663,392 research outputs found

    REMM-Studio: an Integrated Model-Driven Environment for Requirements Specification, Validation and Formatting

    Get PDF
    In order to integrate requirements into the current Model-Driven Engineering (MDE) approach, the traditional document-based requirements specification process should be changed into a requirements modelling process. To achieve this we propose a requirements metamodel called REMM Requirements Engineering MetaModel) which includes the elements that should appear in a requirements model (requirements, stakeholders, test cases, etc.) together with the relationships that may appear between them. This metamodel is the basis of the REMM-Studio environment which enables: (1) to build graphical requirements models, (2) to validate them against the metamodel and against a set of additional OCL constraints, and (3) to automatically generate a navigable Software Requirements Specification (SRS) document as the main deliverable of the Requirements Engineering process. REMM-Studio is expected to ease the integration of requirements with other development models (e.g. component models) and to facilitate the validation of the SRS thanks to its navigability.MEDWSA (TIN2006-15175-C05-02), DEDALO (TIN2006-15175-C05-03), DESERT (PBC-05-012-3)Escuela Técnica superior de Ingeniería Agronómic

    Model Driven Engineering and Dependability Analyses: The Topcased Approach

    Get PDF
    International audienceModel Driven Engineering approaches are widely promoted to overcome difficulties to design, validate and maintain large complex systems. They present interesting dependability characteristics especially in terms of prevention of design faults and validation of design correctness. However industrial needs, practices and applicable standards impose constraints on the dependability activities to perform and justify. Therefore it is necessary to analyze how a complete dependability and safety process can be integrated with model-driven approaches within a seamless global process: which dependability activities are naturally covered or facilitated by model-driven approaches, and which additional activities are needed with which support. This paper presents the results of a study aiming at the establishment of requirements to model-driven engineering methods and tools, to support dependability analyses

    A requirements-based software process maturity model

    Get PDF
    The requirements phase of software development is an on-going problem for the software engineering community. The many disparate recommendations and best practices found in the literature make it difficult for software organisations to recognise which practices apply to their individual needs. The aim of this thesis is to pull together key solutions into a framework that allows practitioners to assess where their requirements process needs strengthening and to provide a means in which improvements can be achieved. In this thesis I show how I design, develop and validate a model of requirements engineering processes. This requirements capability maturity model (R-CMM) adheres to the characteristics of the Software Engineering Institute's Software Capability Maturity Model (SW-CMM) and is designed to take practitioners from an immature process capability through to an advanced capability. I contribute to the body of knowledge in both software process improvement and requirements engineering (RE) by providing rigorous detail of how a process maturity framework is developed to support RE practices. The model is generic and should apply to many software development organisations. The R-CMM guides users towards a view of RE that is based on goals and is problem driven. The SW-CMM framework is transformed into a simplified model that relates goals and problems to individual RE practises

    OpenUP/MDRE: A Model-Driven Requirements Engineering Approach for Health-Care Systems

    Full text link
    The domains and problems for which it would be desirable to introduce information systems are currently very complex and the software development process is thus of the same complexity. One of these domains is health-care. Model-Driven Development (MDD) and Service-Oriented Architecture (SOA) are software development approaches that raise to deal with complexity, to reduce time and cost of development, augmenting flexibility and interoperability. However, many techniques and approaches that have been introduced are of little use when not provided under a formalized and well-documented methodological umbrella. A methodology gives the process a well-defined structure that helps in fast and efficient analysis and design, trouble-free implementation, and finally results in the software product improved quality. While MDD and SOA are gaining their momentum toward the adoption in the software industry, there is one critical issue yet to be addressed before its power is fully realized. It is beyond dispute that requirements engineering (RE) has become a critical task within the software development process. Errors made during this process may have negative effects on subsequent development steps, and on the quality of the resulting software. For this reason, the MDD and SOA development approaches should not only be taken into consideration during design and implementation as usually occurs, but also during the RE process. The contribution of this dissertation aims at improving the development process of health-care applications by proposing OpenUP/MDRE methodology. The main goal of this methodology is to enrich the development process of SOA-based health-care systems by focusing on the requirements engineering processes in the model-driven context. I believe that the integration of those two highly important areas of software engineering, gathered in one consistent process, will provide practitioners with many benets. It is noteworthy that the approach presented here was designed for SOA-based health-care applications, however, it also provides means to adapt it to other architectural paradigms or domains. The OpenUP/MDRE approach is an extension of the lightweight OpenUP methodology for iterative, architecture-oriented and model-driven software development. The motivation for this research comes from the experience I gained as a computer science professional working on the health-care systems. This thesis also presents a comprehensive study about: i) the requirements engineering methods and techniques that are being used in the context of the model-driven development, ii) known generic but flexible and extensible methodologies, as well as approaches for service-oriented systems development, iii) requirements engineering techniques used in the health-care industry. Finally, OpenUP/MDRE was applied to a concrete industrial health-care project in order to show the feasibility and accuracy of this methodological approach.Loniewski, G. (2010). OpenUP/MDRE: A Model-Driven Requirements Engineering Approach for Health-Care Systems. http://hdl.handle.net/10251/11652Archivo delegad

    Requirements engineering for computer integrated environments in construction

    Get PDF
    A Computer Integrated Environment (CIE) is the type of innovative integrated information system that helps to reduce fragmentation and enables the stakeholders to collaborate together in business. Researchers have observed that the concept of CIE has been the subject of research for many years but the uptake of this technology has been very limited because of the development of the technology and its effective implementation. Although CIE is very much valued by both industrialists and academics, the answers to the question of how to develop and how to implement it are still not clear. The industrialists and researchers conveyed that networking, collaboration, information sharing and communication will become popular and critical issues in the future, which can be managed through CIE systems. In order for successful development of the technology, successful delivery, and effective implementation of user and industry-oriented CIE systems, requirements engineering seems a key parameter. Therefore, through experiences and lessons learnt in various case studies of CIE systems developments, this book explains the development of a requirements engineering framework specific to the CIE system. The requirements engineering process that has been developed in the research is targeted at computer integrated environments with a particular interest in the construction industry as the implementation field. The key features of the requirements engineering framework are the following: (1) ready-to-use, (2) simple, (3) domain specific, (4) adaptable and (5) systematic, (6) integrated with the legacy systems. The method has three key constructs: i) techniques for requirements development, which includes the requirement elicitation, requirements analysis/modelling and requirements validation, ii) requirements documentation and iii) facilitating the requirements management. It focuses on system development methodologies for the human driven ICT solutions that provide communication, collaboration, information sharing and exchange through computer integrated environments for professionals situated in discrete locations but working in a multidisciplinary and interdisciplinary environment. The overview for each chapter of the book is as follows; Chapter 1 provides an overview by setting the scene and presents the issues involved in requirements engineering and CIE (Computer Integrated Environments). Furthermore, it makes an introduction to the necessity for requirements engineering for CIE system development, experiences and lessons learnt cumulatively from CIE systems developments that the authors have been involved in, and the process of the development of an ideal requirements engineering framework for CIE systems development, based on the experiences and lessons learnt from the multi-case studies. Chapter 2 aims at building up contextual knowledge to acquire a deeper understanding of the topic area. This includes a detailed definition of the requirements engineering discipline and the importance and principles of requirements engineering and its process. In addition, state of the art techniques and approaches, including contextual design approach, the use case modelling, and the agile requirements engineering processes, are explained to provide contextual knowledge and understanding about requirements engineering to the readers. After building contextual knowledge and understanding about requirements engineering in chapter 2, chapter 3 attempts to identify a scope and contextual knowledge and understanding about computer integrated environments and Building Information Modelling (BIM). In doing so, previous experiences of the authors about systems developments for computer integrated environments are explained in detail as the CIE/BIM case studies. In the light of contextual knowledge gained about requirements engineering in chapter 2, in order to realize the critical necessity of requirements engineering to combine technology, process and people issues in the right balance, chapter 4 will critically evaluate the requirements engineering activities of CIE systems developments that are explained in chapter 3. Furthermore, to support the necessity of requirements engineering for human centred CIE systems development, the findings from semi-structured interviews are shown in a concept map that is also explained in this chapter. In chapter 5, requirements engineering is investigated from different angles to pick up the key issues from discrete research studies and practice such as traceability through process and product modelling, goal-oriented requirements engineering, the essential and incidental complexities in requirements models, the measurability of quality requirements, the fundamentals of requirements engineering, identifying and involving the stakeholders, reconciling software requirements and system architectures and barriers to the industrial uptake of requirements engineering. In addition, a comprehensive research study measuring the success of requirements engineering processes through a set of evaluation criteria is introduced. Finally, the key issues and the criteria are comparatively analyzed and evaluated in order to match each other and confirm the validity of the criteria for the evaluation and assessment of the requirements engineering implementation in the CIE case study projects in chapter 7 and the key issues will be used in chapter 9 to support the CMM (Capability Maturity Model) for acceptance and wider implications of the requirements engineering framework to be proposed in chapter 8. Chapter 6 explains and particularly focuses on how the requirements engineering activities in the case study projects were handled by highlighting strengths and weaknesses. This will also include the experiences and lessons learnt from these system development practices. The findings from these developments will also be utilized to support the justification of the necessity of a requirements engineering framework for the CIE systems developments. In particular, the following are addressed. • common and shared understanding in requirements engineering efforts, • continuous improvement, • outputs of requirement engineering • reflections and the critical analysis of the requirements engineering approaches in these practices. The premise of chapter 7 is to evaluate and assess the requirements engineering approaches in the CIE case study developments from multiple viewpoints in order to find out the strengths and the weaknesses in these requirements engineering processes. This evaluation will be mainly based on the set of criteria developed by the researchers and developers in the requirements engineering community in order to measure the success rate of the requirements engineering techniques after their implementation in the various system development projects. This set of criteria has already been introduced in chapter 5. This critical assessment includes conducting a questionnaire based survey and descriptive statistical analysis. In chapter 8, the requirements engineering techniques tested in the CIE case study developments are composed and compiled into a requirements engineering process in the light of the strengths and the weaknesses identified in the previous chapter through benchmarking with a Capability Maturity Model (CMM) to ensure that it has the required level of maturity for implementation in the CIE systems developments. As a result of this chapter, a framework for a generic requirements engineering process for CIE systems development will be proposed. In chapter 9, the authors will discuss the acceptance and the wider implications of the proposed framework of requirements engineering process using the CMM from chapter 8 and the key issues from chapter 5. Chapter 10 is the concluding chapter and it summarizes the findings and brings the book to a close with recommendations for the implementation of the Proposed RE framework and also prescribes a guideline as a way forward for better implementation of requirements engineering for successful developments of the CIE systems in the future

    (MU-CTL-01-12) Towards Model Driven Game Engineering in SimSYS: Requirements for the Agile Software Development Process Game

    Get PDF
    Software Engineering (SE) and Systems Engineering (Sys) are knowledge intensive, specialized, rapidly changing disciplines; their educational infrastructure faces significant challenges including the need to rapidly, widely, and cost effectively introduce new or revised course material; encourage the broad participation of students; address changing student motivations and attitudes; support undergraduate, graduate and lifelong learning; and incorporate the skills needed by industry. Games have a reputation for being fun and engaging; more importantly immersive, requiring deep thinking and complex problem solving. We believe educational games are essential in the next generation of e-learning tools. An extensible, freely available, engaging, problem-based game platform that provides students with an interactive simulated experience closely resembling the activities performed in a (real) industry development project would transform the SE/Sys education infrastructure. Our goal is to extend the state-of-the-art research in SE/Sys education by investigating a game development platform (GDP) from an interdisciplinary perspective (education, game research, and software/systems engineering). A meta-model has been proposed to provide a rigourous foundation that integrates the three disciplines. The GDP is intended to support the semi-automated development of collections of scripted games and their execution, where each game embodies a specific set of learning objectives. The games are scripted using a template based approach. The templates integrate three approaches: use cases; storyboards; and state machines (timed, concurrent, hierarchical state machines). The specification templates capture the structure of the game (Game, Acts, Scenes, Screens, Challenges), storyline, characters (player, non-player, external), graphics, music/sound effects, rules, and so on. The instantiated templates are (manually) transformed into XML game scripts that can be loaded into the SimSYS Game Play Engine. As a game is played, the game play events are logged; they are analyzed to automatically assess a player’s accomplishments and automatically adapt the game play script. Currently, we are manually defining a collection of games. The games are being used to ensure the GDP is flexible and reliable (i.e., the prototype can load and correctly run a variety of game scripts), the ontology is comprehensive, and the templates assist in defining well-organized, modular game scripts. In this report, we present the initial part of an Agile Software Development Process game (Act I, Scenes 1 and 2) that embodies learning objectives related to SE fundamentals (requirements, architecture, testing, process); planning with Gantt charts; working with budgets; and selecting a team for an agile development project. A student player is rewarded in the game by getting hired, scoring points, or getting promoted to lead a project. The game has a variety of settings including a classroom, job fair, and a work environment with meeting rooms, cubicles, and a water cooler station. The main non-player characters include a teacher, boss, and an evil peer. In the future, semi-automated support for creating new game scripts will be explored using a wizard interface. The templates will be formally defined, supporting automated transformation into XML game scripts that can be loaded into the SimSYS Game Engine. We also plan to explore transforming the requirements into a notation that can be imported into a commercial tool that supports Statechart simulation

    Towards Guidelines for Preventing Critical Requirements Engineering Problems

    Get PDF
    Context] Problems in Requirements Engineering (RE) can lead to serious consequences during the software development lifecycle. [Goal] The goal of this paper is to propose empirically-based guidelines that can be used by different types of organisations according to their size (small, medium or large) and process model (agile or plan-driven) to help them in preventing such problems. [Method] We analysed data from a survey on RE problems answered by 228 organisations in 10 different countries. [Results] We identified the most critical RE problems, their causes and mitigation actions, organizing this information by clusters of size and process model. Finally, we analysed the causes and mitigation actions of the critical problems of each cluster to get further insights into how to prevent them. [Conclusions] Based on our results, we suggest preliminary guidelines for preventing critical RE problems in response to context characteristics of the companies.Comment: Proceedings of the 42th Euromicro Conference on Software Engineering and Advanced Applications, 201

    Mapping customer needs to engineering characteristics: an aerospace perspective for conceptual design

    No full text
    Designing complex engineering systems, such as an aircraft or an aero-engine, is immensely challenging. Formal Systems Engineering (SE) practices are widely used in the aerospace industry throughout the overall design process to minimise the overall design effort, corrective re-work, and ultimately overall development and manufacturing costs. Incorporating the needs and requirements from customers and other stakeholders into the conceptual and early design process is vital for the success and viability of any development programme. This paper presents a formal methodology, the Value-Driven Design (VDD) methodology that has been developed for collaborative and iterative use in the Extended Enterprise (EE) within the aerospace industry, and that has been applied using the Concept Design Analysis (CODA) method to map captured Customer Needs (CNs) into Engineering Characteristics (ECs) and to model an overall ‘design merit’ metric to be used in design assessments, sensitivity analyses, and engineering design optimisation studies. Two different case studies with increasing complexity are presented to elucidate the application areas of the CODA method in the context of the VDD methodology for the EE within the aerospace secto

    Reusing Test-Cases on Different Levels of Abstraction in a Model Based Development Tool

    Full text link
    Seamless model based development aims to use models during all phases of the development process of a system. During the development process in a component-based approach, components of a system are described at qualitatively differing abstraction levels: during requirements engineering component models are rather abstract high-level and underspecified, while during implementation the component models are rather concrete and fully specified in order to enable code generation. An important issue that arises is assuring that the concrete models correspond to abstract models. In this paper, we propose a method to assure that concrete models for system components refine more abstract models for the same components. In particular we advocate a framework for reusing testcases at different abstraction levels. Our approach, even if it cannot completely prove the refinement, can be used to ensure confidence in the development process. In particular we are targeting the refinement of requirements which are represented as very abstract models. Besides a formal model of our approach, we discuss our experiences with the development of an Adaptive Cruise Control (ACC) system in a model driven development process. This uses extensions which we implemented for our model-based development tool and which are briefly presented in this paper.Comment: In Proceedings MBT 2012, arXiv:1202.582

    A Model-Driven approach for functional test case generation

    Get PDF
    Test phase is one of the most critical phases in software engineering life cycle to assure the final system quality. In this context, functional system test cases verify that the system under test fulfills its functional specification. Thus, these test cases are frequently designed from the different scenarios and alternatives depicted in functional requirements. The objective of this paper is to introduce a systematic process based on the Model-Driven paradigm to automate the generation of functional test cases from functional requirements. For this aim, a set of metamodels and transformations and also a specific language domain to use them is presented. The paper finishes stating learned lessons from the trenches as well as relevant future work and conclusions that draw new research lines in the test cases generation context.Ministerio de Economía y Competitividad TIN2013-46928-C3-3-
    • …
    corecore