cctx t _pc); (*update*)

else
_pc := _pc t lValval t lValctx t L;

(c, cval, cctx) := (hChan, hChanval, hChanctx t _pc); (*assign*)

(c, cctx) := (c, cctx t _pc); (*update*)

end
_pc := _oldpc1;

(*guarded send*)

if _hc t _pc t hValval t hValctx t cctx v cval then
(send hVal to c)

else fail end;
_hc := _pc t _hc t hValctx t cctx;

Divergence

Commands after a loop that always diverges are ignored. Hence, the following program is
statically safe.

71

while 1 do
skip

end;
send hVal to lChan

Even if it is statically safe, it is instrumented :

(*while*)

_oldpc1 := _pc;

while 1 do
_pc := _pc t L t L;

(*skip*)

skip;
end;
_pc := _pc t L t L;

_pc := _oldpc1

After partial evaluation, it results in the following program:

while 1 do
skip

end

Notice that because the code is statically safe, the partial evaluation is able to get rid of
the instructions added by the instrumentation algorithm. This is because, if the code is
statically safe, then the conditions of the guarded send commands are all true. If guarded
send commands are not needed, then level variables are also not needed.

72

3.13 Appendix: Proofs

We prove that the type system of Figure 3.2 generates noninterferent programs (i.e., we prove
its soundness).

Theorem 3.1 (Soundness of enforcement) If a program p is well typed according to the type
system of Figure 3.2, then the generated program [[p]] satisfies progress-sensitive noninterfer-
ence.

The theorem is a consequence of the following results.

Lemma 3.1. If two memories are `-equivalent, then they agree on every expressions involv-
ing level variables that were generated by the instrumentation and whose value is v `; these
expressions include _pc,_hc, eval, ectx, etc.

Sketch. The proof is by induction. The idea is to show that all such expressions either only
use level variables of the form xctx which are v `, on which `-equivalent memories agree by
definition, or that whenever these expressions use some xval, then they protect this potentially
dangerous variable by xctx. The program context, _pc, is modified in the conditional and the
loop, where the supremum is taken from the level of the condition.

Notation If Γ(x) = σ`′x , we write Γctx(x) to mean `′x. If Γ(x) = (int`x chan)`′x or (int`x)`′x ,
then we write Γval(x) to mean `x.

The following lemma states that security types of variables calculated by the typing system
of Figure 3.2 include all possible runtime values.

Lemma 3.2. For any execution starting with a complete memory, if the runtime memory is m
when an instrumented command [[cmd]] is executed, and m′ is the memory after the execution,
assuming the typing generated by Figure 3.2 is

Γ, pc, hc ` cmd : t, hc′,Γ′, [[cmd]],

we have

(1) m(_pc) ∈ pc and m(_pc) = m′(_pc)

and the following invariants in the program execution

(2) m(_hc) ∈ hc

(3) m(xval) ∈ Γval(x)

(4) m(xctx) ∈ Γctx(x)

73

Proof. The proof is by structural induction.
Base Cases:
Initially, we have pc = hc = {L}, m(_pc) = m(_hc) = L, similarly for xval and xctx, so the
conditions are true at the initial state.

Case [[skip]] is trivial.

Case [[x := e]] = (x, xval, xctx) := (e, eval, ectx t_pc)

Since the execution of this code does not modify _pc or _hc, we have (1) and (2).

For every variable tval in expression eval, we have that m(tval) ∈ Γval(t). Similarly, for every
variable tctx in expression ectx, we have that m(tctx) ∈ Γctx(t). Hence, by the definition of the
supremum on sets (Definition 3.3) and (S-Op), we have (3) (i.e., m′(xval) ∈ Γ′val(x)). We also
have (4) due to the updated environment returned (S-Assign).

Case [[send x to c]]

Subcase [[send x to c]] = send x to c

Trivial since no variable type is modified.

Subcase [[send x to c]] =

if _pc t _hc t xval t xctx t cctx v cval
then (send x to c)

else fail
end;
_hc := _pc t _hc t xctx t cctx;

Initially we have that m(_pc) ∈ pc,m(_hc) ∈ hc,m(xctx) ∈ Γctx(x) and m(cctx) ∈ Γctx(c).
Only _hc is modified by this command, hence we have (1), (3) and (4). We also have (2) by
the supremum on sets and the hc′ returned by (S-GSend).

74

Induction Cases:

Case [[cmd1; cmd2]]

We can use induction on [[cmd1]], with the following hypothesis:

• Γ, pc, hc ` cmd1 : t1, hc1,Γ1, [[cmd1]].

Induction hypothesis gives us that m′′ (the memory after executing [[cmd1]]) and Γ1 satisfy
(1)-(4). If t1 = D then [[cmd1; cmd2]] is simply [[cmd1]], and we are done since all executions
diverge. If t1 6= D, then we have for [[cmd2]] that:

• Γ1, pc, h1 ` cmd2 : t2, h2,Γ2, [[cmd2]]

Since the same program context as for cmd1 is fed to the typing rule, then by the induction
hypothesis and the fact that m′′ and Γ1 satisfy (1)-(4), we have the result for m′ and Γ2.

Case [[if e then cmd1 else cmd2 end]] =

_oldpcν := _pc;

if e then
_pc:=_pc t eval t ectx;
[[cmd1]];

update(mv2)

else
_pc := _pc t eval t ectx;
[[cmd2]];

update(mv1)

end;

_pc := _oldpc

For (1) we observe that _pc has the same value before and after the instrumented code.
Moreover, before cmd i, i = 1, 2, the value of _pc is in pc′, the context used to type these
commands. For (3), by induction, we have that the invariants are true after the execution of
[[cmd1]] or [[cmd2]]. Hence we have (3). The update function in each branch inserts commands
that, for every modified variable x, updates its xctx with _pc. This corresponds to what is
done in the supremum of environments (Definition 3.4), so we have (4). Finally, since the
update function updates the _hc with _pc when the termination behavior of the two branches
can differ, and that the _hc is updated by update if one of the branch contains a guarded
send, we have (2) as this corresponds to the union done in (S-If).

75

Case [[while e do cmd end]] =

_oldpcν := _pc;

while e do
_pc := _pc t eval t ectx;
[[cmd]];

end;

_pc := _pc t eval t ectx;
update(mv);

_pc := _oldpc

The case is similar to the conditional. Variable _pc is updated at the beginning of each
iteration, it belongs to pc t `e t `′e, as wanted for the induction step involving [[cmd]], and we
get (1), as pc′ contains all the possible values of _pc when [[cmd]] is executed. By induction,
we have that the invariants are true after executing [[cmd]]. Hence we have (3). We also have
(2) and (4) using the same arguments as in the conditional.

The following proposition shows that any step of two executions performed from `-equivalent
memories results in `-equivalent outputs. Theorem 3.1 follows as a corollary from it and from
the next lemma.

Proposition 3.3 Let mi, i = 1, 2 be two `-equivalent complete memories, oi be a trace and
[[cmd]] be a command generated by Figure 3.2, that is

Γ, pc, hc ` cmd : t, h,Γ′, [[cmd]].

Then if both [[cmd]],mi terminate, that is, we have maximal executions 〈[[cmd]],mi, oi〉 −→∗

〈stop,m′i, o′i〉, then the following statements are invariants:

(a) the memories are `-equivalent (Def 3.5)

(b) `-projections of observations are equal

Proof. The proof is by structural induction.
Base Cases:
Initially, we have mi, i = 1, 2 two `-equivalent memories where the level variables have been
initialized, so (a) and (b) are straightforward.

Case [[skip]] is trivial.

76

Case [[x := e]] = (x, xval, xctx) := (e, eval, ectx t_pc)

We have to prove (a), as (b) is trivial since this command does not modify the output traces.
For `-equivalence, since _pc, _hc and the contents of channels are not modified, we obtain
conditions (1) and (3) of Definition 3.5. For condition (2): since m1 and m2 are `-equivalent,
if m′1(x, xval, xctx) 6= m′2(x, xval, xctx), then either mi(xval) 6v ` (in which case m′1 and m′2 are
still `-equivalent) or m′i(xctx) = mi(_pct ectx) 6v ` (by Lemma 3.1). Meaning that there is at
least one variable tctx in ectx such that mi(tctx) 6v `, or that _pc 6v `. Hence, m′1 and m′2 are
still `-equivalent. If m′1(x, xval, xctx) = m′2(x, xval, xctx), then m′1 and m′2 are `-equivalent.

Case [[send x to c]]

Subcase [[send x to c]] = send x to c

By the typing rule, we have
pc t hc t `x t `′x t `′c vs `c

using the property of supremum, combining with Lemma 3.2 and converting the notation, we
obtain

mi(_pc) ∈ pc vs Γval(c)

mi(_hc) ∈ hc vs Γval(c)

mi(xval) ∈ Γval(x) vs Γval(c)

mi(xctx) ∈ Γctx(x) vs Γval(c)

mi(cctx) ∈ Γctx(c) vs Γval(c)

By the definition of vs, this implies mi(_pct_hctxvaltxctxt cctx) v mi(cval), which means
that the sending of x on c is safe. Hence we obtain (a) and (b) by `-equivalence of the memories.

Subcase [[send x to c]] =

if _pc t _hc t xval t xctx t cctx v cval
then (send x to c)

else fail
end;
_hc := _pc t _hc t xctx t cctx;

We have to prove (a) and (b). For (a), we only have to prove conditions (1) and (3) as only
the value of _hc and the content of the channel may change.

If mi(_pc t_hc t xctx t cctx) v ` for one memory i ∈ {1, 2} then, by `-equivalence, it is also
the case for the other memory and we get (1). It also implies that the two memory agree on
xval and cval as they are `-equivalent. This means that they either both fail, in which case

77

there is nothing more to prove, or the send command is executed in both. If it is executed,
then mi(_pc t _hc t xval t xctx t cctx) v mi(cval), for i = 1, 2, and by `-equivalence again,
oi �` = o′i �` in both executions and (b) is true, as well as (3).

If m′i(_hc) = mi(_pct_hctxctxt cctx) 6v ` for i = 1, 2, then we get (1) and we have that the
send command could succeed in m1 and fail in m2. But since mi(_pct_hctxctxt cctx) 6v `,
we know that it cannot succeed on a channel whose level is v ` and we get (b) and (3).

Induction Cases:

Case [[cmd1; cmd2]]

The hypothesis gives that m1 and m2 satisfy (a) and (b). Then we can use induction on
[[cmd1]], with the following hypotheses:

• Γ, pc, hc ` cmd1 : t1, h1,Γ1, [[cmd1]].

• 〈[[cmd1]],mi, oi〉 −→∗ 〈stop,m′′i , o′′i 〉

Induction hypothesis gives us that m′′1 and m′′2 satisfy (a) and (b). We have for [[cmd2]] that:

• Γ1, pc, h1 ` cmd2 : t2, h2,Γ2, [[cmd2]]

• 〈[[cmd2]],m′′i , o
′′
i 〉 −→∗ 〈stop,m′i, o′i〉

By the induction hypothesis and the fact that m′′1 and m′′2 satisfy (a) and (b), we obtain that
m′1 and m′2 satisfy (a) and (b).

Case [[if e then cmd1 else cmd2 end]] =

_oldpcν := _pc;

if e then
_pc := _pc t eval t ectx;
[[cmd1]];

update(mv2)

else
_pc := _pc t eval t ectx;
[[cmd2]];

update(mv1)

end;

_pc := _oldpc

78

Assume thatm1 andm2 satisfy (a) and that o1 �` = o2 �`. Ifmi(evaltectx) = tt∈Var(e)mi(tvalt
tctx) v `, i = 1, 2 (symmetry is given by `-equivalence), we have the result by induction since
both memories take the same branch, say i.

Now assume that mi(eval t ectx) 6v `, i = 1, 2. If m1(e) = m2(e) we are in the same situation
as above. So assume w.l.o.g. that m1(e) is true but m2(e) is false; hence under memory mi,
code [[cmd i]] will be executed.

If both commands terminate, that is:

• 〈[[cmd1]],m1, o1〉 −→∗ 〈stop,m′1, o′1〉

• 〈[[cmd2]],m2, o2〉 −→∗ 〈stop,m′2, o′2〉

Then we know, by Lemma 3.3(c), that

o′1 �` = o1 �` = o2 �` = o′2 �`.

because before executing cmd i, variable _pc is updated with the value of mi(evaltectx) which
is 6v `. Hence, the execution of [[cmdi]] will produce no output on channels of level v `. Hence,
(b) is proven for the induction step.

This also proves (a) on channels, but we need to prove it on variables (level and non level).

Let x ∈ V and mv = mv1 ∪ mv2, where mvi the set of variables that may be modified in
cmd i, i = 1, 2. By definition, variable _hc is also included in this set if the termination of the
branches may differ or if one of them contains a guarded send. If x 6∈ mv and the mi’s agree
on x, xctx and xval, then the m′i’s also agree on x, xctx and xval.

If x ∈ mvi, we have that xctx w _pc t eval t ectx due to the commands inserted by the update
function. Thus we have (a).

Case [[while e do cmd end]] =

_oldpcν := _pc;

while e do
_pc := _pc t eval t ectx;
[[cmd]];

end;

_pc := _pc t eval t ectx;
update(mv);

_pc := _oldpc

79

As a loop is essentially a (possibly infinite) sequence of if , the case is similar to the conditional.
Assume that m1 and m2 satisfy (a) and (b). If mi(eval t ectx) = tt∈Var(e)mi(tval t tctx) 6v `,
then we know that the execution of [[cmd]] will produce no output on channels of level v `

since variable _pc is updated before entering the loop, and that every variable that is or could
have been modified by [[cmd]] will have a tctx that is 6v ` due to the update function. Hence,
we have (a) and (b).

If instead we have that mi(eval t ectx) v `, then we have the result by induction since both
memories will always take the same branch.

Lemma 3.3. With the premises of the previous theorem, if one step of [[cmd]] fails or diverges
for one memory then it also fails or diverges for the other or no more output on channels of
level ` or lower will be performed on that execution. More precisely, for i = {1, 2}

(a) mi(_hc) v m′i(_hc)

(b) if only one execution fails or diverges, say m1, then o2 �` = o′2 �` and m
′
2(_hc) 6v `.

(c) if mi(_pc) 6v ` or mi(_hc) 6v ` then oi �` = o′i �`

(d) if both executions fail or both diverge, then the `-projections of observations are equal

Proof. (a) is straightforward since _hc is always included in the right-hand side when updat-
ing _hc.

(b) is proven by induction, following the lines of Proposition 3.3. The interesting cases are
the guarded send subcase and the inductive cases.

Case [[send x to c]]

Let’s assume that the send command is transformed into a guarded send. The only case where
only one execution fails, say m1, is one where m′2(_hc) 6v `, and where no observation is made
on a channel of level ` or lower, as wanted.

Case [[cmd1; cmd2]]

Let m′′i and o′′i be the memories and output traces after executing cmd1. Let m′i and o
′
i be the

memories and output traces after executing cmd1; cmd2. If one execution fails or diverges,
say m1 on cmd1, then by induction, m′′2(_hc) 6v `, and by (c), we obtain o2 �` = o′′2 �`. By (a)
and (c) and induction, we then get o2 �` = o′2 �`, as wanted. By (a), and (c) again, we also
obtain m′2(_hc) 6v `. If m1 fails or diverges on cmd2 instead, the argument is similar.

80

Case [[if e then cmd1 else cmd2 end]]

There are two situations in which only one execution, say m1, can fail: (1) only one execution
executes a guarded send or (2) they both execute the same guarded send but the result is
different. In case (1), we have that mi(_pc) 6v ` (a consequence of Proposition 3.3 and
Lemma 3.1), and that at least one of the if ’s branch contains a guarded send, which is always
followed by an update to variable _hc. Since one of the branch modifies variable _hc, it also
means that the update function updates _hc to _pc, which is 6v `. Hence, we have (b) in
this case. In case (2), the only way that the result of a guarded send can be different is if
mi(_pc t _hc t xctx t cctx) 6v `, where x is the variable sent and c the channel on which the
send occurs. In this case, the update to _hc that immediately follows the guarded send will
ensure that m2(_hc) 6v `. Hence we also have (b) in this case.

Similarly, for only only one execution to diverge, two things must be true: (1) mi(_pc) 6v `,
and (2) the termination type of the if command is M . Since the termination type is M , we
have that the update function inserted after the conditional updates the _hc to _pc, which is
6v `. Hence, we also have (b) in this case.

Case [[while e do cmd end]]

The argument is similar to the if command.

For (c), there are two cases where there are observations, the send case and the guarded send
case. For the latter, the condition is taken care of by the guard. For the former, ifmi(_pc) 6v `
or mi(_hc) 6v ` then, by Lemma 3.2 (1) and (2), one of the sets pc or hc contains a security
level `′ 6v `. By the typing rule, this implies that `′ vs Γval(c). By definition of vs, all elements
of Γval(c) are greater than or equal to `′ and hence, again by Lemma 3.2 (3), `′ vs mi(cval)

and ` 6vs mi(cval), thus oi �` = o′i �`.

Finally, for (d), we have three cases: both executions fail, both executions diverge and
mi(_pc t eval t ectx) v ` or both executions diverge and mi(_pc t eval t ectx) 6v `, where
e is the guard expression of the loop that diverges. If both executions fail, then there will be
no more outputs and so the `-projections remain equivalent. If both executions diverge and
mi(_pc t eval t ectx) v `, then by Lemma 3.1 we have that the `-projections of observations
are equal. If both executions diverge and mi(_pc t eval t ectx) 6v `, then the update to the
_pc inside the body of the loop ensures that mi(_pc) 6v ` before executing cmd , and so that
there will be no more outputs on channels of level lower or equal to `.

81

Lemma 3.4 (Fixed-point). The fixed-point computed by typing rules (S-Loop1) and (S-

Loop2) always converges to a value.

Proof. Let Γ, Γ′ be typing environments and pc, pc′ be sets of levels. We say that (Γ, pc) v
(Γ′, pc′) if:

dom(Γ) ⊆ dom(Γ′) ∧

pc ⊆ pc′ ∧

(∀x ∈ dom(Γ).

Γval(x) ⊆ Γ′val(x) ∧ Γctx(x) ⊆ Γ′ctx(x))

Since this relation is a partial order (i.e., reflexive, transitive, antisymmetric), to prove that
the computation of the fixpoint in (S-Loop2) always converges, we only need to prove that
applying the rule iteratively builds a chain of environments that satisfy the relation. More
precisely, we prove that the sequence (Γ0 tpc′0 Γ′0, pc

′
0) v (Γ1 tpc′1 Γ′1, pc

′
1) v ... converges,

where Γ0 is the initial environment, Γ′0 is the environment obtained after the first analysis of
the loop body cmd , pc′0, is the context in which the first analysis of cmd is performed. The
result of analyzing cmd , the loop body, under Γi is Γ′i. Note that Γi = (Γi−1 tpc′i−1

Γ′i−1), is
the environment under which the loop is recursively analyzed at step i.

By Definition 3.4, we have

dom(Γi−1tpc′i−1Γ′i−1
) ⊆ dom(Γi tpc′i Γ′i).

Since pc′i = pc′i−1 ∪ (pc′i−1 t `ei−1 t `′ei−1
), where `ei−1 and `′ei−1

are the levels associated to the
conditional expression of the loop at step i−1, we have pc′i−1 ⊆ pc′i. Let Γ = (Γi−1tpc′i−1

Γ′i−1)

and Γ′ = (Γi tpc′i Γ′i). Let x ∈ dom(Γ).

Case x is not modified in the body of the loop :
We have that Γval(x) = Γ′val(x) and Γctx(x) = Γ′ctx(x) by Definition 3.4.

Case x is modified in the body of the loop:
We have that Γval(x) ⊆ Γ′val(x) by Definition 3.4. Since Γ is calculated using pc′i−1, we have
that Γctx(x)tpc′i−1 = Γctx(x) and since Γ′ is calculated using pc′i, we have that Γ′ctx(x)tpc′i =

Γ′ctx(x). Hence, we have that Γctx(x) ⊆ Γ′ctx(x) by pc′i−1 ⊆ pc′i and by Definition 3.4. Hence,
a fixpoint will always be reached since L is finite.

82

Theorem 3.2 (Semantics preservation.) Let p be a program, m a memory, and o an output
trace. Then

〈[[p]],m, ε〉 ↓ o⇒ 〈p, m̂, ε〉 ↓ o

(〈p, m̂, ε〉 ↓ o ∧ 〈[[p]],m, ε〉 ↓ o′)⇒ o � o′ ∨ o′ � o

where o′ � o means o′ is a prefix of o.

Note that m̂ is a memory for the source language, and hence it is of type : V] C → Z] C
whereas m can, in addition, map variables to levels.

Sketch. By structural induction. The program generated by our instrumentation contains
the same commands as the original program, in the same order. The only difference being
the additional assignments on level variables and checks. For this reason, the only non-
trivial case is the send command, since it modifies the output trace, or halts the program.
Hence assume that cmd = send x to c. There are two cases: (1) [[cmd]] = cmd and (2)
[[cmd]] = if _pc t _hc t xval t xctx t cctx vs cval then (sendx1 tox2) else fail end;_hc :=

_pc t_hc t xctx t cctx.

In the first case, the claim is trivial. In the second case, the send is guarded by a condition.
If this condition is true, the sending will happen and the output trace will be updated with
o :: (m(x1),m(x2)), as would have been done by cmd . Otherwise, the program [[cmd]] will
be stopped, and hence, no more output will happen, although cmd could produce other
outputs.

83

Chapter 4

Andrana: Quick and Accurate
Malware Detection for Android

Authors: Andrew Bedford, Sébastien Garvin, Josée Desharnais, Nadia Tawbi, Hana Ajakan,
Frédéric Audet and Bernard Lebel

Conference: Foundations and Practice of Security

Status: peer reviewed; published1; presented

Year: 2016

4.1 Résumé

Pour aider les utilisateurs à identifier les applications qui sont les plus susceptibles de faire
fuir de l’information confidentielle (c.à.d., les applications malicieuses), nous présentons dans
ce chapitre un outil de détection de maliciel pour Android appelé Andrana. Andrana ex-
ploite des techniques d’analyse statique et d’apprentissage automatique pour déterminer, avec
une précision de 94.90%, si une application est malicieuse. Son analyse peut être faite di-
rectement sur un appareil mobile en moins d’une seconde et en utilisant seulement 12 Mo de
mémoire. L’avantage principal d’Andrana comparativement aux antivirus est qu’il est capa-
ble d’identifier des applications malicieuses connues et inconnues, alors que les antivirus ne
peuvent en général détecter que des applications malicieuses connues.

4.2 Abstract

In order to identify applications that are most likely to leak a user’s sensitive information
(i.e., malicious applications), we present in this chapter a malware detection tool for Android

1The published version is available at Springer via https://doi.org/10.1007/978-3-319-51966-1_2

84

called Andrana. Instead of relying on the more frequently used dynamic analysis, it leverages
static analysis and machine learning techniques to determine, with an accuracy of 94.90%, if
an application is malicious. Its analysis can be performed directly on a mobile device in less
than a second and using only 12 MB of memory. Compared to antiviruses, which mostly use
pattern matching algorithms to identify known malware (i.e., they look for specific sequences
of instructions), Andrana’s main advantage is that it can not only detect known malware and
their variations, but also unknown malware.

4.3 Introduction

Android’s domination of the mobile operating system market [1] has attracted the attention
of malware authors and researchers alike. In addition to its large user base, what makes
Android attractive to malware authors is that, contrarily to iOS users, Android users can
install applications from a wide variety of sources such as first and third-party application
markets (e.g., Google Play Store, Samsung Apps), torrents and direct downloads. Malware on
mobile devices can be damaging due to the large amounts of sensitive information that they
contain (e.g., emails, photos, banking information, location).

In order to protect users and their information, researchers have begun to develop malware
detection tools specifically for Android. Traditional approaches, such as the signature-based
and heuristics-based detection of antiviruses can only detect previously known attacks and
hence suffer from a low detection rate. One possible solution is to use Machine Learning
algorithms to determine which combinations of features (i.e. characteristics and properties of
an application) are typically present in malware. These algorithms learn to detect malware
by analyzing datasets of applications known to be malicious or benign.

The features used in Machine Learning are typically dynamically detected by executing the
application in a sandbox (an isolated environment where applications can be safely monitored)
where events are simulated [2, 3, 4]. This approach has two major problems, the first being
the time needed. Analyzing each malware takes between 10 and 15 minutes (depending on
the number of events sent to the simulator). The infrastructure required to keep such a tool
up-to-date needs to be of considerable size, as more than 60 000 applications are added to
Google’s Play Store each month [5]. The second problem is that this approach cannot take into
account all possible executions of the application, only those that happen in the time allocated.
Furthermore, sophisticated malwares can exploit this fact by stopping their malicious behavior
when they detect that the current execution is in a sandbox.

To address these issues, we built a new malware detection tool for Android called Andrana.
It uses static analysis to detect features, and Machine Learning algorithms to determine if
these features are sufficient to classify an application as a malware. Static analysis can be
performed quickly and directly on a mobile device. This means that no sandbox and no exter-

85

nal infrastructure is required. Also, because static analysis considers all possible executions,
it can detect attempts to evade analysis by the application. Andrana analyzes applications
in three steps. First, the application is disassembled to obtain its code. Then, using static
analysis, the application’s features are extracted. Finally, a classification algorithm decides
from the set of present features if the application is malicious.

One of the most important obstacle to static analysis is obfuscation. A code is obfuscated
to make it hard to understand and analyze while retaining its original semantics. Although
obfuscation has its legitimate uses (e.g., protection of intellectual property), it is often used by
malware authors in an attempt to hide the malicious behaviors of their applications. Andrana
can identify a number of obfuscation techniques and takes advantage of this information to
improve the precision of its analysis.

In summary, our contributions in this chapter are:

• We introduce Andrana, a malware detection tool able to quickly and accurately deter-
mine if an application is malicious (Section 4.5).

• We present the set of features that Andrana uses to classify applications. It includes the
obfuscation techniques used by the application (Section 4.6).

• We have trained and tested classifiers using different machine learning algorithms on
a dataset of approximately 5 000 applications. Our best classifier has an accuracy of
94.90% and a false negative rate of 1.59%. (Section 4.7).

• We report on two of our experiments to improve the overall accuracy and usability of
Andrana: (1) using string analysis tools to improve the detection rate of API calls, (2)
executing Andrana on a mobile device (Section 4.8).

4.4 Background on Android

Before presenting Andrana, we must first introduce a few Android-related concepts and ter-
minology, namely, the components of Android applications, Android’s permission system and
the structure of application packages.

4.4.1 Components

Android applications are composed of four types of components:

• Activities: An activity is a single, focused task that the user can do (e.g., send an
email, take a photo). Applications always have one main activity (i.e., the one that
is presented to the user when the application starts). An application can only do one
activity at a time.

86

• Services: A service is an application component that can perform operations in the
background (e.g., play music). Services that are started will continue to run in the
background, even if the user switches to another application.

• Intents: An intent is a message that can be transmitted to another component or
application. They are usually used to start an activity or a service.

• Content Providers: Content providers manage access to data. They provide a stan-
dard interface that allows data to be shared between processes. Android comes with
built-in content providers that manage data such as images, videos and contacts.

4.4.2 Permissions

Android uses a permission system to restrict the operations that applications can perform.
Android permissions are divided into two categories:

• Normal: Normal permissions are ones that cannot really harm the user, system or
other applications (e.g., change the wallpaper) and are automatically granted by the
system [6].

• Dangerous: Dangerous permissions are ones that involve the user’s private information
or that can affect the operation of other applications [7]. For example, the ability to
access the user’s contacts, internet or SMS are all considered to be dangerous permissions.
These permissions have to be explicitly granted by the user.

4.4.3 Application Packages

Android applications are packaged into a single .apk file which contains:

• Executable: Android applications are written in Java and compiled to Java bytecode
(.class files). The .class files are then translated to Dalvik bytecode and combined into
a single Dalvik executable file named classes.dex.

• Manifest: Every Android application is accompanied by a manifest file, named An-
droidManifest.xml, whose role is to specify the metadata of the application (e.g., title,
package name, icon, minimal API version required) as well as its components and re-
quested permissions.

• Certificate: Android applications must be signed with a certificate whose private key
is known only to its developers. The purpose of this certificate is to identify (and
distinguish) application authors.

• Assets: The assets used by the application (e.g., images, videos, libraries).

87

• Resources: They are additional content that the code uses such as user interface strings,
layouts and animation instructions.

4.5 Overview of Andrana

Figure 4.1: General flow of Andrana

Andrana analyzes applications in three steps: disassembly, feature extraction and classification
(see Figure 4.1).

Step 1: Disassembly

To analyze the code of the application and extract its features, we must first disassemble
it. Fortunately, Android applications are based on Java, which is easy to disassemble and
decompile. Moreover, Java forces multiple constraints on the structure of the code, which
prevents manipulations that could make static analysis less effective (e.g., explicit pointer
manipulations).

To disassemble the application, we use a tool called Apktool [8]. It converts Dalvik bytecode
into Smali [9], a more readable form of the bytecode.

Step 2: Feature Extraction

Once the application has been disassembled, its features are extracted using static analysis.
These features, presented in Section 4.6, are characteristics and properties that the classifier
will use in Step 3 to distinguish malicious from benign applications. It is the most computa-
tionally intensive step of the analysis.

Step 3: Classification

Finally, the detected features are fed to a binary classifier that classifies the application as
either “benign” or “malware”. To generate the most accurate classifier possible, we have tried
a variety of Machine Learning algorithms (see Section 4.7). They were trained and tested on
a dataset of approximately 5 000 applications.

The whole process takes on average 30 seconds and 280 MB of memory (see Figure 4.2) on
a desktop computer (Intel Core i5-4200U with 4 GB of RAM). We were able to produce

88

Figure 4.2: Analysis time and memory usage distributions.

an optimized Android version which utilizes a reduced set of significant features and whose
analysis takes on average less than a second and 12 MB of memory (see Section 4.8).

4.6 Feature Extraction

In this section, we present the features extracted by Andrana. These features characterize
the behavior of an application and are used by the classifier to determine if an application is
malicious or benign. In addition to the features that are typically extracted in similar tools
(see Section 4.9), such as requested permissions and API calls, Andrana also detects a number
of obfuscation techniques and tools used by the application.

4.6.1 Features Extracted from the Manifest and Certificate

Requested Permissions

We extract the permissions requested by the application from the manifest file. Certain
combinations of requested permissions can be indicative of a malicious intent. For example,
an application that requests permissions to access the microphone and start a service could
be covertly listening in on conversations.

Components

From the manifest file, we extract the application’s components and determine if the applica-
tion executes code in the background, which intents it listens to and which content providers
it accesses.

Invalid Certificate

We verify the validity of certificates using a utility called jarsigner [10]. An invalid certificate
indicates that the application has been tampered with.

89

4.6.2 Features Extracted from the Code

API Calls

We extract API calls from the code and, when possible, we also extract the value of their
parameters. The latter are useful, for example, when trying to detect the attempt to send an
email. This is done by looking for the function call Activity.startActivity("act=android.
intent.action.sendto dat=mailto:"). Andrana considers that this feature is present if there
is a call to this function and a string containing the value "act=android.intent.action.sendto
dat=mailto:" somewhere in the code.

Necessary Permissions

By analyzing the API functions used in the code, we extract the permissions that are actually
necessary to run the application. This allows to detect incongruities between the permissions
requested by the application and those needed. Missing permissions could indicate that the
application uses a root exploit to elevate its privileges during execution. To extract this
information, Andrana uses an exhaustive mapping between the API calls and their required
permissions. This mapping, which Google does not offer, is generated using PScout [11]. Note
that since PScout’s mapping is only an approximation, it may lead to false positives (i.e.,
reporting that there are missing permissions when, in fact, it is not true).

Obfuscation Techniques Used

We identify the obfuscation techniques possibly used by the application. The common tech-
niques are: renaming, reflection, encryption and dynamic loading [12]. Note that their presence
does not necessarily mean that the application uses obfuscation, only that it may have. It is
the role of the learning algorithm to consider this feature as important or not.

Renaming A simple way to obfuscate a code is to rename its packages, classes, methods and
variables. For example, a class “Car” could be renamed “diZx9cA” or “ ” (Java supports
unicode characters). This technique is particularly effective against human analysts as the
purpose of a class or method has to be guessed from its content. It also makes it harder to
recognize the method elsewhere in the code.

To detect the use of renaming, we exploit the fact that class names usually contain common
names (e.g., File, Car, User) and methods contain verbs (e.g., getInstance, setColor). Knowing
this, the first strategy of Andrana is to look for classes that have single-letter names (e.g.,
b.class). If there are many of them, then we assume that renaming has been used. If none
are found, then we use an n-gram-based language detection library [13] to detect the language
used to name the classes and functions of the application. If the result varies widely across
the application, then we assume that renaming has been used.

90

Reflection Reflection refers to the ability of the code to inspect itself at runtime. It can be
used to get information on available classes, methods, fields, etc. More importantly, it can also
be used to instantiate objects, invoke methods and access fields at runtime, without knowing
their names at compile time. For example, using reflection, an instance of ConnectivityManager
is created and method getActiveNetworkInfo is invoked in Listing 4.1.

Class c = Class.forName("android.net.ConnectivityManager");

Object o = c.newInstance()

Method m = c.getDeclaredMethod("getActiveNetworkInfo", ...);

method.invoke(o, null);

Listing 4.1: Instantiating an object and calling a function using reflection

The use of reflection itself can be detected easily, by looking for standard reflection API calls.

Encryption Encryption can be used to obfuscate the strings of the code. For instance,
it could be used to statically hide the names of classes instanced using reflection, as in the
following listing.

String className = decrypt(encryptedClassName);

Class c = Class.forName(className);

Listing 4.2: Instanciating an object of a statically unknown class using reflection

To detect the possible use of encryption, Andrana looks for standard cryptography API calls.

Dynamic Loading Java’s reflection API also allows developers to dynamically load code
(.apk, .dex, .jar or .class files). This code can be hidden in encrypted/compressed assets or
data arrays. However, to load this code, applications must use Android’s API getClassLoader
function. Once loaded, the reflection API must be used to access the classes, methods and
fields of the dynamically loaded code. Android applications can also dynamically load native
libraries through the Java Native Interface (JNI). This not only allows Java code to invoke
native functions, but also native code to invoke Java functions. According to Zhou et al. [14],
approximately 5% of Android applications invoke native code.

To detect the use of dynamic loading, Andrana looks for instances of classes DexClassLoader

and ClassLoader. To detect the use of native libraries, we look for calls to the API System.

loadLibrary. Note that, for the moment, Andrana only detects the use of dynamic loading
and native libraries: the libraries are not analyzed.

Commercial Obfuscation Tools

While developers can manually obfuscate the code themselves, most of them use commercially
available obfuscation tools. Andrana is able to detect the use of these tools using the techniques

91

described by Apvrille and Nigam [15]. The obfuscation tools that are currently detected are
ProGuard, DexGuard and APKProtect.

• ProGuard renames packages, classes, methods and variables using either the alphabet
(default behavior) or a dictionnary of words. ProGuard comes with the Android SDK
and runs automatically when building an application in release mode. As such, it is the
most popular obfuscation tool. Andrana can detect the use of ProGuard by looking for
strings such as "a/a/a->a" in smali code.

• DexGuard is the commercial version of ProGuard. It also renames the packages, classes,
methods and variables, but uses by default non-ASCII characters which reduces even
more the readability of the code. It also encrypts the strings present in the code. An-
drana detects the use of DexGuard by looking for names that contain non-ASCII char-
acters.

• APKProtect can be detected by searching for the string "apkrotect" in the .dex file.

Sandbox Detection

Certain malwares have the ability to deactivate their malicious behaviors when they detect
that they are in a sandbox. This may indicate a malicious intent, as it could invalidate the
results of a dynamic analysis. It does not affect static analyses, of course.

To detect the use of sandbox detection, we look for strings whose values are typically present
in Android sandboxes. Vidas and Christin [16] enumerate some of the most common ones.

Disassembly Failure

While disassembly works in most cases, it can sometimes fail. Disassembly failure clearly
indicates an attempt to thwart analysis. For this reason, it is part of our feature set.

4.7 Classification and Evaluation

In this section, we evaluate the performance of multiple Machine Learning algorithms.

4.7.1 Dataset

To train and test our algorithms, we have collected and analyzed a dataset of approximately
5 000 applications, 80% of which were malware. To avoid overfitting, the malware samples
were randomly selected from two repositories: Contagio [17] and Virus Share [18]. The benign
samples came from Google’s Play Store various "Top 25". We noted that 47% of the samples
used some kind of obfuscation.

92

Our dataset contains more malware samples than benign samples for two reasons. The main
reason is that it is hard to obtain benign applications. Indeed, while there are many repositories
of malicious Android applications, we found none that contained certified benign applications.
Had we taken a larger number of applications from the Play Store, we would have risked
introducing malicious samples into our dataset of benign samples. Another reason for using
more malware samples is that it has a desirable side effect on the learning algorithm: it will
lead the algorithm to try to make fewer bad classifications on this class. Hence, the number
of false negatives (i.e., applications classified as "benign" when they are in fact malicious) will
be naturally lower than the number of false positive.

4.7.2 Learning Algorithms

In order to obtain the best classifier possible, we have experimented with different learning
algorithms: Support Vector Machines (SVM), k-Nearest Neighbors (KNN), Decision Trees
(DT), Adaboost and Random Forest (RF).

Support Vector Machines (SVM) [19] is a learning algorithm that finds a maximal
margin hyperplane in the vector space induced by the examples. The SVM can also take into
account a kernel function, which encodes a notion of similarity between examples. Instead
of producing a linear classifier in the input space, the SVM can produce a linear classifier in
the space induced by the chosen kernel function. In our experiments, we use the Radial Basis
Function (RBF) kernel k(x, x′) = e−γ||x−x

′||22 , where γ is a parameter of the kernel function.
The SVM also considers a hyperparameter C that controls the trade-off between maximizing
the margin and permitting misclassification of training examples.

k-Nearest Neighbors (KNN) [20] is a learning algorithm that classifies a new data point
by considering the k most similar training examples and by choosing the most frequent label
among these examples. Here, k is a hyperparameter of the algorithm: different values of k
might give different results. The most similar examples are computed using any similarity
function, such as the Euclidean distance.

Decision Tree (DT) [21] is a learning algorithm that classifies examples by applying a
decision rule at each internal node. The label of the example is decided at a leaf of the
tree. Decision trees are learned by considering a measure of quality for a split such as the
Gini impurity or the entropy for the information gain. In our experiment, we use the Gini
impurity.

Adaboost [22] is an ensemble classifier, that considers many base classifiers and learns a
weighted combination of these classifiers. At each iteration, a new base classifier is chosen
(or generated) to focus on examples that are incorrectly classified by the current weighted

93

combination. The algorithm usually stops after a fixed number of iterations, or when the
maximum number of base classifiers is attained. This maximum number of base classifiers is
a hyperparameter of the algorithm.

Random Forest (RF) [23] is, similarly to adaboost, an ensemble classifier. It builds a
majority vote of decision tree classifiers, by considering sub-samples of the data and by con-
trolling the correlation between the trees. The number of trees or tree construction parameters
such as the maximal depth are hyperparameters of the algorithm.

4.7.3 Performance Metrics

To evaluate the performance of the resulting classifiers, we measured their True Positive Ratio
(TPR). It represents the proportion of malware applications that are correctly classified:

TPR =
TP

TP + FN

where TP is the number of malware applications that are correctly classified and FN is the
number of malware applications that are classified as “benign”. Similarly, we measured their
True Negative Ratio (TNR), which represents the proportion of benign application that are
correctly classified:

TNR =
TN

TN + FP
where TN is the number of benign applications that are correctly classified and FP is the
number of benign applications that are classified as “malware”. Finally, we measured their
overall accuracy, which represents the proportion of applications that are correctly classified:

Accuracy =
TP + TN

TP + TN + FP + FN
.

4.7.4 Evaluation

According to Hoeffding’s bound [24], with at least 600 test samples, the real risk is almost equal
to the risk on test with 95% confidence. Hence, we chose to use the following splitting scheme
in our experiments: 2/3 (∼ 3300 samples) for the training set and 1/3 (∼ 1700 samples) for the
testing set. For each algorithm, we chose the hyperparameters using a 5-folds cross-validation
on the training set and chose the hyperparameter values that optimized the accuracy. Ta-
ble 4.1 shows the hyperparameter values on which the cross-validation was performed for each
algorithm. Finally, we trained the algorithm using the whole training set, and predicted the
examples of the testing set. Note that all reported values are metrics calculated on the testing
set, containing examples that have not been seen during training time. Table 4.2 shows the
resulting accuracies for each algorithm.

We now discuss on whether an increase in the size of the training dataset can possibly improve
the learning algorithms’ performance. For this experiment, we first split the dataset into a

94

Learning Algorithm Hyperparameter Values
SVM C {0.001, 0.01, 0.1, 1, 10, 100, 1000}

γ {100, 10, 1.0, 0.1, 0.01, 0.001, 0.0001}
KNN k {1, 2, 3, 4, 5, 10, 15, 20, 25, 50, 100}
Decision Trees (DT) max_leaf_nodes {5, 10, 15, 20, 25, 30, 40, 50}

min_samples_leaf {1, 2, 3, 5, 10, 20}
AdaBoost n_estimators {5, 10, 25, 50, 100, 250, 500, 1000}
RandomForest (RF) n_estimators {2, 5, 10, 25, 50, 100, 500, 1000, 2000, 3000}

Table 4.1: Considered values for each hyperparameter, for each algorithm.

Learning Algorithm Accuracy% TPR% TNR%
SVM 94.72 98.64 78.43
KNN 94.11 97.74 79.06
Decision Trees (DT) 93.20 97.43 75.62
AdaBoost 94.11 98.26 76.87
RandomForest (RF) 94.90 98.41 80.31

Table 4.2: A comparison of the classifiers’ metrics, Accuracy, True Positive Ratio and True
Negative Ratio, using different machine learning algorithms.

Figure 4.3: The progression of true positives ratio and accuracy on the test set for different ra-
tios of training set and for each learning algorithm. It is calculated using the best configuration
of hyperparameters outputted by a 5-fold cross-validation.

training set (2/3) and a test set (1/3). Then, we followed the same procedure as above, but
applied exclusively to a ratio of the training set and without altering the test set. Figure 4.3
shows that an increase of the training ratio leads to a fluctuating improvement of the accuracy.
The non-monotonous behavior of the accuracy is a common occurrence in statistical learning
and is mainly caused by noise in the dataset. Still, one can see that the accuracy tends to
increase when the training ratio increases. So, we can expect a higher performance by using
a larger dataset.

95

4.8 Additional Experiments

This section presents the various experiments that we did in order to improve the overall
accuracy and usability of Andrana.

4.8.1 E1: Using String Analysis Tools

As previously mentionned, API calls can be invoked through reflection. To detect those calls,
we look for their class and method names in the strings of the code. Of course, strings are
not necessarily hard coded, they can also be dynamically built. For instance, in Figure 4.3,
the class instantiated could be either "java.lang.String" or "java.lang.Integer".

String a = "java.lang.";

String b;

if (random) { b = "String"; } else { b = "Integer"; }

String className = a + b;

Class c = Class.forName(className);

Object o = c.newInstance();

Listing 4.3: Dynamically built class name

To take into account cases where the class and/or function names are dynamically created,
we have experimented with a tool called Java String Analyzer (JSA) [25, 26]. JSA performs a
static analysis of Java programs to predict the possible values of string variables. This allows
us to determine that the possible values for the string variable className in Listing 4.3 are
{"java.lang.String", "java.lang.Integer"}.

However, JSA is not able to analyze entire Android applications in a reasonable time or without
running out of memory. Li et al. [27] encountered similar problems with JSA and hypothesize
that this problem is due to the fact that it uses a variable-pair-based method to do the global
inter-procedural aliasing analysis. This method has an O(n2) memory complexity, where n is
the number of variables in the application.

We have also experimented with another string analysis tool called Violist [27]. While it is
considerably faster than JSA and can actually be used to analyze Android applications, it still
requires too much time (around 4 minutes) and resources (up to 2.4 GB of memory) for our
purpose: the analysis has to be executable on a mobile device. Furthermore, in our test on 10
applications that used reflection, it did not lead to the detection of additional features. For
these reasons, we chose to not use them in Andrana. Besides, as seen in the previous section,
it turns out that a precise string analysis is not required to accurately classify applications.
This is because Andrana uses a wide variety of features to classify applications, some of which
are not affected by obfuscation techniques (e.g., permissions, certificate, disassembly failure).

96

Figure 4.4: Andrana’s interface on Android.

4.8.2 E2: Executing Andrana on a Mobile Device

Mobile devices generally have low computing power and memory compared to desktop com-
puters. Consequently, if Andrana is to run directly on such devices, it must be very efficient.
To evaluate Andrana’s runtime performance on mobile devices, we have implemented a ver-
sion of it for Android (see Figure 4.4). In order to minimize Andrana’s analysis time on
Android, we chose to use the decision tree as the classifier. As previously shown, it is accurate
(93.20%) and requires only a small subset of our features to classify applications (between 3
and 9 features). We also optimized Andrana’s Android version so that it uses as little memory
as possible. We analyzed 150 randomly selected applications from our dataset on a Nexus
5X and, on average, the analysis took only 814 milliseconds and 12 MB of memory, much
quicker than our desktop version which extracts all features. Besides its performance, another
advantage of using the decision tree classifier is that it is simple to understand and interpret.

4.9 Related Work

Research on malware detection tools for Android has been very active in recent years. We
present in this section the approaches that are most similar to ours.

Static Malware Detection Tools for Android

Sato et al. [28] present a method to calculate the malignancy score of an application based
entirely on the information found in its manifest file. Namely, the permissions requested, intent
filters (their action, category and priority), number of permissions defined and application
name. They trained their classifier on a dataset of 365 samples and report an accuracy of
90%.

Aafer et al. [29] present a classifier, named DroidAPIMiner, that uses the API calls present
in the code of the application to determine whether an application is benign or malicious.
To determine the most relevant API calls for malware detection, they statically analyzed a

97

large corpus of malware and looked at the most frequent API calls. They report a maximum
accuracy of 99% using a KNN classifier.

Arp et al. [30] present another classifier, named Drebin, which uses statically detected features.
Namely, they extract the hardware components (e.g., GPS, camera, microphone) used by
the application by looking at the permissions requested in the manifest file, the requested
permissions, the API calls present in the code, IP addresses and URLs found in the code.
They use the SVM machine learning algorithm to produce a classifier. It has an accuracy of
approximately 94%. Their Android implementation requires, on average, 10 seconds to return
a result.

Since the datasets used in these approaches are not actually available for analysis, we cannot
directly compare their performance with Andrana’s. We also do not know if their samples
were as heavily obfuscated as ours. All we can say is that Andrana seems to equal them in
terms of accuracy and surpass them in terms of speed. We expect that by using a larger
dataset of applications, like the 20 000 used by DroidAPIMiner, we could improve even more
our accuracy. So that others may compare their results with ours, our dataset is available
online [31].

There are also various antiviruses available on Google’s Play Store (e.g., AVG, Norton, Avira).
Antiviruses mostly use pattern matching algorithms to identify known malware (i.e., they look
for specific sequences of instructions). This means that different patterns must be used to
detect variations of the same malware. Andrana’s main advantage over antiviruses is that it
can not only detect known malware and their variations, but also unknown malware.

Dynamic and Hybrid Malware Detection Tools for Android

Crowdroid [32], Andromaly [33] and MADAM [34] detect malware infections by looking for
anomalous behavior. To detect anomalies, they monitor system metrics such as CPU con-
sumption, number of running processes, number of packets sent through WiFi and/or the API
calls performed at runtime by an application. Machine learning techniques are then used to
distinguish standard behaviors from those of an infected device.

DroidRanger [14] use both static and dynamic analysis to perform a large-scale study of several
application markets. Instead of using machine learning techniques to automatically learn to
classify applications, they use a variety of heuristics. Using their tool, they were able to
identify 211 malicious applications present on the markets, 32 of which were on Google’s Play
Store.

DroidDolphin [35] inserts a monitor into applications to log their API calls and then exe-
cutes them. The authors generate a classifier using this information and a dataset of 34 000
applications. They report an accuracy of 86.1%.

98

Andrubis [4] and its successor Marvin [3] uses approximately 500 000 features, detected using
a combination of static and dynamic analyses, to train and test their classifier on a dataset of
over 135 000 applications. They report an accuracy of 98.24%.

Andrana’s main advantages over these approaches are that it introduces no runtime overhead
and that its analysis can be performed on the user’s mobile device, very quickly.

4.10 Conclusion

In this chapter, we have presented Andrana, a lightweight malware detection tool for Android.
It uses static analysis to extract an application’s features and then uses a classifier to determine
if it is benign or malicious. We have trained and tested multiple classifiers using a variety
of Machine Learning algorithms and a dataset of approximately 5 000 applications, 4 000 of
which were malwares. The dataset is available online [31]. Its samples came from multiple
sources to avoid overfitting. Our best classifier has an accuracy of 94.90% and a false negative
rate of 1.59%, which is comparable to other similar tools. As indicated by the upward trends
of Figure 4.3, the use of larger datasets should lead to even higher accuracies.

As almost half of our dataset used reflection, we considered using two string analysis tools,
JSA and Violist, to improve the detection rate of our features, but their use turned out to be
computationally too expensive for our purpose.

We have implemented a version of Andrana for Android and our tests reveal that, on average,
it can analyze applications in less than a second using only 12 MB of memory, faster and more
efficiently than any similar tools. Since our implementation uses a decision tree as its classifier,
users can easily understand what lead the application to be classified as malware/benign.

Acknowledgments

We would like to thank François Laviolette for his suggestions and Souad El Hatib for her
help with the string analysis tools. This project was funded by Thales and the NSERC.

4.11 Bibliography

[1] “Smartphone os market share, q1 2015,” 2015, accessed July 7, 2016. Available:
http://www.idc.com/prodserv/smartphone-os-market-share.jsp

[2] A. Atzeni, T. Su, M. Baltatu, R. D’Alessandro, and G. Pessiva, “How dangerous is your
android app?: an evaluation methodology,” in Proceedings of the 11th International Con-
ference on Mobile and Ubiquitous Systems: Computing, Networking and Services. ICST
(Institute for Computer Sciences, Social-Informatics and Telecommunications Engineer-
ing), 2014, pp. 130–139.

99

[3] M. Lindorfer, M. Neugschwandtner, and C. Platzer, “Marvin: Efficient and comprehensive
mobile app classification through static and dynamic analysis,” in Computer Software and
Applications Conference (COMPSAC), 39th Annual, vol. 2. IEEE, 2015, pp. 422–433.

[4] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. Fratantonio, V. Van Der Veen,
and C. Platzer, “Andrubis–1,000,000 apps later: A view on current android malware
behaviors,” in 2014 Third International Workshop on Building Analysis Datasets and
Gathering Experience Returns for Security (BADGERS). IEEE, 2014, pp. 3–17.

[5] “Appbrain,” accessed July 18, 2016. Available: http://www.appbrain.com/stats/
number-of-android-apps

[6] “Android operating system security,” accessed July 5, 2016. Available: http:
//developer.android.com/guide/topics/security/permissions.html

[7] “Permissions classified as dangerous,” accessed July 5, 2016. Available: http:
//developer.android.com/guide/topics/security/permissions.html#normal-dangerous

[8] “Apktool,” accessed July 5, 2016. Available: https://ibotpeaches.github.io/Apktool/

[9] “Smali/baksmali,” accessed July 20, 2016. Available: https://github.com/JesusFreke/
smali

[10] “jarsigner,” accessed September 13, 2018. Available: https://docs.oracle.com/javase/7/
docs/technotes/tools/windows/jarsigner.html

[11] “Pscout,” accessed July 5, 2016. Available: https://github.com/dweinstein/pscout

[12] D. Maiorca, D. Ariu, I. Corona, M. Aresu, and G. Giacinto, “Stealth attacks: An extended
insight into the obfuscation effects on android malware,” Computers & Security, vol. 51,
pp. 16–31, 2015.

[13] “Language detection library,” accessed July 5, 2016. Available: https://github.com/
shuyo/language-detection

[14] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you, get off of my market: Detecting
malicious apps in official and alternative android markets.” in NDSS, vol. 25, 2012, pp.
50–52.

[15] A. Apvrille and R. Nigam, “Obfuscation in android malware, and how to fight back,”
Virus Bull, pp. 1–10, 2014.

[16] T. Vidas and N. Christin, “Evading android runtime analysis via sandbox detection,” in
Proceedings of the 9th ACM symposium on Information, computer and communications
security. ACM, 2014, pp. 447–458.

100

[17] “Contagio,” accessed July 16, 2016. Available: http://contagiominidump.blogspot.ca/

[18] “Virus share,” accessed July 14, 2016. Available: https://virusshare.com/

[19] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20, no. 3,
pp. 273–297, 1995. Available: http://dx.doi.org/10.1007/BF00994018

[20] P. Cunningham and S. J. Delany, “k-nearest neighbour classifiers,” Multiple Classifier
Systems, pp. 1–17, 2007.

[21] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification and regression
trees. CRC press, 1984.

[22] R. E. Schapire and Y. Singer, “Improved boosting using confidence-rated predictions,”
Machine Learning, vol. 37, no. 3, pp. 297–336, 1999.

[23] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.

[24] W. Hoeffding, “Probability inequalities for sums of bounded random variables,” Journal
of the American statistical association, vol. 58, no. 301, pp. 13–30, 1963.

[25] A. S. Christensen, A. Møller, and M. I. Schwartzbach, Precise analysis of string expres-
sions. Springer, 2003.

[26] “Java string analyzer (jsa),” accessed July 5, 2016. Available: http://www.brics.dk/JSA/

[27] D. Li, Y. Lyu, M. Wan, and W. G. Halfond, “String analysis for java and android ap-
plications,” in Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering. ACM, 2015, pp. 661–672.

[28] R. Sato, D. Chiba, and S. Goto, “Detecting android malware by analyzing manifest files,”
Proc. of the Asia-Pacific Advanced Network, vol. 36, pp. 23–31, 2013.

[29] Y. Aafer, W. Du, and H. Yin, “Droidapiminer: Mining api-level features for robust mal-
ware detection in android,” in Sec. and Priv. in Comm. Networks. Springer, 2013, pp.
86–103.

[30] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, K. Rieck, and C. Siemens, “Drebin:
Effective and explainable detection of android malware in your pocket,” in Proc. of the
Annual Symposium on Network and Distributed System Security (NDSS), 2014.

[31] “Lsfm,” accessed September 30, 2016. Available: http://lsfm.ift.ulaval.ca/recherche/
andrana/

[32] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid: behavior-based malware
detection system for android,” in Proceedings of the 1st ACM workshop on Security and
privacy in smartphones and mobile devices. ACM, 2011, pp. 15–26.

101

[33] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss, “ “andromaly”: a behavioral
malware detection framework for android devices,” Journal of Intelligent Information
Systems, vol. 38, no. 1, pp. 161–190, 2012.

[34] G. Dini, F. Martinelli, A. Saracino, and D. Sgandurra, “Madam: a multi-level anomaly
detector for android malware,” in International Conference on Mathematical Methods,
Models, and Architectures for Computer Network Security. Springer, 2012, pp. 240–253.

[35] W.-C. Wu and S.-H. Hung, “Droiddolphin: a dynamic android malware detection frame-
work using big data and machine learning,” in Proceedings of the 2014 Conference on
Research in Adaptive and Convergent Systems. ACM, 2014, pp. 247–252.

102

Chapter 5

Information-Flow Control with Fading
Labels

Author: Andrew Bedford

Conference: International Conference on Privacy, Security and Trust (PST)

Status: peer reviewed; published1; presented

Year: 2017

5.1 Résumé

Les mécanismes de contrôle des flots d’information existants utilisent généralement la même
quantité de ressources pour protéger les informations de divers niveaux. Toutefois, dans les
systèmes où les ressources sont plus limitées, il peut être plus approprié d’utiliser plus de
ressources pour protéger l’information qui est plus importante, et moins de ressources pour
protéger l’information qui est moins importante. Pour adresser ce problème, nous introduisons
dans ce chapitre le concept d’étiquettes disparaissente (fading labels en anglais).

Les étiquettes disparaissente sont des étiquettes qui cessent de se propager après un nombre
fixe d’utilisation. En paramétrant les mécanismes de façon que les étiquettes qui sont as-
sociées à de l’information importante disparaissent plus lentement que celles associées à de
l’information moins importante, elles permettent aux mécanismes d’utiliser plus de ressources
pour traquer et contrôler l’information importante. Les mécanismes qui utilisent ces étiquettes
n’appliqueront pas toujours la noninterférence étant donné que des fuites d’information peu-
vent se produire une fois que l’étiquette a disparu. Ce que ces mécanismes appliquent comme
politique de sécurité est plutôt une variation de la noninterférence que nous avons nommée la
depth-limited noninterference et que nous introduisons dans ce chapitre.

1The published version is available via http://doi.ieeecomputersociety.org/10.1109/PST.2017.00053

103

5.2 Abstract

Existing information-flow control mechanisms usually invest the same amount of resources to
protect information of varying importance. However, in systems where resources are limited,
it may be more appropriate to spend more resources to protect information that is more
important (e.g., passwords), and less resources to protect information that is less important
(e.g., current location). To address this issue, we introduce the concept of fading labels.

Fading labels are labels whose taint stops propagating after a fixed amount of uses (i.e., they
fade away). By parameterizing mechanisms so that labels associated to important information
fade away more slowly than those associated to less important information, they allow mech-
anisms to use more resources to track important information than other information. Since
leaks of information may occur once a label fades away, mechanisms that use them may not
always enforce noninterference. What they do enforce is a relaxed version of noninterference,
called depth-limited noninterference, which we also introduce in this chapter.

5.3 Introduction

Information-flow control mechanisms are mechanisms that enforce information-flow policies
(e.g., information from a top secret file should not be sent over the network). This is usually
done by associating sensitive information with a label, which is then propagated whenever the
information is used; a process called tainting.

These mechanisms, be they static [1], dynamic [2] or hybrid [3], generally invest the same
amount of resources to protect information of varying importance. However, in systems where
ressources are limited such as smartphones and tablets, it may be more appropriate to spend
more resources to protect information that is more important (e.g., passwords), and less
resources to protect information that is less important (e.g., current location).

For this reason, we introduce in this chapter the concept of fading labels. They are labels
whose taint stops propagating after a fixed amount of uses. They allow mechanisms to use
more resources to track important information than other information.

Contributions

• We introduce the concept of fading labels in Section 5.4 and a relaxed version of nonin-
terference called depth-limited noninterference in Section 5.5.

• We provide an example of a mechanism that uses fading labels in Section 5.6.

• We discuss their advantages, disadvantages and possible variations in Section 5.7.

104

5.4 Fading Labels

To illustrate the concept, consider the program of Listing 5.1.

read value from privateFile;

w := 0;

x := value + 1;

x’ := value + 2;

y := x mod 3;

z := y * 4;

write z to publicFile

Listing 5.1: Derived values

Normally, variable value and all of its derivatives (i.e., variables x, x’, y, z) would be tainted
with privateFile’s label. This approach leads to the tainting of increasingly large portions of
programs over time; a problem known as taint creep.

The more a program is tainted, the more resources will be needed by the mechanism. This is
especially true if the mechanism needs to perform additional computations to prevent leaks
through covert channels, such as calling a termination oracle to prevent progress leaks [4]
or executing dummy operations to prevent timing leaks [5]. Hence, in order to reduce the
amount of resources required, we chose to reduce the number of tainted variables. So that the
security of sensitive information is not compromised too much, we chose to do so by limiting
the depth at which a taint is propagated. For example, in Listing 5.1, variable z is derived
from y, which is derived from x, which is derived from value (illustrated in Fig. 5.1). For
this reason, relative to value, x is at depth 1, y is at depth 2 where privateFile’s label stops
being propagated, and z is at depth 3. The idea is to parametrize mechanisms so that labels
associated to important information are propagated more deeply than those associated to less
important information.

For our purposes, we assume that the levels of information are organized in a finite lattice
(L,v) which contains at least two elements: L for the bottom of the lattice (least important)
and H for the top of the lattice (most important), i.e. ∀l ∈ L, L v l ∧ l v H. To each
level l ∈ L is assigned an integer maxDepth(l) representing the maximum propagation depth.
Note that alternatively, the maximum propagation depth can be associated to channels of
information rather than their level. So there could be a channel of level H and depth 5, and
another one of depth 500.

We can formally define fading labels as sets of couples where the first element is the level of
information and the second element is a counter that keeps track of the depth:

(fading labels) ` ::= P(L × N)

105

Each time the label is propagated, its counters are decremented. Once a counter reaches 0
(e.g., y in Fig. 5.1), then the couple is removed from the set. We use sets because in our
context, a variable can be tainted with more than one element of the lattice. For example, if
we have an assignment a := b + c where b:{(H, 8)} and c:{(M ,10)}, then a:{(H,7),(M ,9)}.
Note that if c:{(M ,7)}, then a:{(H,7)} because M v H and the remaining depth of H is
greater or equal than M ’s.

Figure 5.1: PDG-like representation of Listing 5.1

5.5 Depth-Limited Noninterference

Noninterference [6] is the security policy that is enforced by most information-flow mecha-
nisms. Intuitively, it states that private information should not influence (interfere with) the
publicly observable behavior of a program. More formally, it states that there should not
be information-flows from inputs of level l1 to outputs of level l2 if l1 6v l2. Since fading
labels stop propagating after a certain point to reduce resource-usage, mechanisms that use
them do not necessarily satisfy noninterference. What they do satisfy is a relaxed version of
noninterference that we call depth-limited noninterference.

In order to define depth-limited noninterference, we use program dependence graphs (PDG).
They are a visual representation of information flows that can occur in a program. Each node
represents a program statement or expression and there are two kinds of edges:

• Data dependence (a.k.a. explicit flows): An edge x −→ y means that statement x assigns

106

a variable that is used in statement y.

• Control dependence (a.k.a. implicit flows): An edge x 99K y means that the execution of
y depends of the value of expression x (typically the condition of an if/while command).

If there is a path from node x to node y, it means that information can flow from x to y. So if
there are no paths from private inputs to public outputs, then the program is noninterferent.
Consequently, PDG-based mechanisms such as Hammer et al. [7] enforce noninterference by
searching for such paths, no matter their length. This would reveal that the program in
Listing 5.1 does not satisfy noninterference as there is a path from value (private input) to z

(public output).

Depth-limited noninterference is essentially the same thing, but the verified paths have a
maximum length. For example, since the maximum depth of H-level information is set to 2
in Fig. 5.1, the program would satisfy depth-limited noninterference.

5.6 Example of a Mechanism

In this section, we present an example of a dynamic information-flow control mechanism that
uses fading labels. The mechanism enforces policies on programs written in an imperative
language that has commands for receiving and sending information. The language is based
on the one used by Bedford et al. [8].

5.6.1 Syntax

Let V be a set of identifiers for variables, and C a set of predefined communication channels.
The syntax is as follows.

(variables) x ∈ V
(channels) c ∈ C
(integer constants) n ∈ Z
(expressions) e ::= x | n | e1 op e2 |
(commands) cmd ::= skip | x := e | cmd1; cmd2 |

if e then cmd1 else cmd2 end |
while e do cmd end |
read x from c | write x to c

Values are integers, we use zero for false and nonzero for true. The symbol op stands for
arithmetic or logic binary operators on integers.

We suppose that the interaction of a program with its environment (which can be a user
or another program) is done through channels. Channels can be, for example, files, users,

107

network channels, keyboards, computer screens, etc. Without loss of generality, we consider
that each channel consists of one value. Command read x from c reads the current value
in channel c (without modifying the channel’s content) and assigns its value to variable x.
Command write x to c writes the value of variable x to channel c and overwrites the current
value in the channel. The security levels of these channels is determined in advance by some
security administrator. We use levelOfChan(c) to denote the security level of channel c.

5.6.2 Semantics

A memory m : V] C → Z is a partial map from variables and channels to values, where
the value of a channel is the last value sent to this channel. More precisely a memory is the
disjoint union (]) of two partial maps of the following form:

mv : V → Z, mc : C → Z,

We omit the subscript whenever the context is clear. We write m(e) = v to indicate that the
evaluation of expression e under memory m returns v.

The semantics of the language is illustrated in Fig. 5.2. Note that the semantics of the
sequence, skip, conditional and loop commands are omitted for brevity; they correspond to the
usual definitions. Program configurations are tuples 〈cmd ,Γ,m, o〉 where cmd is the command
to be evaluated, Γ is the current typing environment (i.e., maps variables to labels), m is the
current memory and o is the current output trace. A transition between two configurations
is denoted by the −→ symbol. We write −→∗ for the reflexive transitive closure of the −→
relation.

We write v :: vs for sequences where v is the first element of the sequence, and vs is the rest
of the sequence. We write ε for the empty sequence. An output trace is a sequence of output
events: it is of the form o = (v0, c0) :: (v1, c1) :: . . . where vk ∈ Z is an integer value, and
chk ∈ C is a channel, k ∈ N. The rule for writing a value appends a new output event to
the end of the trace. We abuse notation and write o :: (v, c) to indicate that event (v, c) is
appended to trace o.

5.6.3 Mechanism

The techniques used to prevent explicit flows are well known and used here [9]. Preventing
implicit flows is not necessary to illustrate the approach, hence they are not taken into account
in this mechanism. This leaves three noteworthy rules:

(Read): Reads the current value in channel c and assigns its value to variable x. The label
of x corresponds to the level of c and maximum propagation depth associated to the level of
channel c.

108

(Read)
m(c) = v c ∈ C levelOfChan(c) = lc maxDepth(lc) = d

〈read x from c,Γ,m, o〉−→〈skip,Γ[x 7→(lc, d)],m[x 7→v], o〉

(Assign)
levelΓ, e = `e `′e = {(le, de − 1) | (le, de) ∈ `e ∧ de − 1 > 0} m(e) = v

〈x := e,Γ,m, o〉−→〈skip,Γ[x 7→ `′e],m[x 7→ v], o〉

(Write)

m(x) = v c ∈ C levelOfChan(c) = lc lx =
⊔

(l,d)∈Γ(x)

l lx v lc

〈write x to c,Γ,m, o〉−→〈skip,Γ,m[c 7→v], o :: (v, c))〉

Figure 5.2: Semantics of the read, assign and write commands when using fading labels

(Assign): Assigns the value of expression e to variable x. It also propagates the labels
of variables found in expression e. Function levelΓ, e returns the union of the labels of all
variables in expression e. This set is then filtered to remove elements which have faded away.
That is, those for which the counter has reached 0.

(Write): Writes the current value of x in channel c, provided that x’s level is lower than
c’s. This is to prevent sensitive information from being leaked. Variable lx corresponds to the
supremum of all levels found in x’s label (i.e., Γ(x)).

5.7 Discussion

5.7.1 Advantages

The use of fading labels increases the usability of information-flow control mechanisms by
lowering the amount of resources needed and by increasing its permissiveness. It provides
users with an easy way to parametrize mechanisms so that more resources are used to track
important information and less resources are used to track less important information. Fur-
thermore, since fading labels are similar to regular labels, they can easily be integrated into
existing mechanisms.

A similar effect could be attained using multiple enforcement mechanisms and regular labels:
there could be one mechanism per level of information and their precision could vary in
function of this level. However, compared to fading labels, the simultaneous use of multiple
enforcement mechanisms would introduce a significant runtime overhead.

Depth-limited noninterference is useful in scenarios where it is too costly to verify that a
program satisfies noninterference and where an approximation is sufficient. For example,
verifying concurrent programs is costly because every possible interleaving of events has to be
considered. Depth-limited noninterference restricts the length of information-flow paths that
have to be checked and hence reduces the cost of verification.

109

5.7.2 Disadvantages

While the use of fading labels increases the usability of information-flow control mechanisms, it
also reduces their security; leaks of sensitive information may occur. In particular, a malicious
application that is aware that it is being monitored by a mechanism which uses fading-labels
could circumvent the mechanism and leak sensitive information (e.g., by inserting long depen-
dence paths).

Another disadvantage is that there is no easy way to determine the “right” amount of uses after
which a label should stop being propagated; it depends on the application being analyzed and
the user’s needs. Static analysis could be used to suggest values that help reduce the overhead
introduced by the mechanism, while keeping the number of leaks to a minimum. This could
be done by calculating the percentage of input variables that are tracked end-to-end. That is,
the percentage of input variables of level ` for which there are no paths of length greater than
maxDepth(`) that lead to an output variable of lower level.

5.7.3 Variations

Here are a few interesting variations of the idea.

Time-Based Fading Labels

Instead of parameterizing fading labels with taint depths, timespans could be used so that
the propagation stops after a certain amount of time. While this would not exactly respect
depth-limited noninterference, it could be more intuitive to some users.

Usage-Based Fading Labels

Based on the observation that the further a variable is from the original source of sensitive
information, the more likely it is that it will have lost information, our proposal in Section 5.4
decreases the counter each time the taint is propagated. However, this observation may not
always be true. A safer alternative would be to decrease the counter only when non inversible
operations are used (e.g., modulo operation). That is, only when we are sure that information
is lost. This idea is closely related to the work in quantification [10], which aims at quantifying
how much information is leaked by a program or output.

Probabilistic Fading Labels

Fading labels as defined in Section 5.4 stop propagating their taints once a certain depth has
been reached. Another idea would be to parametrize fading labels with probabilities so that
low-level variables have a low probability of propagating their taint, and high-level variables
have a high probability.

110

5.7.4 Related Work

As far as we know, we are the first to propose a way to vary the amount of resources used by
enforcement mechanisms by level of information. That being said, to reduce the amount of
resources, fading labels automatically downgrades labels, a process known as declassification.
Declassification is widely studied in language-based security [11]. While we use it as a way
to reduce the amount of resources, it is typically used as a way to safely release sensitive
information.

Sabelfeld et al. [9] introduces a notion called delimited release which stipulates that information
may only be declassified via declassify commands which must be manually inserted into the
code. Fading labels on the other hand automatically declassify information.

Kozyri et al. [12] propose to use automatons as labels. The automaton’s state determines how
the content of a variable can be used. Fading labels could be seen as a specific (and simpler)
instance of this.

5.7.5 Future Work

We intend to use fading labels in an information-flow mechanism for Android. This will
allow us to see how the idea holds in realistic scenarios. More specifically, we will empirically
evaluate the performance of mechanisms with and without fading labels.

5.8 Bibliography

[1] D. M. Volpano, C. E. Irvine, and G. Smith, “A sound type system for secure flow
analysis,” Journal of Computer Security, vol. 4, no. 2/3, pp. 167–188, 1996. Available:
http://dx.doi.org/10.3233/JCS-1996-42-304

[2] T. H. Austin and C. Flanagan, “Efficient purely-dynamic information flow analysis,”
in Proceedings of the 2009 Workshop on Programming Languages and Analysis for
Security, PLAS 2009, Dublin, Ireland, 15-21 June, 2009, 2009, pp. 113–124. Available:
http://doi.acm.org/10.1145/1554339.1554353

[3] A. Bedford, J. Desharnais, T. G. Godonou, and N. Tawbi, “Enforcing information
flow by combining static and dynamic analysis,” in Foundations and Practice
of Security - 6th International Symposium, FPS 2013, La Rochelle, France,
October 21-22, 2013, Revised Selected Papers, 2013, pp. 83–101. Available:
https://doi.org/10.1007/978-3-319-05302-8_6

[4] S. Moore, A. Askarov, and S. Chong, “Precise enforcement of progress-sensitive
security,” in the ACM Conference on Computer and Communications Security,

111

CCS’12, Raleigh, NC, USA, October 16-18, 2012, 2012, pp. 881–893. Available:
http://doi.acm.org/10.1145/2382196.2382289

[5] J. Agat, “Transforming out timing leaks,” in POPL 2000, Proceedings of the
27th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
Boston, Massachusetts, USA, January 19-21, 2000, 2000, pp. 40–53. Available:
http://doi.acm.org/10.1145/325694.325702

[6] J. A. Goguen and J. Meseguer, “Security policies and security models,” in 1982 IEEE
Symposium on Security and Privacy, Oakland, CA, USA, April 26-28, 1982, 1982, pp.
11–20. Available: https://doi.org/10.1109/SP.1982.10014

[7] C. Hammer and G. Snelting, “Flow-sensitive, context-sensitive, and object-sensitive
information flow control based on program dependence graphs,” Int. J. Inf. Sec., vol. 8,
no. 6, pp. 399–422, 2009. Available: http://dx.doi.org/10.1007/s10207-009-0086-1

[8] A. Bedford, S. Chong, J. Desharnais, and N. Tawbi, “A progress-sensitive flow-
sensitive inlined information-flow control monitor,” in ICT Systems Security and
Privacy Protection - 31st IFIP TC 11 International Conference, SEC 2016, Ghent,
Belgium, May 30 - June 1, 2016, Proceedings, 2016, pp. 352–366. Available:
http://dx.doi.org/10.1007/978-3-319-33630-5_24

[9] A. Sabelfeld and A. C. Myers, “A model for delimited information release,” in ISSS, ser.
Lecture Notes in Computer Science, vol. 3233. Springer, 2003, pp. 174–191.

[10] G. Smith, “Recent developments in quantitative information flow (invited tutorial),”
in 30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
2015, Kyoto, Japan, July 6-10, 2015, 2015, pp. 23–31. Available: http:
//dx.doi.org/10.1109/LICS.2015.13

[11] A. Sabelfeld and D. Sands, “Declassification: Dimensions and principles,” Journal
of Computer Security, vol. 17, no. 5, pp. 517–548, 2009. Available: http:
//dx.doi.org/10.3233/JCS-2009-0352

[12] E. Kozyri, O. Arden, A. C. Myers, and F. B. Schneider, “Jrif: Reactive information flow
control for java,” Tech. Rep., 2016. Available: https://ecommons.cornell.edu/handle/
1813/41194

112

Chapter 6

Towards Automatically Generating
Information-Flow Mechanisms

Author: Andrew Bedford

Conference: ACM SIGPLAN Symposium on Principles of Programming Languages Student
Research Competition (POPL SRC)

Status: peer reviewed; presented

Year: 2018

6.1 Résumé

Développer des mécanismes de contrôle des flots d’information peut être une tâche difficile dû
aux nombreux flots d’information à considérer. Une partie de ce problème vient du fait que les
techniques pour prévenir les flots explicites et implicites doivent être appliquées manuellement
lors de la conception de nouveaux mécanismes.

Afin de rendre cette tâche plus facile et réduire le risque d’erreur, nous présentons dans ce
chapitre un outil appelé Ott-IFC qui, étant donné la spécification d’un langage de program-
mation, est capable d’appliquer automatiquement ces techniques pour générer la spécification
d’un mécanisme de contrôle des flots d’information. Plus particulièrement, il analyse la syn-
taxe et sémantique d’un langage de programmation impératif sur lequel on veut appliquer la
noninterférence et génère la sémantique d’un moniteur de sécurité hybride en utilisant des
règles de réécriture.

113

6.2 Abstract

Developing information-flow control mechanisms can be a difficult and time-consuming task
due to the numerous and subtle ways through which information may flow in a program. Part
of the problem comes from the fact that, while techniques to prevent insecure explicit and
implicit flows are well known and widely used, they still need to be applied manually when
designing new mechanisms.

In order to make this task less laborious, we present in this chapter a tool called Ott-IFC that
can, given a programming language’s specification, automatically apply those techniques and
generate information-flow control mechanism specifications. More specifically, it analyzes the
syntax and semantics of an imperative programming language on which we want to enforce
noninterference, and uses rewriting rules to generate a hybrid runtime monitor’s semantics.

6.3 Introduction

Modern operating systems rely mostly on access-control mechanisms to protect users infor-
mation. However, access control mechanisms are insufficient as they cannot regulate the
propagation of information once it has been released for processing. To address this issue, a
research trend called language-based information-flow security [1] has emerged. The idea is to
use techniques from programming languages, such as program analysis, monitoring, rewriting
and type checking, to enforce information-flow policies (e.g., information from a private file
should not be saved in a public file). Mechanisms that enforce such policies (e.g., [2, 3, 4, 5])
are called information-flow control mechanisms.

Most information-flow control mechanisms seek to enforce a policy called noninterference [6],
which essentially states that private information may not interfere with the publicly observable
behavior of a program. To enforce noninterference, a mechanism must take into account two
types of information flows: explicit flows and implicit flows [7].

An insecure explicit information flow occurs when private information influences public infor-
mation through a data dependency. For example in Listing 6.1, the value that is written to
publicFile depends on the value of x, which in turn depends on the value of privateValue.
Hence, any output of x will reveal something about privateValue.

x := privateValue + 42;

write x to publicFile

Listing 6.1: Insecure explicit flow

Explicit flows can be prevented by associating labels to sensitive information and propagating
them whenever the information is used; a process known as tainting.

An insecure implicit information flow occurs when private information influences public infor-

114

mation through the control-flow of the application. For example in Listing 6.2, the value that
is written to publicFile depends on the condition privateValue > 0.

if (privateValue > 0) then
write 0 to publicFile

else
write 1 to publicFile

end

Listing 6.2: Insecure implicit flow

Implicit flows can be prevented using a program counter, which keeps track of the context in
which a command is executed.

While techniques to prevent insecure explicit and implicit flows are well known and widely
used [1], they are, to the best of our knowledge, still being applied manually when designing
information-flow control mechanisms. This can lead to errors, failed proof attempts and time
wasted. In order to make this task less laborious, we present in this chapter a tool called
Ott-IFC that can, given an imperative programming language’s specification (i.e., syntax and
semantics), automatically apply those techniques and generate an information-flow monitor’s
specification.

6.4 Overview of Ott-IFC

As the name suggests, the specifications that Ott-IFC takes as input (and outputs) are written
for Ott [8, 9]. Ott is a tool that can generate LaTeX, Coq [10] or Isabelle/HOL [11] versions of
a programming language’s specification. The specification is written in a concise and readable
ASCII notation that resembles what one would write in informal mathematics.

Ott-IFC requires that the language specification follows a certain format. Namely, it requires:

R1 that the operational semantics of the language be either small-step or big-step opera-
tional semantics;

R2* that the program configurations be of the form 〈c,m, o〉, where c is the command to be
evaluated, m is the current memory (which maps variables to their values) and o is the
current output trace;

R3* that the outputs be appended to the output trace using the notation o :: (channel, value),
where value represents the output’s value and channel its location;

R4 that the syntax be composed of commands, which may read/write the memory and
produce outputs, and expressions, which may only read the memory;

R5 that the semantics preconditions does not include calls to functions that may have side-
effects on the program configuration;

115

R6 that the semantics preconditions do not create any additional branching (e.g., b ⇒ i =

1 ∧ ¬b⇒ i = 2).

Note that certain of these requirements are not restrictions on the language itself, but rather
on how the specification is written; these requirements are denoted by a blue star (*). In
general, requirements R1, R2 and R3 are there to give the language specification a certain
structure so that we may more easily parse it. Requirement R4 is there so that we may
more easily identify the variables that may affect the control-flow. It also means that Ott-
IFC does not support most functional languages; only imperative languages are supported.
This is because in functional languages, the distinction between commands and expressions
is less apparent and sometimes nonexistent. Note that this is not a technical limitation, but
rather a choice that we made in order to simplify the approach. Requirement R5 is there to
ensure that any possible effects on the program configurations are expressed in the semantics,
otherwise the generated mechanism could be unsound. Requirement R6 is there to ensure
that commands affecting the control-flow will need multiple rules to be defined, hence making
it easier to detect such commands.

A language that satisfies these requirements is the imperative language whose syntax is defined
in Listing 6.3 and semantics in Listings 6.4, 6.5, and 6.6.

arith_expr, a ::= x | n | a1 + a2 | a1 * a2

bool_expr, b ::= true | false | a1 < a2

commands, c ::= skip | x := a | c1 ; c2 | read x from ch | write x to ch |

if b then c1 else c2 end | while b do c end

Listing 6.3: Syntax of a simple imperative language

%%% Lower Than %%%

<a1, m, o> --> <a1’, m, o>

---------------------------------- :: lt_aexp_aexp

<a1 < a2, m, o> --> <a1’ < a2, m, o>

<a2, m, o> --> <a2’, m, o>

----------------------------------- :: lt_int_aexp

<n1 < a2, m, o> --> <n1 < n2, m, o>

n1 < n2 = true

------------------------------- :: lt_int_int_true

<n1 < n2, m, o> --> <true, m, o>

n1 < n2 = false

------------------------------ :: lt_int_int_false

<n1 < n2, m, o> --> <false, m, o>

Listing 6.4: Small-step semantics of boolean expressions

116

%%% Variable %%%

m(x) = n

-- :: lookup

<x, m, o> --> <n, m, o>

%%% Constant %%%

---------------------------------- :: int_constant

<n, m, o> --> <n, m, o>

%%% Addition %%%

<a1, m, o> --> <a1’, m, o>

--------------------------------- :: add_aexp_aexp

<a1 + a2, m, o> --> <a1’ + a2, m, o>

<a2, m, o> --> <a2’, m, o>

---------------------------------- :: add_int_aexp

<n1 + a2, m, o> --> <n1 + n2, m, o>

n1 + n2 = n3

----------------------------------- :: add_int_int

<n1 + n2, m, o> --> <n3, m, o>

%%% Multiplication %%%

<a1, m, o> --> <a1’, m, o>

-------------------------------- :: mult_aexp_aexp

<a1 * a2, m, o> --> <a1’ * a2, m, o>

<a2, m, o> --> <a2’, m, o>

--------------------------------- :: mult_int_aexp

<n1 * a2, m, o> --> <n1 * n2, m, o>

n1 * n2 = n3

---------------------------------- :: mult_int_int

<n1 * n2, m, o> --> <n3, m, o>

Listing 6.5: Small-step semantics of arithmetic expressions

117

%%% Assignment %%%

<a, m, o> --> <a’, m, o>

----------------------------------- :: assign_aexp

<x := a, m, o> --> <x := a’, m, o>

------------------------------------ :: assign_int

<x := n, m, o> --> <skip, m[x |-> n], o>

%%% Sequence %%%

<c1, m, o> --> <c1’, m’, o’>

-- :: seq1

<c1 ; c2, m, o> --> <c1’ ; c2, m’, o’>

-- :: seq2

<skip ; c2, m, o> --> <c2, m, o>

%%% Read %%%

m(ch) = n

-- :: read
<read x from ch, m, o> --> <skip, m[x |-> n], o>

%%% Write %%%

m(x) = n

--- :: write
<write x to ch, m, o> --> <skip, m[ch |-> n], o::(ch, n)>

%%% If %%%

<b, m, o> --> <b’, m, o>

--------------------------------------- :: if_eval

< if b then c1 else c2 end, m, o> --> <if b’ then c1 else c2 end, m, o>

--------------------------------------- :: if_true

< if true then c1 else c2 end, m, o> --> <c1, m, o>

-------------------------------------- :: if_false

< if false then c1 else c2 end, m, o> --> <c2, m, o>

%%% While %%%

--- :: while
<while b do c end, m, o> --> <if b then c;while b do c end else skip end, m, o>

Listing 6.6: Small-step semantics of commands

118

To generate an information-flow monitor from this specification, Ott-IFC uses the algorithm
presented in Algorithm 1.

Algorithm 1 Ott-IFC’s algorithm
1: procedure GenMonitor(syntax, semantics)
2: Identify nonterminal symbols of expressions and commands
3: for each command in syntax do
4: Identify rules for command in semantics
5: Build the order-evaluation graph of command
6: for each rule of command do
7: Insert the typing environment E and program counter pc variables into the

program configurations found in rule
8: if rule or one of its successor in the graph modifies the memory then
9: Update the modified variable’s label with the label of all expression variables

present in the rule and the pc variable
10: end if
11: if rule or one of its successor in the graph produces an output then
12: Insert guard condition
13: end if
14: if command may affect the program’s control flow then
15: Update the pc
16: Insert call to updateModifVars

17: end if
18: end for
19: end for
20: end procedure

The algorithm can be decomposed into three main steps: identifying commands and expres-
sions, constructing evaluation-order graphs, rewriting the semantics.

6.4.1 Step 1: Identifying commands and expressions

To identify which nonterminal symbols (e.g., a, b, c) of the syntax correspond to commands
and which correspond to expressions, we need to identify the semantics rule associated to each
nonterminal symbol. To do so, the algorithm analyzes each rule of the syntax and generates
a set of strings that represents their possible values by recursively substituting the values of
nonterminal symbols. For example, for the nonterminal symbol bool_expr (also written b),
it returns the set of strings {true, false, a < a, x < a, a < x, n < a, a < n, a + a < a,

...}. This set of string is not exhaustive, only sufficiently so to be able to identify their use
in the semantics.

Using this set of strings, the algorithm detects the rules that are associated to the nonterminal
symbols by looking at the first element of the initial state configurations. In the case of
bool_expr, Ott-IFC would identify that the rules associated to this nonterminal symbol are

119

those of Listing 6.4. Since none of these rules modify the memory or produce outputs, we can
conclude that the nonterminal symbol bool_expr is an expression.

Using the same reasoning, the algorithm concludes that:

• the nonterminal symbols of expression are arith_expr, a, bool_expr, b, x, n, and the
rules associated to those are the ones in Listings 6.5 and 6.4;

• the commands nonterminals are commands, c, and the rules associated to those are the
ones in Listing 6.6.

6.4.2 Step 2: Constructing evaluation-order graphs

The next step consists in constructing evaluation-order graphs for each command. These
graphs represent the order in which the semantics rules may be evaluated for a specific com-
mand (see Figure 6.1).

x := a

x := n

(a) Assign

c1 ; c2

skip ; c2

(b) Sequence

if b then c1 else c2 end

if true then c1 else c2 end if false then c1 else c2 end

(c) Conditional

Figure 6.1: Evaluation-order graphs of the assign, sequence and conditional commands.

To construct these graphs, the algorithm uses the set of strings produced in Step 1 to detect
that the rules associated to the assign command are assign_aexp and assign_int, and that
assign_aexp will be evaluated first because x := a is more general than x := n. By more
general, we mean that the set of strings that matches with x := a also matches with x := n,
but the reverse is not true.

6.4.3 Step 3: Rule-based rewriting

The final step is to perform the actual rewriting of the semantics rules to insert a runtime
monitor that enforces noninterference (i.e., a monitor that prevents insecure explicit and im-
plicit flows of information). To do so, the algorithm replicates the thought process that a
human would have when producing such a mechanism.

120

The algorithm starts by inserting a program counter pc, and a typing environment E, which
maps variables to their labels, in each command configurations. That is, configurations that
have the form <c, m, o> are changed to <c, m, o, pc, E>.

To prevent explicit flows, which are caused by a data-dependency, the algorithm identifies
the commands that may modify the memory m (e.g., the assign command). In their rules, it
updates the modified variable’s label with the label of the expression variables that are used
in the rule. If they also produce an output, then it inserts a guard condition to ensure that
no leak of information occurs.

To prevent implicit flows, it identifies the commands that may influence the control-flow of
the application using the evaluation-order graphs. That is, commands for which a program
configuration may lead to two different program configurations (e.g., the if command). In
other words, commands whose evaluation-order graph contains branches. It then updates the
program counter pc with the labels of the expression variables that are present in the rule.

So, for the language of our example, we would obtain the following rules:

Read The read command reads the content of channel ch and assigns its value to x. For
each expression variable found in the preconditions (i.e., ch, n), a label variable definition is
inserted the output (lines 2 and 3 of Listing 6.7). Note that |- is the ASCII representation of
`, and |_| is the representation of the supremum operator t. Since the memory is modified,
the label of the expressions that influence the assigned variable’s value (i.e., the ones used in
the rule) is propagated and the context in which the assignment occurs is taken into account
(line 5).

1 m(ch) = n

2 E |- ch : lch

3 E |- n : ln

4 -- :: read
5 <read x from ch, m, o, pc, E> --> <skip, m[x |-> n], o, pc, E[x |-> pc |_| lch |_| ln]>

Listing 6.7: Ott-IFC’s output for the "read" command

Write The write command writes the value of x on the channel ch. Because this command
produces an output (i.e., it appends a value to o), the algorithm adds a guard condition that
ensures that no leak of information will occur at runtime (line 5 of Listing 6.8). We do not
update the label of the channel on which the output occurs even if it is modified because, if
the execution is not stopped by the monitor, then it means that the channel’s label is already
greater than the label of the expression that is written.

121

1 m(x) = n

2 E |- x : lx

3 E |- n : ln

4 E |- ch : lch

5 lx |_| ln |_| pc <= lch

6 --- :: write
7 <write x to ch, m, o, pc, E> --> <skip, m[ch |-> n], o::(ch, n), pc, E>

Listing 6.8: Ott-IFC’s output for the "write" command

Assign While the assign_aexp rule does not directly modify the memory, one of its successor
in the evaluation-order graph (i.e., assign_int) does. For this reason, the algorithm updates
the label of the modified variable in, not only assign_int, but also assign_aexp (lines 5 and
10 of Listing 6.9). This is to take into account the label of variables that are in the expression
a (before they disappear). This means that, in this case, the generated monitor will not allow
the label of variables to be "downgraded" as a result of an assignment.

1 <a, m, o> --> <a’, m, o>

2 E |- x : lx

3 E |- a : la

4 ----------------------------------- :: assign_aexp

5 <x := a, m, o, pc, E> --> <x := a’, m, o, pc, E[x |-> lx |_| pc |_| la]>

6

7 E |- x : lx

8 E |- n : ln

9 ------------------------------------ :: assign_int

10 <x := n, m, o, pc, E> --> <skip, m[x |-> n], o, pc, E[x |-> lx |_| pc |_| ln]>

Listing 6.9: Ott-IFC’s output for the "assign" command

It may be interesting to note that, had the big-step version of the semantics been given to
Ott-IFC instead, the generated monitor will allow the label of variables to be downgraded
(see Listing 6.10). This is because in the big-step version, the assign command has only one
rule and it is executed in one step. In other words, the form of the specification given as
input influences the permissiveness of the monitor generated by Ott-IFC (more on this in
Section 6.5).

1 <a, m, o> || <n, m, o>

2 E |- a : la

3 -- :: assign

4 <x := a, m, o, pc, E> || <skip, m[x |-> n], o, pc, E[x |-> pc |_| la]>

Listing 6.10: Ott-IFC’s output the big-step version of the "assign" command

122

Sequence The rules for the sequence do not modify the memory or produce outputs so, like
the skip command, the only changes in the rules are the addition of the pc and E variables (see
Listing 6.11). Notice that the pc variable on line 3 of seq1 has the same value in the initial
configuration and final configuration. This means that, though the value of the pc variable
may change during the execution of a command (e.g., the if command), once the command
has finished its execution, it is restored to its previous value (as per usual).

1 <c1, m, o, pc, E> --> <c1’, m’, o’, pc’, E’>

2 -- :: seq1

3 <c1 ; c2, m, o, pc, E> --> <c1’ ; c2, m’, o’, pc, E’>

4

5 -- :: seq2

6 <skip ; c2, m, o, pc, E> --> <c2, m, o, pc, E>

Listing 6.11: Ott-IFC’s output for the "sequence" command

If In this language, the if command is the only that can directly cause the control-flow of a
program to branch out. We can tell this by looking at its evaluation-order graph (Figure 6.1):
there is a choice between if true and if false. For this reason, the algorithm updates the pc

variable with the labels of the expression variables that are present in the rule (i.e., only b in
this case).

It also inserts a call to the function updateModifVars, which has to be implemented by the
user. This function must identify the variables that could have been modified in either c1 or
c2, and update their labels with the label of b (line 3 of Listing 6.12). This is to ensure that
the labels of the variables after executing the if command are always the same, no matter
which branch is taken during execution. Note that the command variables that are used in the
rule (variables c1 and c2) are detected in the same way as expression variables are detected:
using the set of strings generated in Step 1.

1 <b, m, o> --> <b’, m, o>

2 E |- b : lb

3 E1 = updateModifVars(E, pc |_| lb, {c1,c2})

4 -------------------------------------- :: if_eval

5 < if b then c1 else c2 end, m, o, pc, E> -->

6 < if b’ then c1 else c2 end, m, o, pc |_| lb, E1>

7

8 -------------------------------------- :: if_true

9 < if true then c1 else c2 end, m, o, pc, E> --> <c1, m, o, pc, E>

10

11 ------------------------------------- :: if_false

12 < if false then c1 else c2 end, m, o, pc, E> --> <c2, m, o, pc, E>

Listing 6.12: Ott-IFC’s output for the "if" command

123

While Like for the skip and sequence commands, the semantics rule of the while command
does not modify the memory or the output trace, hence the only change is the addition of
the pc and E variables to the configurations. Note that, while the pc variable is not updated
here with the label of the condition variable b, it will be when the if (present in the final
configuration) is evaluated (line 3 of Listing 6.13).

1 --------------------------------------- :: while
2 <while b do c end, m, o, pc, E> -->

3 < if b then c ; while b do c end else skip end, m, o, pc, E>

Listing 6.13: Ott-IFC’s output for the "while" command

6.5 Discussion

As far as we know, we are the first ones to propose a way to generate information-flow control
mechanism specifications from programming language specifications. Our implementation is
available online and open-source [12]. Once it is further developed, we expect that our tool will
be particularly useful to researchers in language-based security who need to quickly develop
mechanisms. The development process of a mechanism using Ott and Ott-IFC would look like
this:

1. Write specification of the language on which we want to enforce noninterference in Ott.

2. Use Ott-IFC to generate the mechanism’s specification.

3. Use Ott to export the mechanism’s specification to LaTeX, Coq or Isabelle/HOL and
complete the implementation.

Experiments We have successfully tested Ott-IFC on a few small imperative languages1.
The languages are inspired by those of the IFC-Challenge [13]. More specifically, we have
tested our approach on:

• the language presented in this chapter (using small-step and big-step semantics),

• a language with exceptions (try-catch/throw, using big-step semantics),

• a language with locally-scoped variables (let x := e in, using big-step semantics).

We have also begun investigating more complex languages, such as CompCert’s Clight (a
subset of C) [14], whose specification is partially written in Ott.

One interesting thing that we have observed during our experiments is that the form of the se-
mantics given as input may impact the permissiveness of the generated monitor. For instance,

1The language specifications are available the project’s GitHub page

124

the monitor that is generated from the small-step semantics of the imperative language used
in this chapter is flow-insensitive and less permissive than the flow-sensitive one generated
from the big-step semantics. Meaning that the former will reject the following program, while
the latter will accept it.

x := privateInfo;

x := publicInfo;

write x to publicFile (*public on public, no information leak*)

Listing 6.14: Program accepted by flow-sensitive analyses

Whether this is due to the approach in general or due to the algorithm that is used remains
to be seen; we suspect the latter.

Limitations For the moment, Ott-IFC can only produce one kind of mechanism: runtime
monitors. Runtime monitors are the easiest to generate as they are simply modified versions
of the semantics given as input. However, we expect that the same logic could be used to
produce other types of mechanisms, such as type systems.

Ott-IFC supports only languages that meet the requirements listed in Section 6.4. Once our
tool is further developed, we may be able to remove or weaken these restrictions, but for
the moment they are necessary. They give the specification a certain structure so that we
may more easily parse it. As previously mentioned, we expect restrictions R2 and R3 to be
easiest to remove as they are not restrictions on the language itself, but rather on how they
are written. Restrictions R4, R5 and R6 on the other hand are restrictions on the language
itself and so, should be the hardest to remove.

The mechanisms generated by Ott-IFC may not be as permissive as those designed by humans.
For example, the flow-insensitive monitor presented earlier could have been flow-sensitive and
hence, more permissive. Nevertheless, even if the generated mechanism is not permissive
enough for the needs of a user, it can still be used as a foundation/starting point to design
a more permissive mechanism. For such a user, the work of Hritcu et al. [15] might be of
interest. They show how to use QuickCheck, a property-based random-testing tool, to quickly
verify that a mechanism correctly enforces noninterference. Their tool identifies errors during
the design phase of the mechanism, thereby allowing users to postpone any proof attempts
until they are confident of the mechanism’s soundness.

6.6 Conclusion and Future Work

We have presented in this chapter Ott-IFC, a tool capable of generating an information-
flow control monitor specification from a programming language’s syntax and semantics. It
does so by automatically applying techniques that are known to prevent explicit and implicit

125

information flows. Our experiments on simple imperative language show that the tool and
its approach is promising. As future work, we plan on adding support for more languages,
parameterization, and generating formal proofs.

Language Support Our requirements on specifications means that only certain types of
languages can be used in Ott-IFC. We are currently in the process of building a repository
of formalized languages so that we can test and extend our approach to a wider range of
languages.

Parameterization We plan on parameterizing our tool so that users can choose the type
of mechanism to generate (e.g., type system, monitor) and choose some of its features (e.g.,
flow-sensitivity, termination-sensitivity [16], progress-sensitivity [17], value-sensitivity [18]).

Generating Formal Proofs As previously mentioned, we expect that some users will use
the generated mechanisms as a foundation to build better and more precise mechanisms. One
of the most grueling task when building an information-flow control mechanism is to prove its
soundness. In order to help those users, we plan on generating a skeleton of the proof in Coq
or Isabelle/HOL (both languages are supported by Ott).

Verifying Existing Mechanisms The same rules that Ott-IFC uses to generate mecha-
nisms could be used to verify the soundness of existing mechanisms and identify potential
errors. For example, we could raise a warning if an output is produced but no guard condition
is present.

126

6.7 Bibliography

[1] A. Sabelfeld and A. C. Myers, “Language-based information-flow security,” IEEE
Journal on Selected Areas in Communications, vol. 21, no. 1, pp. 5–19, 2003. Available:
https://doi.org/10.1109/JSAC.2002.806121

[2] D. M. Volpano, C. E. Irvine, and G. Smith, “A sound type system for secure flow
analysis,” Journal of Computer Security, vol. 4, no. 2/3, pp. 167–188, 1996. Available:
https://doi.org/10.3233/JCS-1996-42-304

[3] A. Chudnov and D. A. Naumann, “Information flow monitor inlining,” in
Proceedings of the 23rd IEEE Computer Security Foundations Symposium, CSF
2010, Edinburgh, United Kingdom, July 17-19, 2010, 2010, pp. 200–214. Available:
https://doi.org/10.1109/CSF.2010.21

[4] A. Askarov, S. Chong, and H. Mantel, “Hybrid monitors for concurrent noninterference,”
in IEEE 28th Computer Security Foundations Symposium, CSF 2015, Verona, Italy,
13-17 July, 2015, 2015, pp. 137–151. Available: https://doi.org/10.1109/CSF.2015.17

[5] A. Bedford, S. Chong, J. Desharnais, E. Kozyri, and N. Tawbi, “A progress-sensitive
flow-sensitive inlined information-flow control monitor (extended version),” Computers &
Security, vol. 71, pp. 114–131, 2017. Available: https://doi.org/10.1016/j.cose.2017.04.001

[6] J. A. Goguen and J. Meseguer, “Security policies and security models,” in 1982 IEEE
Symposium on Security and Privacy, Oakland, CA, USA, April 26-28, 1982, 1982, pp.
11–20. Available: https://doi.org/10.1109/SP.1982.10014

[7] D. E. Denning, “A lattice model of secure information flow,” Commun. ACM, vol. 19,
no. 5, pp. 236–243, 1976. Available: http://doi.acm.org/10.1145/360051.360056

[8] P. Sewell, F. Z. Nardelli, S. Owens, G. Peskine, T. Ridge, S. Sarkar, and R. Strnisa,
“Ott: Effective tool support for the working semanticist,” J. Funct. Program., vol. 20,
no. 1, pp. 71–122, 2010. Available: https://doi.org/10.1017/S0956796809990293

[9] “Ott,” http://www.cl.cam.ac.uk/~pes20/ott/.

[10] “The coq proof assistant,” https://coq.inria.fr/.

[11] “Isabelle/hol,” https://isabelle.in.tum.de/.

[12] A. Bedford, “Ott-ifc’s repository,” https://github.com/andrew-bedford/ott-ifc, 2017.

[13] “Ifc-challenge,” https://ifc-challenge.appspot.com/.

127

[14] S. Blazy and X. Leroy, “Mechanized semantics for the clight subset of the C
language,” J. Autom. Reasoning, vol. 43, no. 3, pp. 263–288, 2009. Available:
https://doi.org/10.1007/s10817-009-9148-3

[15] C. Hritcu, L. Lampropoulos, A. Spector-Zabusky, A. A. de Amorim, M. Dénès,
J. Hughes, B. C. Pierce, and D. Vytiniotis, “Testing noninterference, quickly,” J. Funct.
Program., vol. 26, p. e4, 2016. Available: https://doi.org/10.1017/S0956796816000058

[16] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands, “Termination-insensitive
noninterference leaks more than just a bit,” in Computer Security - ESORICS
2008, 13th European Symposium on Research in Computer Security, Málaga,
Spain, October 6-8, 2008. Proceedings, 2008, pp. 333–348. Available: https:
//doi.org/10.1007/978-3-540-88313-5_22

[17] S. Moore, A. Askarov, and S. Chong, “Precise enforcement of progress-sensitive
security,” in the ACM Conference on Computer and Communications Security,
CCS’12, Raleigh, NC, USA, October 16-18, 2012, 2012, pp. 881–893. Available:
http://doi.acm.org/10.1145/2382196.2382289

[18] D. Hedin, L. Bello, and A. Sabelfeld, “Value-sensitive hybrid information flow
control for a javascript-like language,” in IEEE 28th Computer Security Foundations
Symposium, CSF 2015, Verona, Italy, 13-17 July, 2015, 2015, pp. 351–365. Available:
https://doi.org/10.1109/CSF.2015.31

128

Chapter 7

Coqatoo: Generating Natural
Language Versions of Coq Proofs

Author: Andrew Bedford

Conference: International Workshop on Coq for Programming Languages (CoqPL)

Status: peer reviewed; presented

Year: 2018

7.1 Résumé

Dû à leur nombreux avantages, les preuves formelles et les assistants de preuves, tel que Coq,
sont de plus en plus populaires. Toutefois, un désavantage d’utiliser un assistant de preuve est
que les preuves résultantes peuvent parfois être difficile à lire et à comprendre, particulièrement
pour un utilisateur moins expérimenté.

Pour adresser ce problème, nous présentons dans ce chapitre un outil appelé Coqatoo qui génère
une version en langue naturelle de preuves Coq. Contrairement aux travaux précédents, la
version en langue naturelle est générée directement à partir du code de la preuve. Cette
approche permet à Coqatoo de donner à l’utlisateur un contrôle direct sur la verbosité de la
preuve générée: plus le code de la preuve est détaillé, plus la version en langue naturelle sera
détaillée.

7.2 Abstract

Due to their numerous advantages, formal proofs and proof assistants, such as Coq, are be-
coming increasingly popular. However, one disadvantage of using proof assistants is that the

129

resulting proofs can sometimes be hard to read and understand, particularly for less experi-
enced users.

To address this issue, we present in this chapter a tool called Coqatoo that generates natural
language versions of Coq proofs. Contrarily to previous work, the natural language versions
are generated from high-level proof scripts instead of low-level proof-terms. By adopting this
approach, Coqatoo can avoid the inherent verbosity that comes from using low-level proof-
terms and gives the user direct control over the verbosity of the generated natural language
version: the more detailed a proof script is, the more detailed its natural language version will
be.

7.3 Introduction

When developing information-flow control mechanisms, writing proofs is unavoidable. For this
task, proof assistants, such as Coq, are becoming increasingly popular due to their numerous
advantages (e.g., machine-checked, automated, reusable). However, one disadvantage of using
proof assistants is that the resulting proofs can sometimes be hard to read and understand,
particularly for less experienced users. In an attempt to address this issue, Coscoy et al. [1]
developed in 1995 an algorithm capable of generating natural language proofs from Coq proof-
terms (i.e., calculus of inductive construction λ-terms) and implemented their approach in two
development environments: CtCoq [2, 3] and its successor Pcoq [4, 5]. Unfortunately, these
development environments are no longer available or maintained; Pcoq’s last version dates
from 2003 and requires Coq 7.4.

In order to bring this useful feature to modern development environments so that researchers
may more easily communicate their proofs, we have implemented our own rewriting algorithm:
Coqatoo.

7.4 Overview of Coqatoo

Much like Nuprl’s text generation algorithm [6], Coqatoo generates natural language proofs
from high-level proof scripts instead of the low-level proof-terms used by Coscoy et al. By
doing so, it can avoid the verbosity that comes from using low-level proof-terms [7] and avoid
losing valuable information such as the tactics that are used, the user’s comments and the
variable names.

Coqatoo’s rewriting algorithm can be decomposed in three steps: information extraction, proof
tree construction and tactic-based rewriting. We will illustrate these steps using the proof
script of Listing 7.1, whose goal is to show that ∀P,Q,R.(P ∧Q⇒ R)⇔ (P ⇒ Q⇒ R).

130

Lemma conj_imp_equiv : forall P Q R:Prop,

(P /\ Q -> R) <-> (P -> Q -> R).

Proof.
intros. split. intros H HP HQ. apply H. apply conj. assumption. assumption.

intros H HPQ. inversion HPQ. apply H. assumption. assumption.

Qed.

Listing 7.1: Proof script given as input

Step 1: Information extraction Coqatoo starts by executing the proof’s script in Coq
to capture the intermediate proof states.

For example, Listing 7.2 represents the initial state of Listing 7.1’s proof and Listing 7.3
represents the state after executing the first intros tactic, which introduces the variables P, Q
and R into the context.

1 subgoal

============================

forall P Q R : Prop, (P /\ Q -> R) <-> (P -> Q -> R)

Listing 7.2: State before executing the first intros tactic

1 subgoal

P, Q, R : Prop

============================

(P /\ Q -> R) <-> (P -> Q -> R)

Listing 7.3: State after executing the first intros tactic

These intermediate states, which contain the current assumptions and remaining goals, al-
low us to identify the changes caused by a tactic’s execution (e.g., added/removed variables,
hypotheses or subgoals).

Step 2: Proof tree construction We then build a tree representing the proof’s structure
(e.g., Figure 7.1). This is a necessary step for our rewriting algorithm as it allows it to
determine where bullets should be inserted and when lines should be indented.

131

Figure 7.1: Proof tree of Listing 7.1

Step 3: Tactic-based rewriting Finally, we generate the actual final natural language
version of the proof using simple rewriting rules. Each supported tactic has its own set of
rules. For example, for the intros tactic we first determine the types of the objects that are
introduced. If they are variables, then we produce a sentence of the form "Assume that ...

are arbitrary objects of type ...". If they are hypotheses, then we instead produce a
sentence of the form "Suppose that ... are true". Finally, we insert a sentence indicating
what is left to prove: "Let us show that ...".

Note that the sentences that we use to produce natural language versions are kept in files
that are separate from the code. This allows Coqatoo to support multiple languages and
proof styles. For the moment, it can output proofs in English or French, in plain text, in
LaTeX or in annotation mode (see Listing 7.4 for example). In annotation mode, each tactic
is accompanied with an informal explanation. We believe that this format will be particularly
useful for new Coq users.

132

Lemma conj_imp_equiv : forall P Q R:Prop, ((P /\ Q -> R) <-> (P -> Q -> R)).

Proof.
(* Assume that P, Q and R are arbitrary objects of type Prop. Let us show that (P /\ Q ->

R) <-> (P -> Q -> R) is true. *) intros.

split.

- (* Case (P /\ Q -> R) -> P -> Q -> R: *)

(* Suppose that P, Q and P /\ Q -> R are true. Let us show that R is true. *) intros H

HP HQ.

(* By our hypothesis P /\ Q -> R, we know that R is true if P /\ Q is true. *) apply

H.

apply conj.

-- (* Case P: *)

(* True, because it is one of our assumptions. *) assumption.

-- (* Case Q: *)

(* True, because it is one of our assumptions. *) assumption.

- (* Case (P -> Q -> R) -> P /\ Q -> R: *)

(* Suppose that P /\ Q and P -> Q -> R are true. Let us show that R is true. *) intros

H HPQ.

(* By inversion on P /\ Q, we know that P, Q are also true. *) inversion HPQ.

(* By our hypothesis P -> Q -> R, we know that R is true if P and Q are true. *) apply

H.

-- (* Case P: *)

(* True, because it is one of our assumptions. *) assumption.

-- (* Case Q: *)

(* True, because it is one of our assumptions. *) assumption.

Qed.

Listing 7.4: Coqatoo’s output in annotation mode

7.5 Comparison

Compared to Coscoy et al., our approach presents a few disadvantages and advantages.

Disadvantages

• It only works on proofs whose tactics are supported (see Section 7.6), while the approach
of Coscoy et al. worked on any proof.

• It may require additional verifications to ensure that unnecessary information (e.g., an
assertion which isn’t used) is not included in the generated proof.

Advantages

• It enables the user to more easily control the size and verbosity of the generated proof
(one or two sentences per tactic by default); the more detailed a proof script is, the
more detailed its natural language version will be. The proofs generated by Coscoy et
al. often quickly exploded in size (see Figure 7.2 for example).

133

• It maintains the order and structure of the user’s original proof script; this is not neces-
sarily the case in Coscoy et al.

Figure 7.2: Example of a proof generated by the approach of Coscoy et al.

7.6 Future Work

Coqatoo is only a proof of concept for the moment. As such, there remains much to be done
before it can be of real use.

Increase the number of supported tactics The number of tactics that it supports is
limited to only a handful (see Coqatoo’s GitHub repository [8] for more details). We expect
that, with the help of the community, we will be able to support enough tactics to generate
natural language versions of most proofs in Software Foundations [9], a book aimed at new
Coq users which contains a large number of proofs.

Add partial support for automation In regards to automation, Coqatoo only supports
the auto tactic: if the auto tactic is present within the script, it is replaced with info_auto

in order to obtain the sequence of tactics that is used by auto. We plan on adding partial
support for automation in the future, starting with the chaining operator ";". To support
this operator we will use our tree representation of proofs to "distribute" tactics on branches.

134

Integration with development environments Once it is sufficiently developed, we plan
on integrating our utility in modern Coq development environments such as CoqIDE and
ProofGeneral.

Acknowledgments

We would like to thank Josée Desharnais, Nadia Tawbi, Souad El Hatib and the reviewers
for their comments. We would also like to thank the Coq community for the large number of
resources and tutorials that are available online.

7.7 Bibliography

[1] Y. Coscoy, G. Kahn, and L. Théry, “Extracting text from proofs,” in Typed Lambda
Calculi and Applications, Second International Conference on Typed Lambda Calculi and
Applications, TLCA ’95, Edinburgh, UK, April 10-12, 1995, Proceedings, 1995, pp.
109–123. Available: https://doi.org/10.1007/BFb0014048

[2] Y. B. et al., “Ctcoq,” https://www-sop.inria.fr/croap/ctcoq/ctcoq-eng.html, 1997.

[3] Y. Bertot, “The ctcoq system: Design and architecture,” Formal aspects of Computing,
vol. 11, no. 3, pp. 225–243, 1999.

[4] Y. B. et al., “Pcoq,” http://www-sop.inria.fr/lemme/pcoq/, 2003.

[5] A. Amerkad, Y. Bertot, L. Pottier, and L. Rideau, “Mathematics and proof presentation
in pcoq,” Ph.D. dissertation, INRIA, 2001.

[6] A. M. Holland-Minkley, R. Barzilay, and R. L. Constable, “Verbalization of
high-level formal proofs,” in Proceedings of the Sixteenth National Conference on
Artificial Intelligence and Eleventh Conference on Innovative Applications of Artificial
Intelligence, July 18-22, 1999, Orlando, Florida, USA., 1999, pp. 277–284. Available:
http://www.aaai.org/Library/AAAI/1999/aaai99-041.php

[7] Y. Coscoy, “A natural language explanation for formal proofs,” in Logical Aspects
of Computational Linguistics, First International Conference, LACL ’96, Nancy,
France, September 23-25, 1996, Selected Papers, 1996, pp. 149–167. Available:
https://doi.org/10.1007/BFb0052156

[8] A. Bedford, “Coqatoo’s repository,” https://github.com/andrew-bedford/coqatoo, 2017.

[9] B. C. Pierce, C. Casinghino, M. Gaboardi, M. Greenberg, C. Hriţcu, V. Sjöberg, and
B. Yorgey, Software foundations, 2010, http://www.cis.upenn.edu/bcpierce/sf/current/
index.html.

135

Conclusion

In order to improve the overall practicality and usability of information-flow control mech-
anisms, we have presented in this thesis new ways of identifying precisely when dynamic
information-flow control should be necessary using static analysis, new ways of parameteriz-
ing the precision of an analysis and new tools to help researchers develop sound mechanisms.

More specifically, in Chapters 2 and 3, we have shown that a combination of static and
dynamic analysis can increase the effectiveness of information-flow control mechanisms without
introducing too much overhead. Our method consists in three steps: (1) using a type-based
static analysis, we verify that the program does not contain any obvious information leaks
and identify what cannot be verified accurately statically (using either an unknown label or
sets of levels); (2) we instrument the program to prevent less obvious leaks from occurring at
runtime; (3) we partially evaluate the program to minimize the instrumentation’s impact on
execution time.

In Chapter 4, we presented a new malware detection tool for Android called Andrana which
relies on static analysis and machine-learning techniques. It can be used by users to identify
the applications that are most likely to leak sensitive information (i.e., malicious applications),
and hence in most need of information-flow control. It boasts an accuracy of 94% and takes
less than a second to perform its analysis.

In Chapter 5, we introduced the concept of fading-labels and depth-limited noninterference.
They allow users to prioritize the usage of resources to track information from certain sources.
This concept should be particularly useful in systems where resources are limited (e.g., smart-
phones, tablets) and where a complete analysis may be too costly. As far as we know, we are
the first to propose a way to vary the amount of resources used by enforcement mechanisms
by level of information.

In Chapter 6, we presented Ott-IFC, a tool that can, given a programming language’s speci-
fication (i.e., syntax and semantics), generate an information-flow monitor’s specification. It
does so by automatically applying techniques that are known to prevent explicit and implicit
information flows. Our experiments on simple imperative language show that the tool and its
approach are promising. To the best of our knowledge, this is the first tool of this kind. Once

136

further developed, this tool should allow researchers to quickly develop and test a variety of
information-flow control mechanisms.

Since Ott-IFC uses Ott as its input and output language, specifications can be exported to
Coq so that users may complete its implementation and prove its soundness. For this reason,
we presented Coqatoo in Chapter 7, a tool that can generate natural-language version of Coq
proofs. This tool can be used by researchers to more easily communicate their Coq proofs, or
by new Coq users as a learning aid. Compared to previous existing work, its main advantage
is that it gives the user a direct control over the size and verbosity of the generated proof.

Future Work

Improving the precision of our static analysis The more precise the static analysis, the
less the dynamic analysis will have to do and hence, the less overhead will be introduced. One
way to enhance the precision of our static analysis would be to use abstract interpretation.
For example, suppose that abstract interpretation reveals that the value of variable x before
executing the if command is always in the range [0, 5], then the analysis could conclude that
variable y always contains public information, hence removing the need to instrument the
following output operation.

if x < 5 then
y := publicInfo;

else
y := privateInfo;

end;
write y to publicFile

Listing 7.5: Improved precision using abstract interpretation

Real world languages and applications The techniques and tools presented in this thesis
could be scaled up to deal with real world languages and applications. As a first step towards
this, we could start by testing our approaches on languages that have complex data structures
(e.g., trees, records, classes). Concurrency will also need to be studied.

Since real world applications often need to leak information, we will need to further study the
topic of declassification, which we have briefly touched in Chapter 5. An example of a scenario
where an application must leak information is during a login attempt: the application must
reveal to the user whether or not the password is correct.

For Coqatoo to support proofs on real world languages, we will need to add support for
additional tactics so that it can be used to generate natural language versions for a wider
variety of proofs. We will start by adding support for the tactics that are used in the book
Software Foundations.

137

Characterizing the dangerousness of a leak In this thesis, we chose to stop the execution
of the program when a leak is about to occur. Alternatively, what we could do is to alert the
user when a leak is about to occur and let the user decide whether the leak is acceptable. To
take his decision, the user will need information on the leak and its potential dangerousness.
Hence, we will characterize what makes a leak truly dangerous and elaborate a quantifiable
dangerousness metric.

Verifying existing mechanisms We believe that the same rules that Ott-IFC uses to
generate mechanisms could be used to verify the soundness of existing mechanisms and identify
potential errors. For example, we could raise a warning if an output is produced but no guard
condition is present. As many of the mechanisms and approaches described in the literature
are illustrated on simple languages, we expect this objective to be more easily attainable than
scaling to real world languages.

Differential privacy using language-based security Differential privacy is a relatively
new topic of research that aims to protect the privacy of individuals whose data is included
in databases on which queries are performed. During our work on information-flow control,
we have observed that the ideas of noninterference and differential privacy are somewhat
alike: noninterference states that a variation of private inputs should not affect the public
outputs, while differential privacy states that private inputs (rows in the database) should not
significantly affect the results of a query. It would be interesting to see if the techniques and
tools developed in this thesis could be of use for differential privacy.

138

