421 research outputs found

    Exploiting Local Logic Structures to Optimize Multi-Core SoC Floorplanning

    Get PDF
    We present a throughput-driven partitioning and a throughput-preserving merging algorithm for the high-level physical synthesis of latency-insensitive (LI) systems. These two algorithms are integrated along with a published floorplanner in a new iterative physical synthesis flow to optimize system throughput and reduce area occupation. The synthesis flow iterates a floorplanning-partitioning-floorplanning-merging sequence of operations to improve the system topology and the physical locations of cores. The partitioning algorithm performs bottom-up clustering of the internal logic of a given IP core to divide it into smaller ones, each of which has no combinational path from input to output and thus is legal for LI-interface encapsulation. Applying this algorithm to cores on critical feedback loops optimizes their length and in turn enables throughput optimization via the subsequent floorplanning. The merging algorithm reduces the number of cores on non-critical loops, lowering the overall area taken by LI interfaces without hurting the system throughput. Experimental results on a large system-on-chip design show a 16.7% speedup in system throughput and a 2.1% reduction in area occupation

    Adaptive Latency Insensitive Protocols

    Get PDF
    Latency-insensitive design copes with excessive delays typical of global wires in current and future IC technologies. It achieves its goal via encapsulation of synchronous logic blocks in wrappers that communicate through a latency-insensitive protocol (LIP) and pipelined interconnects. Previously proposed solutions suffer from an excessive performance penalty in terms of throughput or from a lack of generality. This article presents an adaptive LIP that outperforms previous static implementations, as demonstrated by two relevant cases — a microprocessor and an MPEG encoder — whose components we made insensitive to the latencies of their interconnections through a newly developed wrapper. We also present an informal exposition of the theoretical basis of adaptive LIPs, as well as implementation detail

    Graphics Processing Unit-Based Computer-Aided Design Algorithms for Electronic Design Automation

    Get PDF
    The electronic design automation (EDA) tools are a specific set of software that play important roles in modern integrated circuit (IC) design. These software automate the design processes of IC with various stages. Among these stages, two important EDA design tools are the focus of this research: floorplanning and global routing. Specifically, the goal of this study is to parallelize these two tools such that their execution time can be significantly shortened on modern multi-core and graphics processing unit (GPU) architectures. The GPU hardware is a massively parallel architecture, enabling thousands of independent threads to execute concurrently. Although a small set of EDA tools can benefit from using GPU to accelerate their speed, most algorithms in this field are designed with the single-core paradigm in mind. The floorplanning and global routing algorithms are among the latter, and difficult to render any speedup on the GPU due to their inherent sequential nature. This work parallelizes the floorplanning and global routing algorithm through a novel approach and results in significant speedups for both tools implemented on the GPU hardware. Specifically, with a complete overhaul of solution space and design space exploration, a GPU-based floorplanning algorithm is able to render 4-166X speedup, while achieving similar or improved solutions compared with the sequential algorithm. The GPU-based global routing algorithm is shown to achieve significant speedup against existing state-of-the-art routers, while delivering competitive solution quality. Importantly, this parallel model for global routing renders a stable solution that is independent from the level of parallelism. In summary, this research has shown that through a design paradigm overhaul, sequential algorithms can also benefit from the massively parallel architecture. The findings of this study have a positive impact on the efficiency and design quality of modern EDA design flow

    Optimizing Scrubbing by Netlist Analysis for FPGA Configuration Bit Classification and Floorplanning

    Full text link
    Existing scrubbing techniques for SEU mitigation on FPGAs do not guarantee an error-free operation after SEU recovering if the affected configuration bits do belong to feedback loops of the implemented circuits. In this paper, we a) provide a netlist-based circuit analysis technique to distinguish so-called critical configuration bits from essential bits in order to identify configuration bits which will need also state-restoring actions after a recovered SEU and which not. Furthermore, b) an alternative classification approach using fault injection is developed in order to compare both classification techniques. Moreover, c) we will propose a floorplanning approach for reducing the effective number of scrubbed frames and d), experimental results will give evidence that our optimization methodology not only allows to detect errors earlier but also to minimize the Mean-Time-To-Repair (MTTR) of a circuit considerably. In particular, we show that by using our approach, the MTTR for datapath-intensive circuits can be reduced by up to 48.5% in comparison to standard approaches

    Heurísticas bioinspiradas para el problema de Floorplanning 3D térmico de dispositivos MPSoCs

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Informática, Departamento de Arquitectura de Computadores y Automática, leída el 20-06-2013Depto. de Arquitectura de Computadores y AutomáticaFac. de InformáticaTRUEunpu

    Floorplanning with wire pipelining in adaptive communication channels

    Get PDF

    Routing congestion analysis and reduction in deep sub-micron VLSI design

    Get PDF
    Congestion is one of the main optimization objectives in global routing. However, the optimization performance is constrained because the cells are already fixed at this stage. Therefore, designer can save substantial time and resources by detecting and reducing congested regions during the planning stages. An efficient and yet accurate congestion estimation model is crucial to be included in the inner loop of floorplanning and placement design. In this dissertation, we mainly focus on routing congestion modeling and reduction during floorplanning and placement

    A Parallel Hardware Architecture For Quantum Annealing Algorithm Acceleration

    Get PDF
    Quantum Annealing (QA) is an emerging technique, derived from Simulated Annealing, providing metaheuristics for multivariable optimisation problems. Studies have shown that it can be applied to solve NP-hard problems with faster convergence and better quality of result than other traditional heuristics, with potential applications in a variety of fields, from transport logistics to circuit synthesis and optimisation. In this paper, we present a hardware architecture implementing a QA-based solver for the Multidimensional Knapsack Problem, designed to improve the performance of the algorithm by exploiting parallelised computation. We synthesised the architecture using as a target an Altera FPGA board and simulated the execution for solving a set of benchmarks available in the literature. Simulation results show that the proposed implementation is about 100 times faster than a single-thread general-purpose CPU without impact on the accuracy of the solution
    • …
    corecore