16 research outputs found

    ProS: Data Series Progressive k-NN Similarity Search and Classification with Probabilistic Quality Guarantees

    Full text link
    Existing systems dealing with the increasing volume of data series cannot guarantee interactive response times, even for fundamental tasks such as similarity search. Therefore, it is necessary to develop analytic approaches that support exploration and decision making by providing progressive results, before the final and exact ones have been computed. Prior works lack both efficiency and accuracy when applied to large-scale data series collections. We present and experimentally evaluate ProS, a new probabilistic learning-based method that provides quality guarantees for progressive Nearest Neighbor (NN) query answering. We develop our method for k-NN queries and demonstrate how it can be applied with the two most popular distance measures, namely, Euclidean and Dynamic Time Warping (DTW). We provide both initial and progressive estimates of the final answer that are getting better during the similarity search, as well suitable stopping criteria for the progressive queries. Moreover, we describe how this method can be used in order to develop a progressive algorithm for data series classification (based on a k-NN classifier), and we additionally propose a method designed specifically for the classification task. Experiments with several and diverse synthetic and real datasets demonstrate that our prediction methods constitute the first practical solutions to the problem, significantly outperforming competing approaches. This paper was published in the VLDB Journal (2022)

    BIG DATA AND ANALYTICS AS A NEW FRONTIER OF ENTERPRISE DATA MANAGEMENT

    Get PDF
    Big Data and Analytics (BDA) promises significant value generation opportunities across industries. Even though companies increase their investments, their BDA initiatives fall short of expectations and they struggle to guarantee a return on investments. In order to create business value from BDA, companies must build and extend their data-related capabilities. While BDA literature has emphasized the capabilities needed to analyze the increasing volumes of data from heterogeneous sources, EDM researchers have suggested organizational capabilities to improve data quality. However, to date, little is known how companies actually orchestrate the allocated resources, especially regarding the quality and use of data to create value from BDA. Considering these gaps, this thesis – through five interrelated essays – investigates how companies adapt their EDM capabilities to create additional business value from BDA. The first essay lays the foundation of the thesis by investigating how companies extend their Business Intelligence and Analytics (BI&A) capabilities to build more comprehensive enterprise analytics platforms. The second and third essays contribute to fundamental reflections on how organizations are changing and designing data governance in the context of BDA. The fourth and fifth essays look at how companies provide high quality data to an increasing number of users with innovative EDM tools, that are, machine learning (ML) and enterprise data catalogs (EDC). The thesis outcomes show that BDA has profound implications on EDM practices. In the past, operational data processing and analytical data processing were two “worlds” that were managed separately from each other. With BDA, these "worlds" are becoming increasingly interdependent and organizations must manage the lifecycles of data and analytics products in close coordination. Also, with BDA, data have become the long-expected, strategically relevant resource. As such data must now be viewed as a distinct value driver separate from IT as it requires specific mechanisms to foster value creation from BDA. BDA thus extends data governance goals: in addition to data quality and regulatory compliance, governance should facilitate data use by broadening data availability and enabling data monetization. Accordingly, companies establish comprehensive data governance designs including structural, procedural, and relational mechanisms to enable a broad network of employees to work with data. Existing EDM practices therefore need to be rethought to meet the emerging BDA requirements. While ML is a promising solution to improve data quality in a scalable and adaptable way, EDCs help companies democratize data to a broader range of employees

    Adaptive Automated Machine Learning

    Get PDF
    The ever-growing demand for machine learning has led to the development of automated machine learning (AutoML) systems that can be used off the shelf by non-experts. Further, the demand for ML applications with high predictive performance exceeds the number of machine learning experts and makes the development of AutoML systems necessary. Automated Machine Learning tackles the problem of finding machine learning models with high predictive performance. Existing approaches incorporating deep learning techniques assume that all data is available at the beginning of the training process (offline learning). They configure and optimise a pipeline of preprocessing, feature engineering, and model selection by choosing suitable hyperparameters in each model pipeline step. Furthermore, they assume that the user is fully aware of the choice and, thus, the consequences of the underlying metric (such as precision, recall, or F1-measure). By variation of this metric, the search for suitable configurations and thus the adaptation of algorithms can be tailored to the user’s needs. With the creation of a vast amount of data from all kinds of sources every day, our capability to process and understand these data sets in a single batch is no longer viable. By training machine learning models incrementally (i.ex. online learning), the flood of data can be processed sequentially within data streams. However, if one assumes an online learning scenario, where an AutoML instance executes on evolving data streams, the question of the best model and its configuration remains open. In this work, we address the adaptation of AutoML in an offline learning scenario toward a certain utility an end-user might pursue as well as the adaptation of AutoML towards evolving data streams in an online learning scenario with three main contributions: 1. We propose a System that allows the adaptation of AutoML and the search for neural architectures towards a particular utility an end-user might pursue. 2. We introduce an online deep learning framework that fosters the research of deep learning models under the online learning assumption and enables the automated search for neural architectures. 3. We introduce an online AutoML framework that allows the incremental adaptation of ML models. We evaluate the contributions individually, in accordance with predefined requirements and to state-of-the- art evaluation setups. The outcomes lead us to conclude that (i) AutoML, as well as systems for neural architecture search, can be steered towards individual utilities by learning a designated ranking model from pairwise preferences and using the latter as the target function for the offline learning scenario; (ii) architectual small neural networks are in general suitable assuming an online learning scenario; (iii) the configuration of machine learning pipelines can be automatically be adapted to ever-evolving data streams and lead to better performances

    Empowering users to communicate their preferences to machine learning models in Visual Analytics

    Get PDF
    Recent visual analytic (VA) systems rely on machine learning (ML) to allow users to perform a variety of data analytic tasks, e.g., biologists clustering genome samples, medical practitioners predicting the diagnosis for a new patient, ML practitioners tuning models' hyperparameter settings, etc. These VA systems support interactive construction of models to people (I call them power users) with a diverse set of expertise in ML; from non-experts, to intermediates, to expert ML users. Through my research, I designed and developed VA systems for power users empowering them to communicate their preferences to interactively construct machine learning models for their analytical tasks. In this process, I design algorithms to incorporate user interaction data in machine learning modeling pipelines. Specifically, I deployed and tested (e.g., task completion times, user satisfaction ratings, success rate in finding user-preferred models, model accuracies) two main interaction techniques, multi-model steering, and interactive objective functions to facilitate specification of user goals and objectives to underlying model(s) in VA. However, designing these VA systems for power users poses various challenges, such as addressing diversity in user expertise, metric selection, user modeling to automatically infer preferences, evaluating the success of these systems, etc. Through this work I contribute a set of VA systems that support interactive construction and selection of supervised and unsupervised models using tabular data. In addition, I also present results/findings from a design study of interactive ML in a specific domain with real users and real data.Ph.D

    Process Mining for Smart Product Design

    Get PDF
    corecore