12 research outputs found

    Data-driven design of intelligent wireless networks: an overview and tutorial

    Get PDF
    Data science or "data-driven research" is a research approach that uses real-life data to gain insight about the behavior of systems. It enables the analysis of small, simple as well as large and more complex systems in order to assess whether they function according to the intended design and as seen in simulation. Data science approaches have been successfully applied to analyze networked interactions in several research areas such as large-scale social networks, advanced business and healthcare processes. Wireless networks can exhibit unpredictable interactions between algorithms from multiple protocol layers, interactions between multiple devices, and hardware specific influences. These interactions can lead to a difference between real-world functioning and design time functioning. Data science methods can help to detect the actual behavior and possibly help to correct it. Data science is increasingly used in wireless research. To support data-driven research in wireless networks, this paper illustrates the step-by-step methodology that has to be applied to extract knowledge from raw data traces. To this end, the paper (i) clarifies when, why and how to use data science in wireless network research; (ii) provides a generic framework for applying data science in wireless networks; (iii) gives an overview of existing research papers that utilized data science approaches in wireless networks; (iv) illustrates the overall knowledge discovery process through an extensive example in which device types are identified based on their traffic patterns; (v) provides the reader the necessary datasets and scripts to go through the tutorial steps themselves

    Integration of Data Mining into Scientific Data Analysis Processes

    Get PDF
    In recent years, using advanced semi-interactive data analysis algorithms such as those from the field of data mining gained more and more importance in life science in general and in particular in bioinformatics, genetics, medicine and biodiversity. Today, there is a trend away from collecting and evaluating data in the context of a specific problem or study only towards extensively collecting data from different sources in repositories which is potentially useful for subsequent analysis, e.g. in the Gene Expression Omnibus (GEO) repository of high throughput gene expression data. At the time the data are collected, it is analysed in a specific context which influences the experimental design. However, the type of analyses that the data will be used for after they have been deposited is not known. Content and data format are focused only to the first experiment, but not to the future re-use. Thus, complex process chains are needed for the analysis of the data. Such process chains need to be supported by the environments that are used to setup analysis solutions. Building specialized software for each individual problem is not a solution, as this effort can only be carried out for huge projects running for several years. Hence, data mining functionality was developed to toolkits, which provide data mining functionality in form of a collection of different components. Depending on the different research questions of the users, the solutions consist of distinct compositions of these components. Today, existing solutions for data mining processes comprise different components that represent different steps in the analysis process. There exist graphical or script-based toolkits for combining such components. The data mining tools, which can serve as components in analysis processes, are based on single computer environments, local data sources and single users. However, analysis scenarios in medical- and bioinformatics have to deal with multi computer environments, distributed data sources and multiple users that have to cooperate. Users need support for integrating data mining into analysis processes in the context of such scenarios, which lacks today. Typically, analysts working with single computer environments face the problem of large data volumes since tools do not address scalability and access to distributed data sources. Distributed environments such as grid environments provide scalability and access to distributed data sources, but the integration of existing components into such environments is complex. In addition, new components often cannot be directly developed in distributed environments. Moreover, in scenarios involving multiple computers, multiple distributed data sources and multiple users, the reuse of components, scripts and analysis processes becomes more important as more steps and configuration are necessary and thus much bigger efforts are needed to develop and set-up a solution. In this thesis we will introduce an approach for supporting interactive and distributed data mining for multiple users based on infrastructure principles that allow building on data mining components and processes that are already available instead of designing of a completely new infrastructure, so that users can keep working with their well-known tools. In order to achieve the integration of data mining into scientific data analysis processes, this thesis proposes an stepwise approach of supporting the user in the development of analysis solutions that include data mining. We see our major contributions as the following: first, we propose an approach to integrate data mining components being developed for a single processor environment into grid environments. By this, we support users in reusing standard data mining components with small effort. The approach is based on a metadata schema definition which is used to grid-enable existing data mining components. Second, we describe an approach for interactively developing data mining scripts in grid environments. The approach efficiently supports users when it is necessary to enhance available components, to develop new data mining components, and to compose these components. Third, building on that, an approach for facilitating the reuse of existing data mining processes based on process patterns is presented. It supports users in scenarios that cover different steps of the data mining process including several components or scripts. The data mining process patterns support the description of data mining processes at different levels of abstraction between the CRISP model as most general and executable workflows as most concrete representation

    Advances in Artificial Intelligence: Models, Optimization, and Machine Learning

    Get PDF
    The present book contains all the articles accepted and published in the Special Issue “Advances in Artificial Intelligence: Models, Optimization, and Machine Learning” of the MDPI Mathematics journal, which covers a wide range of topics connected to the theory and applications of artificial intelligence and its subfields. These topics include, among others, deep learning and classic machine learning algorithms, neural modelling, architectures and learning algorithms, biologically inspired optimization algorithms, algorithms for autonomous driving, probabilistic models and Bayesian reasoning, intelligent agents and multiagent systems. We hope that the scientific results presented in this book will serve as valuable sources of documentation and inspiration for anyone willing to pursue research in artificial intelligence, machine learning and their widespread applications

    Towards high quality and flexible future internet architectures

    Get PDF

    Systematic Approaches for Telemedicine and Data Coordination for COVID-19 in Baja California, Mexico

    Get PDF
    Conference proceedings info: ICICT 2023: 2023 The 6th International Conference on Information and Computer Technologies Raleigh, HI, United States, March 24-26, 2023 Pages 529-542We provide a model for systematic implementation of telemedicine within a large evaluation center for COVID-19 in the area of Baja California, Mexico. Our model is based on human-centric design factors and cross disciplinary collaborations for scalable data-driven enablement of smartphone, cellular, and video Teleconsul-tation technologies to link hospitals, clinics, and emergency medical services for point-of-care assessments of COVID testing, and for subsequent treatment and quar-antine decisions. A multidisciplinary team was rapidly created, in cooperation with different institutions, including: the Autonomous University of Baja California, the Ministry of Health, the Command, Communication and Computer Control Center of the Ministry of the State of Baja California (C4), Colleges of Medicine, and the College of Psychologists. Our objective is to provide information to the public and to evaluate COVID-19 in real time and to track, regional, municipal, and state-wide data in real time that informs supply chains and resource allocation with the anticipation of a surge in COVID-19 cases. RESUMEN Proporcionamos un modelo para la implementación sistemática de la telemedicina dentro de un gran centro de evaluación de COVID-19 en el área de Baja California, México. Nuestro modelo se basa en factores de diseño centrados en el ser humano y colaboraciones interdisciplinarias para la habilitación escalable basada en datos de tecnologías de teleconsulta de teléfonos inteligentes, celulares y video para vincular hospitales, clínicas y servicios médicos de emergencia para evaluaciones de COVID en el punto de atención. pruebas, y para el tratamiento posterior y decisiones de cuarentena. Rápidamente se creó un equipo multidisciplinario, en cooperación con diferentes instituciones, entre ellas: la Universidad Autónoma de Baja California, la Secretaría de Salud, el Centro de Comando, Comunicaciones y Control Informático. de la Secretaría del Estado de Baja California (C4), Facultades de Medicina y Colegio de Psicólogos. Nuestro objetivo es proporcionar información al público y evaluar COVID-19 en tiempo real y rastrear datos regionales, municipales y estatales en tiempo real que informan las cadenas de suministro y la asignación de recursos con la anticipación de un aumento de COVID-19. 19 casos.ICICT 2023: 2023 The 6th International Conference on Information and Computer Technologieshttps://doi.org/10.1007/978-981-99-3236-

    Programming Languages and Systems

    Get PDF
    This open access book constitutes the proceedings of the 30th European Symposium on Programming, ESOP 2021, which was held during March 27 until April 1, 2021, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021. The conference was planned to take place in Luxembourg and changed to an online format due to the COVID-19 pandemic. The 24 papers included in this volume were carefully reviewed and selected from 79 submissions. They deal with fundamental issues in the specification, design, analysis, and implementation of programming languages and systems

    Safety and Reliability - Safe Societies in a Changing World

    Get PDF
    The contributions cover a wide range of methodologies and application areas for safety and reliability that contribute to safe societies in a changing world. These methodologies and applications include: - foundations of risk and reliability assessment and management - mathematical methods in reliability and safety - risk assessment - risk management - system reliability - uncertainty analysis - digitalization and big data - prognostics and system health management - occupational safety - accident and incident modeling - maintenance modeling and applications - simulation for safety and reliability analysis - dynamic risk and barrier management - organizational factors and safety culture - human factors and human reliability - resilience engineering - structural reliability - natural hazards - security - economic analysis in risk managemen
    corecore