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Abstract—We present a throughput-driven partitioning and
a throughput-preserving merging algorithm for the high-level
physical synthesis of latency-insensitive (LI) systems. These two
algorithms are integrated along with a published floorplanner [5]
in a new iterative physical synthesis flow to optimize system
throughput and reduce area occupation. The synthesis flow iter-
ates a floorplanning-partitioning-floorplanning-merging sequence
of operations to improve the system topology and the physical
locations of cores. The partitioning algorithm performs bottom-
up clustering of the internal logic of a given IP core to divide
it into smaller ones, each of which has no combinational path
from input to output and thus is legal for LI-interface encap-
sulation. Applying this algorithm to cores on critical feedback
loops optimizes their length and in turn enables throughput
optimization via the subsequent floorplanning. The merging
algorithm reduces the number of cores on non-critical loops,
lowering the overall area taken by LI interfaces without hurting
the system throughput. Experimental results on a large system-
on-chip design show a 16.7% speedup in system throughput and
a 2.1% reduction in area occupation.

I. INTRODUCTION

Latency-insensitive design (LID) has been proposed as a
correct-by-construction design methodology for synchronous
SoCs [2], [4]. LID provides a sound way to help designers
cope with the fact that in nanometer technologies SoCs are
increasingly becoming distributed systems due to the impact
of global communication delays [12]: LID enables the auto-
matic wire pipelining while preserving the system behavior,
simplifies reuse of IP cores, and can be extended to handle
not only communication- but also computation-latency varia-
tions [8], facilitating the design space exploration of micro-
architectures [14]. These advantages, which make it suitable
to bridge the gap between system-level design and physical
synthesis [25], are a result of the flexibility that LID adds to the
register-transfer level (RTL) abstraction by the separation of
communication and computation, a form of orthogonalization
of concerns [16]. In a latency-insensitive (LI) system each
core (which can be a complex FSM, a pipelined datapath,
an SRAM. . . ) is encapsulated by a simple interface circuit
called shell. Shell-core pairs exchange data via communication
channels that are governed by a latency-insensitive protocol.
The protocol decouples the implementation of the channels
from the implementation of the cores. In particular, at later
stages of the design process, the timing exceptions that may
arise due to the presence of long wires implementing the
channels can be fixed by pipelining them with the insertion of
special sequential repeaters called relay stations (RS), without
the need of changing any core implementation [2].

In this paper we present the first work that addresses the
combined optimization of shell encapsulation at RTL and relay
station insertion at physical-synthesis level for LID. We do so
by exploiting the logical structure of the cores and the physical
information on the core locations provided by floorplanning.
A motivational example. Fig. 1(a) shows a LI system with
four shell-core pairs connected by point-to-point, unidirec-
tional channels. Each core can be an arbitrarily-complex
sequential module as long as it satisfies the requirement that
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Fig. 1. (a) A simple LI system with four cores and one RS; its throughput
is 2/3 = 0.67. (b) The same system with a finer-grained shell encapsulation
where core B is split in two smaller cores B1 and B2; throughput is improved
to 3/4 = 0.75. (c) The LI system maintains the same throughput after core
C and D are merged. (d) The proposed high-level physical synthesis flow.

it can be clock gated. The shell dynamically controls the
operations of the core by deciding whether to stall it or
fire it based on the value of the flow-control signals on the
input/output channels. Data communicated over a channel is
labeled by a bit signal indicating whether the current data is
valid or not. At each clock cycle the shell fires the core if and
only if each input channel presents a new valid data token
(AND-firing semantics). Otherwise, it stalls the core through
clock gating while storing valid data having arrived in its
input queues (for future processing) and putting void data on
each output channel. Since the queues have limited storage
capability, a stop bit signal is transmitted backward on each
channel whenever a downlink shell needs to request an uplink
shell to slow down the production of good data (backpressure).

At the implementation stage, the wires of a channel with
delay longer than the target clock period can be pipelined
by one or more RSs (as in Fig 1(a)). An RS is a clocked
buffer with unit latency, two-fold storage capacity, and simple
flow-control logic. By processing the void and stop bit signals
according to the latency-insensitive protocol, the flow-control
logic of the shells and RSs can accommodate any variations
of delay on inter-core wires while guaranteeing that the
functional behavior of the original synchronous system is
preserved without the need of changing any part of the intra-
core logic design (semantics preservation) [2].

However the AND-firing semantics and the wire-pipelining
by RS insertions may negatively affect the system performance



in terms of the data processing throughput (the average
number of valid data tokens processed per unit time) [3], [20].
Since RSs are memory elements added after RTL design is
finished, each of them must be initialized with a void data
token (a “bubble”) so that the system behavior is preserved.
If an RS is inserted on a channel which is on a feedback
loop, the void data circulates indefinitely in the loop (due the
AND-firing semantics), thus stalling the cores periodically.

The data processing throughput of a LI system depends on
the locations of RSs and the system-level topology determined
by the cores and the communication channels [3], [20]. Each
feedback loop in the system imposes an upper bound on the
data processing throughput of the entire system. If S and R
are the number of cores and RSs of a loop respectively, the
upper bound is S

S+R . The minimum of such bounds across
all loops is the system throughput, and can be determined by
efficient algorithms [10], [15]. For example, in Fig. 1(a) loop
A→ B → RS → A is a critical loop because it imposes the
lowest bound on the throughput. Since it has 2 cores and 1
RS, the throughput is degraded to 2/(2 + 1) = 0.67.

The throughput degradation, however, can be mitigated if
the concurrency of the critical loop is increased by a finer-
grained shell encapsulation of the cores’ logic. For example, as
shown in Fig. 1(b), the logic within core B can be partitioned
into two smaller cores B1 and B2, each of which is encapsu-
lated by its own shell. This partitioning of core B raises the
system throughput by 13% to 3/4 = 0.75. The improvement
comes from the fact that in Fig. 1(a) the computation carried
out by the logic within B1 and B2 will be stalled if B’s shell
receives a void data, while in Fig. 1(b) B1 and B2 are never
stalled at the same time.

Furthermore, opposite to increasing concurrency, judi-
ciously decreasing the granularity of shell encapsulation on
non-critical loops can reduce the shell’s area overhead without
hurting the throughput. For example, since loop C → D → C
is not critical, cores C and D can be merged so that they
get encapsulated by one shell (instead of two) as shown in
Fig. 1(c), where there are two less input queues than in
Fig. 1(b), while the system throughput is still 0.75.
Contributions. We propose the idea of combining core par-
titioning and core merging to optimize a latency-insensitive
system and we present an iterative high-level physical syn-
thesis flow that relies on novel partitioning and merging
algorithms to automatically do so. The proposed flow targets
the two factors affecting the data processing throughput: the
locations of the RSs, which is usually decided by the physical
floorplanning of the cores, and the system-level topology.
Unlike the classical LID, which treats each core as a blackbox,
the proposed approach assumes that some cores are provided
as whiteboxes whose RTL implementation can be analyzed by
the partitioning and merging algorithms. Notice, however, that
while the cores’ logic can be partitioned or merged for shell
encapsulation purpose, the RTL netlist design is not modified.
The partitioning algorithm leverages the local logic structure
of individual cores to improve the global topology of the
system by identifying finer-grained logical boundaries for shell
encapsulation. The iterative nature of the proposed flow allows
such improvement in the system topology to be further ex-

ploited by a floorplanner for throughput optimization. Dually,
the core merging algorithm decreases the granularity of shell
encapsulation so that the number of shells and shell queues is
reduced for area saving.

II. THE PHYSICAL SYNTHESIS FLOW

Fig. 1(d) shows the proposed physical synthesis flow. Mul-
tiple floorplanning runs are interleaved with runs of the new
partitioning and merging algorithms to meet the design target,
which can be system throughput, chip area, or both. It consists
of three main steps:
Step 1. Shell encapsulation is applied based on an initial
partitioning of the design. After floorplanning, RSs are inserted
to pipeline long channels that have caused timing violations.
Step 2. If the insertion of RSs made throughput lower than the
design target, then the partitioning algorithm divides one core
on the critical loop into new smaller cores that are guaranteed
not to have combinational path from their inputs to outputs
(Section IV). New shells are generated for these cores. The
finer-grained shell encapsulation results in a more concurrent
system-level topology of the latency-insensitive system.
Step 3. First a new floorplan is derived from the new system
topology, then the throughput-preserving merging algorithm
is applied to merge cores which are not part of the critical
loops (Section V). Merging decreases the granularity of shell
encapsulation, thus reducing their aggregated area. Since it
also opens opportunities for new optimization, the entire
process is repeated from Step 1 until the design target is met.

While this synthesis flow can use any floorplanner, a
throughput-driven floorplanner [5], [26] is most suited to our
approach. In particular, for the experiments of Section VI we
used the floorplanner proposed by Casu and Macchiarulo [5].

III. DEFINITIONS

In this section we define important concepts that we used
to present the proposed algorithms in the following sections.

A design is modeled at the RTL level as a netlist, a
directed graph G = {V,E} where a node v ∈ V may
represents a combinational gate, a latch, a primary input, or
a primary output. An edge (u, v) ∈ E represents a wire
connecting node u to v. The immediate fanout of u ∈ V is
FO(u) ≡ {v | (u, v) ∈ E} and the immediate fanin of v ∈ V
is FI(v) ≡ {u | (u, v) ∈ E}. Let u ∗

; v be a path connecting
node u to v. The sequential distance of a simple path of G
is the number of latches on the path, and µ(s ∗

; t) is the
shortest sequential distance from node s to t.

The i-stage transitive fanout of u ∈ V is TFOi(u) ≡
{v |u ∗; v, µ(u ∗; v) ≤ i}. The i-stage transitive fanin of v ∈
V is TFIi(v) ≡ {t | t

∗
; v, µ(t ∗; v) ≤ i}. The intersection

TFI1(`) ∩ TFI1(`) of the 1-stage transitive fanin and fanout
nodes of a latch ` is the set of combinational nodes on all of
the feedback paths of `. The i-stage transitive fanout latches
of a combinational gate g is TLOi(g) ≡ {` | ` is a latch, g ∗;
`, µ(g ∗; `) ≤ i}. Similarly, g’s i-stage transitive fanin latches
is TLIi(g) ≡ {` | ` is a latch, ` ∗; g, µ(` ∗; g) ≤ i}.

A partitioning P ≡
{
C1 = {V1, E1}, . . . , Cn = {Vn, En}

}
of G = {V,E} is a set of non-overlapping subgraphs of G
such that {V1, . . . , Vn} forms a partition of V . Subgraph Ci =
{Vi, Ei} is called a core; its edge set Ei = {(u, v)| (u, v) ∈



E and u, v ∈ Vi} are the edges whose source and destination
nodes are all in Vi. Given a partitioning P , the core containing
node u ∈ V is denoted as coreP [u]. A merging operation on
a set of cores merges these cores into a single one.

Given a partitioning {C1, . . . , Cn} of G = {V,E}, a node
u is called an input/output boundary if at least one of u’s
immediate fanin/fanout is in a different core. All the edges
from core Ci to Cj form a channel (Ci, Cj) ≡ {(s, t) | (s, t) ∈
E, s ∈ Ci and t ∈ Cj , Ci 6= Cj}. The channel width W(i, j)
is the number of edges on the channel.

A core is sequential if the shortest sequential distance from
the core’s input boundaries to output boundaries is at least one.
That is, the core has no combinational path from its inputs to
its outputs. A partitioning of a sequential core may contain
non-sequential cores; in contrast, merging a set of sequential
cores always gives a sequential one. A partitioning in which
all cores are sequential is a sequential partitioning.

Sequential cores are required for the application of LID. Be-
cause the minimum forward latency of the void signal passing
through the shell is one, the presence of a combinational path
between the core’s input and output may result in a mismatch
between the validity of the core’s output data and the void
signal generated by the shell.1

IV. THROUGHPUT-DRIVEN PARTITIONING ALGORITHM

The goal of the partitioning algorithm is to increase the
concurrency of the system topology for throughput optimiza-
tion. Before presenting the algorithm, we introduce some facts
on which it is based. The partitioning algorithm needs to
ensure that the resulting partitioning of the core’s logic is
sequential. Let P = {Ci,1, . . . , Ci,n} be a partitioning of core
Ci. The following two lemmas provide conditions to maintain
the sequential property for all cores in P :

Lemma 1 (Feedback) Let ` ∈ Ci be a latch. If par-
titioning P is sequential, any combinational gate g ∈
(TFI1(`) ∩ TFO1(`)) on the feedback path of ` satisfies
coreP [g] = coreP [`].

Proof: Suppose not. Let g ∈ TFI0(f)∩TFO0(f) be the
gate such that coreP [g] 6= coreP [f ]. Since g is in the 0-stage
transitive fanin and fanout of latch f , the combinational part
of the path f

∗
; g

∗
; f enters and exists the core coreP [g].

Therefore coreP [g] is not sequential, which contradicts the
fact that P is sequential.

Lemma 2 (Transitive Fanin and Fanout) 2 Partitioning P
is sequential if and only if one of the following two conditions
is true for any combinational gate g ∈ Ci:

(1) ∀h ∈ TFI0(g) ∪ TLI1(g), coreP [g] = coreP [h], or
(2) ∀h ∈ TFO0(g) ∪ TLO1(g), coreP [g] = coreP [h].

Proof: Suppose none of the two conditions is satisfied for
certain combinational gate g. We show that coreP [g] is not a
sequential core. By assumption, there exist h1 ∈ TFI0(g) ∪

1In fact, an incoming void data could pass through the core’s combinational
path to change (and thus corrupt) the core’s output value at the same clock
cycle while the shell’s output void signal would not reflect the invalidated
output data until the next cycle.

2Lemma 1 is actually a special case of Lemma 2.

LI-PARTITIONING(G = {V,E}, I = {I1, . . . , IN})
1 CLUSTER-LATCHES-BY-SEQ-DIST(G, I)
2 CLUSTER-LATCHES-WITH-SHARED-FEEDBACK(G)
3 CLUSTER-BY-MIN-COVERING(G)
4 CLUSTER-BY-MIN-CUT(G)
5 COST-RECOVERING(G)

Fig. 2. The partitioning algorithm at the top-level.

TLI1(g) and h2 ∈ TFO0(g)∪TLO1(g) such that coreP [h1] 6=
coreP [g] and coreP [h2] 6= coreP [g]. The path h1

∗
; g

∗
;

h2 is a combinational path passing through coreP [g], since
h1 ∈ TFI0(g) and h2 ∈ TFO0(g). That is, coreP [g] is not a
sequential core.

Suppose there exists a core Ci,m ∈ P which is not
sequential. Let gate g ∈ Ci,m be a combinational gate on
a combinational path h1

∗
; g1

∗
; g

∗
; g2

∗
; h2 passing

through Ci,m, where g1, g, g2 are combinational gates in Ci,m,
while h1, h2 are combinational gates in cores other than Ci,m.
Because h1

∗
; g1

∗
; g and g

∗
; g2

∗
; h2 are both

combinational, g1, h1 ∈ TFI0(g) and g2, h2 ∈ TFO0(g).
Because h1 and h2 are in different cores than g’s, so neither
of the two conditions is satisfied.

Let Cj be a sequential core on a critical loop with S
cores and R RSs. Hence, the system throughput is S

S+R (see
(Section I). Without loss of generality, let I be the input
boundary set of Cj induced by channel (Ci, Cj) and O be
the output boundary set induced by channel (Cj , Ck), where
all three cores {Ci, Cj , Ck} are part of the critical loop. The
next lemma states that the system throughput improvement that
can be obtained by partitioning Cj is limited by the shortest
sequential distance between the input boundary nodes in I and
the output boundary nodes in O of Cj .

Lemma 3 (Dominance of the Shortest Sequential Distance)
Let D be the shortest sequential distance from s ∈ I to
t ∈ O. Assume D is bounded. Let P = {Cj,1, . . . , Cj,n} be a
sequential partitioning of Cj and ϑP be the throughput of the
system in which Cj is replaced by P . Then ϑP ≤ (S+D)

(S+D+R) .

Proof: After core Cj is replaced by its sequential parti-
tioning P and the new core graph is constructed, the shortest
path from core Ci to Ck on the new core graph is at most
D. That is, the shortest path from Ci to Ck can have at most
D cores (which belong to P . Because within Cj the shortest
sequential distance from any node in I to any node in O is
D. By definition of sequential distance, this is the smallest
number of latches along any path from any node in I to any
node in O. If all of the paths on the new core graph from Ci
to Ck have more than D cores in P , at least one of the cores
will not contain any latch. This contradicts the assumption that
all of the cores are sequential cores.

Because the shortest distance from Ci to Ck on the new core
graph is D, the new system throughput is at most (L+D)

(L+D+R) .
Any longer path from Ci to Ck on the new core graph will
be dominated by the shortest path in terms of throughput.

Fig. 2 shows the partitioning algorithm that takes as input a
core Cj = {Vj , Ej} and a partitioning of its input boundaries
I = {I1, . . . , In}. Suppose core Cj has n input channels
(C1, Cj), . . . , (Cn, Cj), Ii ∈ I is the set of input boundaries
induced by the input channel (Ci, Cj). The algorithm clusters



the logic elements of the core into a number of smaller sequen-
tial cores and returns the size and the connectivity information
of these smaller cores. The procedures are described below:
• Procedure CLUSTER-LATCHES-BY-SEQ-DIST clusters

latches based on their shortest sequential distances to the
input boundary nodes I = {I1, . . . , In}. For each latch
` ∈ V , the procedure computes the shortest sequential
distance across nodes in each set of the input boundary nodes
to `. The computation associates to each latch ` an n-tuple
of shortest sequential distances 〈µ1, . . . , µn〉, which establish
an equivalence relation among all latches. The latches having
the same 〈µ1, . . . , µn〉 are grouped together as a seed kernel.
These seed kernels will be “grown” into cores containing
combinational gates in the following steps.
• Procedure CLUSTER-LATCHES-WITH-SHARED-FEEDBACK

clusters combinational logic gates on feedback paths of
latches. To satisfy Lemma 1, the procedure merges certain seed
kernels if necessary. For each latch ` the procedure computes
the intersection of TFI1(`) and TFO1(`), which is the set
of the combinational gates on the feedback paths of `. These
combinational gates are grouped into the seed kernel which
contains `. If a combinational gate is on the feedback paths
shared by multiple latches, all of the seed kernels of these
latches are merged into one seed kernel.
• Procedure CLUSTER-BY-MIN-COVERING merges selected

seed kernels of latches so that Lemma 2 is satisfied. For each
combinational gate g not yet grouped into any seed kernel, let
PI(g) = {CI,1(g), . . . , CI,m(g)} be the set of the seed kernels
of latches in TLI1(g), and PO(g) = {CO,1(g), . . . , CO,n(g)}
be the set of the seed kernels of latches in TLO1(g). By
Lemma 2, one of the two sets of seed kernels, PI(g) or PO(g),
needs to be merged.

Since the goal of the algorithm is to maximize the number
of partitions of Cj between Cj’s input and output channels,
the selection of merging either PI(g) or PO(g) is formulated
as a minimum-cost covering problem. The cost is the number
of seed kernels to be merged. In the covering matrix, each row
represents a combinational gate g that satisfies |PI(g)| > 1 and
|PO(g)| > 1, and is “covered” by two columns: one represents
PI(g) with cost |PI(g)|, and the other represents PO(g) with
cost |PO(g)|. The columns selected in the solution of the
covering problem represent the seed kernels that get merged.
Then, some combinational gates can be grouped into these
merged seed kernels. For combinational gate g, if |PI(g)| = 1
but |PO(g)| > 1, g is put into the only core in PI(g), and vice
versa for the case of |PI(g)| > 1 and |PO(g)| = 1. The case
of |PI(g)| = 1 and |PO(g)| = 1 is handled by the next step.
• Procedure CLUSTER-BY-MIN-CUT clusters the remaining

combinational gates, which are not clustered to any seed kernel
yet and satisfy |PI(g)| = 1 and |PO(g)| = 1. We call them
free gates because by Lemma 2 they can be either put into
the core of PI(g) or PO(g). In fact, the combinational nodes
not yet clustered in TFI0(g) and in TFO0(g) are also free
gates and enjoy the same degree of freedom in clustering.
The clustering of the free gates in TFI0(g) and TFO0(g)
decides the final boundary between PI(g) and PO(g). It is
desirable to minimize the number of edges crossing the two
connected cores PI(g) and PO(g) (this number is called cut

size), because these edges eventually become channel signals
and their number determines the area of the queues in the re-
ceiver’s shell. To minimize the cut size CLUSTER-BY-MIN-CUT

computes the so called unidirectional [7] minimum cut using a
maximum flow algorithm. The unidirectional constraint forces
all cut edges to be of the same direction and thus avoids
combinational paths. The flow network is constructed based
on the subgraph induced by the gates and edges that are both
in
(
TFI0(g) ∪ TLI1(g)

)
and

(
TFO0(g) ∪ TLO1(g)

)
. Each

induced edge in the flow network has unit capacity. In addition,
to maintain the unidirectional property, for each induced edge
a “reverse” edge having infinity capacity running in opposite
direction is added. We also add a source node and edges of
infinite capacity connecting it to all of the latches in TLI1(g).
Similarly, we add a sink node and edges of infinite capacity
connecting all of the latches in TLO1(g) to it. The min-cut
of the flow network is computed by solving the max-flow
problem. A node is clustered together with the other nodes
in the same cut set.

V. THROUGHPUT-PRESERVING MERGING ALGORITHM

Following the throughput-driven partitioning a new floor-
plan is derived. Based on the new floorplan it is possible
to reduce shell area overhead while maintaining the data
processing throughput by merging cores on non-critical loops.
The area saving comes from the fact that the merging of two
cores connected by a channel allows the queue storing data
of the channel in the downlink shell to be removed. The area
of a shell is linear to the total width of the input channels
of the shell. Under this assumption minimizing the shell area
overhead is equivalent to minimizing the total channel width∑
i,j W(i, j) by core merging.
The throughput-preserving merging algorithm iteratively

selects cores eligible for merging. The algorithm is as follows:
1) Select pairs of cores for merging such that the following

four conditions are satisfied: (i) the merging of the cores does
not change the data processing throughput; (ii) a core can only
be merged with at most one of its neighbors; (iii) a channel
(Ci, Cj) connecting the selected pair of cores Ci and Cj is
not pipelined by any RS; and (iv) the total area of each pair of
cores cannot exceed the maximum allowable area A to avoid
long intra-core wires.

2) Merge the selected cores and update the system topology.
If at least one pair of cores is selected and merged then repeat
the previous step, otherwise stop.

The selection of the cores that are eligible for merging is
done by solving a mixed integer linear program (MILP). The
objective is to minimize the total channel width after merging.

MILP 1 (Core Merging MILP) Let 1/T be the data pro-
cessing throughput of a LI system with n cores {C1, . . . , Cn},
A(i) be the area of core Ci, A be the maximally allowable
core area, R(i, j) be the number of relay stations inserted on
channel (Ci, Cj), W(i, j) be the width of channel (Ci, Cj),
and M be a large constant s.t. M� 2×

∑
i,j R(i, j).

Variables: {π1, . . . , πn} are variables of real values assigned
for each core. For channel (Ci, Cj) connecting core Ci and
Cj a binary variable mi,j ∈ {0, 1} is used to encode whether
core Ci and Cj are to be merged (mi,j = 0 if merged).
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Fig. 3. The top-level block diagram of stereo_vision based on its
functional partition. Primary inputs and outputs are not shown.

Objective: min
∑

(i,j)mi,jW(Ci, Cj).
Constraints: For channel (Ci, Cj) ∈ E, the following con-
straints are used:

πi − πj + T×mi,j ≥ (R(i, j) + 1)mi,j (1)
πj − πi + (T ·M)×mi,j ≥ (R(i, j) + 1)mi,j , (2)

mi,j = 1 if R(i, j) ≥ 1 (3)

mi,j = 1 if A(i) + A(j) ≥ A (4)

Eq. (1)–(2) are used to maintain the throughput 1/T. For
each channel (i, j), if (mi,j = 0) in the solution of the MILP
then core Ci and Cj are merged as a new core Ck whose
area is A(k) = A(i) + A(j). For any core C` feeding both
core Ci and Cj , channels (C`, Ci) and (C`, Cj) are replaced
by a new channel (C`, Ck) with W(`, k) = W(`, i)+W(`, j)
and R(`, k) = max(R(`, i),R(`, j)). Similar rules apply to
the case in which core C` is fed by both Ci and Cj .

VI. EXPERIMENTAL RESULTS

To evaluate the proposed high-level physical synthesis flow
we completed a case study with stereo_vision, a real SoC
design that measures stereo depth [9]. It consists of 16
instanced IP blocks for a total of over half a million gates
and about 200,000 flip-flops. The top-level block diagram of
this SoC and its characteristics after synthesis and technology
mapping are reported in Fig. 3. We synthesized two versions
of stereo_vision with Synopsys DesignCompiler [23] and a
90nm industrial standard cell library3: the original (“strict”)
system implementation and a latency-insensitive one.4

Applicability. The first experiment analyzes the potential
improvements of data processing throughput resulted from our
throughput-driven partitioning algorithm. The potential gain of
throughput depends on the increase of the number of cores
on a critical loop after a core on the loop is partitioned.
Fig. 4 reports the five-number summaries of all potential
length increases caused by partitioning the top-level cores of
stereo_vision, and the run time of the partitioning on Intel
Core 2 Duo with 2GB memory. For a core with n input and
m output channels, there are potentially n×m loops passing
through the core in the system whose lengths may increase
after partitioning. The maximum, the first and third quartiles,

3We re-targeted the design from FPGA to ASIC platforms. We replace all
FPGA-specific IP cores used in the design with equivalent ones from Synopsys
DesignWare [24]. The SRAMs are generated by a register file generator.

4The queue capacity of all shells in the LI implementation is set to two.

minimum length increase partitioning
core min Q1 median Q3 max run time (sec.)
sv chip0 2 2 4 ∞ ∞ 17.26
sv chip1 4 5 5 ∞ ∞ 52.46
sv chip3 2 2 ∞ ∞ ∞ 0.06
h fltr (×5) 5 11 11 11 ∞ 2.83
v fltr 226 (×2) 1 4 232 ∞ ∞ 10.15
v fltr 316 (×2) 1 4 322 ∞ ∞ 17.30
v fltr 496 (×2) 1 4 502 ∞ ∞ 41.93
fsm 1 1 1 3 ∞ 0.21
port 3 3 3 3 ∞ 0.20

Fig. 4. The five-number summaries of the length increases after partitioning.

the median, and the minimum (the five numbers) of these
n × m length changes are listed in each row. For each core
some of the paths affected by the core’s partitioning become
disconnected (indicated by the∞ symbols). The disconnection
implies that if the original path is part of a loop, the loop will
disappear after the core is partitioned. It also identifies that
the corresponding output channel has no logical dependency
on the input channel. Further, we can observe that all but one
of the medians of length increase are greater than 1, indicating
the chances of throughput improvement are high.

Comparative Analysis. In the second experiment we
floorplanned three latency-insensitive implementations of
stereo_vision obtained with our physical synthesis flow. As a
reference point, we also floorplanned the strict implementation
with PARQUET [1]. The results are summarized in Fig. 5.
Each row reports cell area (broken down into core and shell
area), channel width, total number and width of relay stations,
floorplan area, and data processing throughput. Row “strict”
shows the results of floorplanning the strict implementation:
since this is not latency-insensitive, the shell area is zero and
throughput is one. The next three rows report the floorplan
results after each of the three steps of our synthesis flow (see
Section II). The corresponding floorplans are shown in Fig. 6.
Row “starting floorplan” shows the results of the traditional
flow which applies throughput-driven floorplanning [5] to the
latency-insensitive implementation based on the original SoC
organization, i.e. without using our partitioning and merging
algorithms to reorganize the logic across the cores. Row
“post-partitioning” shows the results after throughput-driven
partitioning is applied to core sv_chip0 to divide it into
smaller cores. Row “post-merging” gives the floorplanning
results after the throughput-preserving merging is performed.

All floorplans are required to fit into a fixed outline of unit
aspect ratio with 15% white space. The best run of 50 different
floorplanning tries is used. The minimum half-perimeter of
the largest core in the design is set as the critical length: any
channel longer than this length needs to be pipelined.5 The
area of the largest core is used as the maximum allowable area
in the merging algorithm. For each core the allowable area is
set 10% larger than the core’s aggregate cell area, anticipating
the extra room required in the later placement stage.

With respect to the traditional flow, which returns a LI
implementation with 0.857 of throughput and an area overhead
of 3% compared to the strict implementation, our flow not only
improves the system throughput but also the floorplan area.
After applying the partitioning algorithm and re-floorplanning
the design, the throughput is improved to 1.00, the ideal value.
Although partitioning causes an increase in area overhead due

5This length is about 67% of the width of the chip, or 2255µm.



to shell encapsulation (12% more in aggregated cell area,
which translates to a 16% area overhead compared to the
floorplan of the strict system), this is fully recouped by the
throughput-preserving merging algorithm, which finishes in 5
seconds. In fact, merging not only retains the ideal throughput,
but also brings down the area overhead of the shells to
3%. In summary, after one iteration of our synthesis flow,
the throughput of the LI implementation of stereo_vision

is improved by 16.7% while the floorplan area overhead,
compared to the strict system, is reduced from 5% to 3%.

VII. RELATED WORK

Partitioning and floorplanning are important physical syn-
thesis techniques. However many of the earlier works precede
LID and do not consider its optimization goals and constraints.
Classic partitioning algorithms aim for the minimization of
the number of nets crossing different partitions, called “cut”.
These algorithms usually do not avoid combinational paths
between inputs and outputs of the resulting partitions, and
thus are not suitable for LID. Cut-minimization partitioning
was recently used in the synthesis flow which combines
the floorplanning and placement of mixed-sized designs [6],
[22]. On the other hand, several partitioning algorithms avoid
the combinational paths in the resulting partitions [7], [13],
[18], [27], but none of them considers system topology for
throughput optimization of LID. As to floorplanning, classic
optimization goals include area and total wire length, while
more recent works optimize the instruction execution rate of
microprocessors in the presence of multi-cycle communication
latencies between computation units [11], [19], [21].

Lin et al. in [17] identify the upper bound of the “data
processing rate” or equivalently the effective clock frequency
of a latency-insensitive system as the minimum ratio of the
number of latches to the total delay across all loops in the
system. In [17] a clustering algorithm is proposed to optimize
this upper bound. Their algorithm allows gate duplications and
assigns a constant delay to each of the inter-core wires. In con-
trast, our approach does not change the RTL implementation
of the original design, and thus is more suitable to large SoCs.
Further our integrated flow uses more accurate estimations of
wire delays derived from the system-level floorplan.

Two floorplanning approaches specifically designed for
performance optimization of latency-insensitive systems have
been recently proposed. In [5] a fast algorithm approximating
the data processing throughput is used as part of the cost
calculation of PARQUET [1]. In [26], instead, the floorplanner
computes the exact value of the aforementioned upper-bound
as part of its main cost function. Differently from these works
on LID floorplanning, we perform combined optimizations
of floorplan with RTL shell encapsulation by analyzing the
logical structures and physical locations of the cores.

VIII. CONCLUSION

The proposed physical synthesis flow combines a
throughput-driven partitioning and a throughput-preserving
merging algorithm with a published floorplanner to optimize
the global floorplan of latency-insensitive implementation of
a multi-core SoC by analyzing and leveraging the local,
intra-core logic structure of its individual cores. Experimental

results on a large SoC design shows a 16.7%-speedup in data
processing throughput and a 2.1%-reduction in area occupa-
tion, confirming the effectiveness of the proposed approach.
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implementation cell area (µm2) channel width RS RS width floorplan area
core shell total overhead (bits) (number) (bits) (µm2) overhead throughput

strict 7651710 0 7651710 1.00 – – – 8741760 1.00 1.00
a) LI: starting floorplan 7651710 225871 7877581 1.03 3124 9 378 9200440 1.05 0.83
b) LI: post-partitioning 7651710 939332 8591042 1.12 12685 19 1075 10151900 1.16 1.00
c) LI: post-merging 7651710 190812 7842522 1.03 2625 0 0 9005140 1.03 1.00

Fig. 5. Results of floorplanning stereo_vision: strict version and LI versions (after each step of the proposed physical synthesis flow.)
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Fig. 6. Fixed-outline floorplans of stereo_vision after each of the steps of the proposed flow: (a) starting floorplan; (b) post-partitioning; (c) post-merging.
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