1,239 research outputs found

    Virtual Texture Generated using Elastomeric Conductive Block Copolymer in Wireless Multimodal Haptic Glove.

    Get PDF
    Haptic devices are in general more adept at mimicking the bulk properties of materials than they are at mimicking the surface properties. This paper describes a haptic glove capable of producing sensations reminiscent of three types of near-surface properties: hardness, temperature, and roughness. To accomplish this mixed mode of stimulation, three types of haptic actuators were combined: vibrotactile motors, thermoelectric devices, and electrotactile electrodes made from a stretchable conductive polymer synthesized in our laboratory. This polymer consisted of a stretchable polyanion which served as a scaffold for the polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT). The scaffold was synthesized using controlled radical polymerization to afford material of low dispersity, relatively high conductivity (0.1 S cm-1), and low impedance relative to metals. The glove was equipped with flex sensors to make it possible to control a robotic hand and a hand in virtual reality (VR). In psychophysical experiments, human participants were able to discern combinations of electrotactile, vibrotactile, and thermal stimulation in VR. Participants trained to associate these sensations with roughness, hardness, and temperature had an overall accuracy of 98%, while untrained participants had an accuracy of 85%. Sensations could similarly be conveyed using a robotic hand equipped with sensors for pressure and temperature

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 13th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2022, held in Hamburg, Germany, in May 2022. The 36 regular papers included in this book were carefully reviewed and selected from 129 submissions. They were organized in topical sections as follows: haptic science; haptic technology; and haptic applications

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2020, held in Leiden, The Netherlands, in September 2020. The 60 papers presented in this volume were carefully reviewed and selected from 111 submissions. The were organized in topical sections on haptic science, haptic technology, and haptic applications. This year's focus is on accessibility

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2020, held in Leiden, The Netherlands, in September 2020. The 60 papers presented in this volume were carefully reviewed and selected from 111 submissions. The were organized in topical sections on haptic science, haptic technology, and haptic applications. This year's focus is on accessibility

    Radically Relational: Using Textiles As A Platform To Develop Methods For Embodied Design Processes

    Get PDF
    This position paper builds on textiles as a metaphor to explore the experiential knowledge observed through embodied design processes. In order to build understanding, we have tailored our tools and methods to support our explorations so far. As literature shows articulating our sensory experiences with materials is a challenging task. In order to support our investigations, in this paper we present a reflection on our diverse approaches to introduce tools that support us in interrogating how designers relate with materials, particularly textiles, and use their sensorial body to experience them during the creative process. We build on our previous research that identified relevant embodied process to textile selection, and reflect on how we have explored how sensing technology can augment and empower each of these phases, to support the design process. We conclude by discussing the learning outcomes from introducing such tools, in order to reflect on the future of our research

    Re-design of drivers’ car seat using three dimensional reverse engineering

    Get PDF
    Automobile seat design in current practice requires satisfying the ergonomics guidelines as well as considers the comfort expectation of the population. The main aim is to re-examine the existing car seat designs and to propose a novel seat design for better comfort. The number of cars reviewed for drivers’ seat features and user comfort are based on the analysis using a statistical tool. The statistical tool analysis is defined using data from the survey conducted. The proposed design is obtained using the 3-D Reverse Engineering procedure on the selected car seat models. The result is assessed to show that the modified car seat design is superior in terms of form, shape, seat features, usability and comfort. Through this work, the basic seat needs while driving, for example pain preclusion aspects and comfort weightage are defined. The survey done can expunge the expenditure for test experimentations in the future and the proposed methodology can be useful in establishing new design standards for the seat

    Wearable Vibrotactile Haptic Device for Stiffness Discrimination during Virtual Interactions

    Get PDF
    In this paper, we discuss the development of cost effective, wireless, and wearable vibrotactile haptic device for stiffness perception during an interaction with virtual objects. Our experimental setup consists of haptic device with five vibrotactile actuators, virtual reality environment tailored in Unity 3D integrating the Oculus Rift Head Mounted Display (HMD) and the Leap Motion controller. The virtual environment is able to capture touch inputs from users. Interaction forces are then rendered at 500 Hz and fed back to the wearable setup stimulating fingertips with ERM vibrotactile actuators. Amplitude and frequency of vibrations are modulated proportionally to the interaction force to simulate the stiffness of a virtual object. A quantitative and qualitative study is done to compare the discrimination of stiffness on virtual linear spring in three sensory modalities: visual only feedback, tactile only feedback, and their combination. A common psychophysics method called the Two Alternative Forced Choice (2AFC) approach is used for quantitative analysis using Just Noticeable Difference (JND) and Weber Fractions (WF). According to the psychometric experiment result, average Weber fraction values of 0.39 for visual only feedback was improved to 0.25 by adding the tactile feedback

    Synthetic and bio-artificial tactile sensing: a review

    Get PDF
    This paper reviews the state of the art of artificial tactile sensing, with a particular focus on bio-hybrid and fully-biological approaches. To this aim, the study of physiology of the human sense of touch and of the coding mechanisms of tactile information is a significant starting point, which is briefly explored in this review. Then, the progress towards the development of an artificial sense of touch are investigated. Artificial tactile sensing is analysed with respect to the possible approaches to fabricate the outer interface layer: synthetic skin versus bio-artificial skin. With particular respect to the synthetic skin approach, a brief overview is provided on various technologies and transduction principles that can be integrated beneath the skin layer. Then, the main focus moves to approaches characterized by the use of bio-artificial skin as an outer layer of the artificial sensory system. Within this design solution for the skin, bio-hybrid and fully-biological tactile sensing systems are thoroughly presented: while significant results have been reported for the development of tissue engineered skins, the development of mechanotransduction units and their integration is a recent trend that is still lagging behind, therefore requiring research efforts and investments. In the last part of the paper, application domains and perspectives of the reviewed tactile sensing technologies are discussed

    Requirements for a tactile display of softness

    Get PDF
    Developing tactile displays is an important aspect of improving the realism of feeling softness in laparoscopic surgery. One of the major challenges of designing a tactile display is to understand how the perception of touch can be perceived with differences in material properties. This project seeks to address this limitation by investigating how the interaction of material properties affects perception of softness and to present the perception of softness through a tactile display. The first aim explores how the interaction of material properties affects perception of softness through the use of two psychophysical experiments. Experiments used a set of nine stimuli representing three materials of different compliance, with three different patterns of surface roughness or with three different coatings of stickiness. The results indicated that compliance affected perception of softness when pressing the finger, but not when sliding; and that compliance, friction and thermal conductivity all influenced the perception of softness. To achieve the second aim of reproducing various levels of softnesses, the tactile display was built at the University of Leeds. The displayed softness was controlled by changing the contact area and tension of a flexible sheet. Psychophysical experiments were conducted to evaluate how well humans perceive softness through the display. The data was analysed using MatLab to plot psychometric functions. The results indicated that the tactile display might be good for some applications which need to compare between simulated softnesses, but it might be insufficient for other applications which need to compare between simulated softness and real samples

    Human haptic perception in virtual environments: An investigation of the interrelationship between physical stiffness and perceived roughness.

    Get PDF
    Research in the area of haptics and how we perceive the sensations that come from haptic interaction started almost a century ago, yet there is little fundamental knowledge as to how and whether a change in the physical values of one characteristic can alter the perception of another. The increasing availability of haptic interaction through the development of force-feedback devices opens new possibilities in interaction, allowing for accurate real time change of physical attributes on virtual objects in order to test the haptic perception changes to the human user. An experiment was carried out to ascertain whether a change in the stiffness value would have a noticeable effect on the perceived roughness of a virtual object. Participants were presented with a textured surface and were asked to estimate how rough it felt compared to a standard. What the participants did not know was that the simulated texture on both surfaces remained constant and the only physical attribute changing in every trial was the comparison object’s surface stiffness. The results showed that there is a strong relationship between physical stiffness and perceived roughness that can be accurately described by a power function, and the roughness magnitude estimations of roughness showed an increase with increasing stiffness values. The conclusion is that there are relationships between these parameters, where changes in the physical stiffness of a virtual object can change how rough it is perceived to be in a very clear and predictable way. Extending this study can lead to an investigation on how other physical attributes affects one or more perceived haptic dimensions and subsequently insights can be used for constructing something like a haptic pallet for a haptic display designer, where altering one physical attribute can in turn change a whole array of perceived haptic dimensions in a clear and predictable way
    corecore